/* * Copyright (c) 2012-2013, 2015, 2019 ARM Limited * Copyright (c) 2015 Advanced Micro Devices, Inc. * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2003-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt * Kevin Lim */ #ifndef __SIM_SYSCALL_EMUL_HH__ #define __SIM_SYSCALL_EMUL_HH__ #if (defined(__APPLE__) || defined(__OpenBSD__) || \ defined(__FreeBSD__) || defined(__CYGWIN__) || \ defined(__NetBSD__)) #define NO_STAT64 1 #else #define NO_STAT64 0 #endif /// /// @file syscall_emul.hh /// /// This file defines objects used to emulate syscalls from the target /// application on the host machine. #if defined(__linux__) #include #include #else #include #endif #ifdef __CYGWIN32__ #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "arch/generic/tlb.hh" #include "arch/utility.hh" #include "base/intmath.hh" #include "base/loader/object_file.hh" #include "base/logging.hh" #include "base/trace.hh" #include "base/types.hh" #include "config/the_isa.hh" #include "cpu/base.hh" #include "cpu/thread_context.hh" #include "mem/page_table.hh" #include "params/Process.hh" #include "sim/emul_driver.hh" #include "sim/futex_map.hh" #include "sim/process.hh" #include "sim/syscall_debug_macros.hh" #include "sim/syscall_desc.hh" #include "sim/syscall_emul_buf.hh" #include "sim/syscall_return.hh" #if defined(__APPLE__) && defined(__MACH__) && !defined(CMSG_ALIGN) #define CMSG_ALIGN(len) (((len) + sizeof(size_t) - 1) & ~(sizeof(size_t) - 1)) #endif ////////////////////////////////////////////////////////////////////// // // The following emulation functions are generic enough that they // don't need to be recompiled for different emulated OS's. They are // defined in sim/syscall_emul.cc. // ////////////////////////////////////////////////////////////////////// void warnUnsupportedOS(std::string syscall_name); /// Handler for unimplemented syscalls that we haven't thought about. SyscallReturn unimplementedFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Handler for unimplemented syscalls that we never intend to /// implement (signal handling, etc.) and should not affect the correct /// behavior of the program. Print a warning only if the appropriate /// trace flag is enabled. Return success to the target program. SyscallReturn ignoreFunc(SyscallDesc *desc, int num, ThreadContext *tc); // Target fallocateFunc() handler. SyscallReturn fallocateFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target exit() handler: terminate current context. SyscallReturn exitFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target exit_group() handler: terminate simulation. (exit all threads) SyscallReturn exitGroupFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target set_tid_address() handler. SyscallReturn setTidAddressFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target getpagesize() handler. SyscallReturn getpagesizeFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target brk() handler: set brk address. SyscallReturn brkFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target close() handler. SyscallReturn closeFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target lseek() handler. SyscallReturn lseekFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target _llseek() handler. SyscallReturn _llseekFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target munmap() handler. SyscallReturn munmapFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target shutdown() handler. SyscallReturn shutdownFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target gethostname() handler. SyscallReturn gethostnameFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target getcwd() handler. SyscallReturn getcwdFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target readlink() handler. SyscallReturn readlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc, int index = 0); SyscallReturn readlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target unlink() handler. SyscallReturn unlinkHelper(SyscallDesc *desc, int num, ThreadContext *tc, int index); SyscallReturn unlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target link() handler SyscallReturn linkFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target symlink() handler. SyscallReturn symlinkFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target mkdir() handler. SyscallReturn mkdirFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target mknod() handler. SyscallReturn mknodFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target chdir() handler. SyscallReturn chdirFunc(SyscallDesc *desc, int num, ThreadContext *tc); // Target rmdir() handler. SyscallReturn rmdirFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target rename() handler. SyscallReturn renameFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target truncate() handler. SyscallReturn truncateFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target ftruncate() handler. SyscallReturn ftruncateFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target truncate64() handler. SyscallReturn truncate64Func(SyscallDesc *desc, int num, ThreadContext *tc); /// Target ftruncate64() handler. SyscallReturn ftruncate64Func(SyscallDesc *desc, int num, ThreadContext *tc); /// Target umask() handler. SyscallReturn umaskFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target gettid() handler. SyscallReturn gettidFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target chown() handler. SyscallReturn chownFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target getpgrpFunc() handler. SyscallReturn getpgrpFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target setpgid() handler. SyscallReturn setpgidFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target fchown() handler. SyscallReturn fchownFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target dup() handler. SyscallReturn dupFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target dup2() handler. SyscallReturn dup2Func(SyscallDesc *desc, int num, ThreadContext *tc); /// Target fcntl() handler. SyscallReturn fcntlFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target fcntl64() handler. SyscallReturn fcntl64Func(SyscallDesc *desc, int num, ThreadContext *tc); /// Target setuid() handler. SyscallReturn setuidFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target pipe() handler. SyscallReturn pipeFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Internal pipe() handler. SyscallReturn pipeImpl(SyscallDesc *desc, int num, ThreadContext *tc, bool pseudo_pipe, bool is_pipe2=false); /// Target pipe() handler. SyscallReturn pipe2Func(SyscallDesc *desc, int num, ThreadContext *tc); /// Target getpid() handler. SyscallReturn getpidFunc(SyscallDesc *desc, int num, ThreadContext *tc); // Target getpeername() handler. SyscallReturn getpeernameFunc(SyscallDesc *desc, int num, ThreadContext *tc); // Target bind() handler. SyscallReturn bindFunc(SyscallDesc *desc, int num, ThreadContext *tc); // Target listen() handler. SyscallReturn listenFunc(SyscallDesc *desc, int num, ThreadContext *tc); // Target connect() handler. SyscallReturn connectFunc(SyscallDesc *desc, int num, ThreadContext *tc); #if defined(SYS_getdents) // Target getdents() handler. SyscallReturn getdentsFunc(SyscallDesc *desc, int num, ThreadContext *tc); #endif #if defined(SYS_getdents64) // Target getdents() handler. SyscallReturn getdents64Func(SyscallDesc *desc, int num, ThreadContext *tc); #endif // Target sendto() handler. SyscallReturn sendtoFunc(SyscallDesc *desc, int num, ThreadContext *tc); // Target recvfrom() handler. SyscallReturn recvfromFunc(SyscallDesc *desc, int num, ThreadContext *tc); // Target recvmsg() handler. SyscallReturn recvmsgFunc(SyscallDesc *desc, int num, ThreadContext *tc); // Target sendmsg() handler. SyscallReturn sendmsgFunc(SyscallDesc *desc, int num, ThreadContext *tc); // Target getuid() handler. SyscallReturn getuidFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target getgid() handler. SyscallReturn getgidFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target getppid() handler. SyscallReturn getppidFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target geteuid() handler. SyscallReturn geteuidFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target getegid() handler. SyscallReturn getegidFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target access() handler SyscallReturn accessFunc(SyscallDesc *desc, int num, ThreadContext *tc); SyscallReturn accessFunc(SyscallDesc *desc, int num, ThreadContext *tc, int index); // Target getsockopt() handler. SyscallReturn getsockoptFunc(SyscallDesc *desc, int num, ThreadContext *tc); // Target setsockopt() handler. SyscallReturn setsockoptFunc(SyscallDesc *desc, int num, ThreadContext *tc); // Target getsockname() handler. SyscallReturn getsocknameFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Futex system call /// Implemented by Daniel Sanchez /// Used by printf's in multi-threaded apps template SyscallReturn futexFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { using namespace std; int index = 0; auto process = tc->getProcessPtr(); Addr uaddr = process->getSyscallArg(tc, index); int op = process->getSyscallArg(tc, index); int val = process->getSyscallArg(tc, index); int timeout M5_VAR_USED = process->getSyscallArg(tc, index); Addr uaddr2 M5_VAR_USED = process->getSyscallArg(tc, index); int val3 = process->getSyscallArg(tc, index); /* * Unsupported option that does not affect the correctness of the * application. This is a performance optimization utilized by Linux. */ op &= ~OS::TGT_FUTEX_PRIVATE_FLAG; op &= ~OS::TGT_FUTEX_CLOCK_REALTIME_FLAG; FutexMap &futex_map = tc->getSystemPtr()->futexMap; if (OS::TGT_FUTEX_WAIT == op || OS::TGT_FUTEX_WAIT_BITSET == op) { // Ensure futex system call accessed atomically. BufferArg buf(uaddr, sizeof(int)); buf.copyIn(tc->getVirtProxy()); int mem_val = *(int*)buf.bufferPtr(); /* * The value in memory at uaddr is not equal with the expected val * (a different thread must have changed it before the system call was * invoked). In this case, we need to throw an error. */ if (val != mem_val) return -OS::TGT_EWOULDBLOCK; if (OS::TGT_FUTEX_WAIT == op) { futex_map.suspend(uaddr, process->tgid(), tc); } else { futex_map.suspend_bitset(uaddr, process->tgid(), tc, val3); } return 0; } else if (OS::TGT_FUTEX_WAKE == op) { return futex_map.wakeup(uaddr, process->tgid(), val); } else if (OS::TGT_FUTEX_WAKE_BITSET == op) { return futex_map.wakeup_bitset(uaddr, process->tgid(), val3); } else if (OS::TGT_FUTEX_REQUEUE == op || OS::TGT_FUTEX_CMP_REQUEUE == op) { // Ensure futex system call accessed atomically. BufferArg buf(uaddr, sizeof(int)); buf.copyIn(tc->getVirtProxy()); int mem_val = *(int*)buf.bufferPtr(); /* * For CMP_REQUEUE, the whole operation is only started only if * val3 is still the value of the futex pointed to by uaddr. */ if (OS::TGT_FUTEX_CMP_REQUEUE && val3 != mem_val) return -OS::TGT_EWOULDBLOCK; return futex_map.requeue(uaddr, process->tgid(), val, timeout, uaddr2); } else if (OS::TGT_FUTEX_WAKE_OP == op) { /* * The FUTEX_WAKE_OP operation is equivalent to executing the * following code atomically and totally ordered with respect to * other futex operations on any of the two supplied futex words: * * int oldval = *(int *) addr2; * *(int *) addr2 = oldval op oparg; * futex(addr1, FUTEX_WAKE, val, 0, 0, 0); * if (oldval cmp cmparg) * futex(addr2, FUTEX_WAKE, val2, 0, 0, 0); * * (op, oparg, cmp, cmparg are encoded in val3) * * +---+---+-----------+-----------+ * |op |cmp| oparg | cmparg | * +---+---+-----------+-----------+ * 4 4 12 12 <== # of bits * * reference: http://man7.org/linux/man-pages/man2/futex.2.html * */ // get value from simulated-space BufferArg buf(uaddr2, sizeof(int)); buf.copyIn(tc->getVirtProxy()); int oldval = *(int*)buf.bufferPtr(); int newval = oldval; // extract op, oparg, cmp, cmparg from val3 int wake_cmparg = val3 & 0xfff; int wake_oparg = (val3 & 0xfff000) >> 12; int wake_cmp = (val3 & 0xf000000) >> 24; int wake_op = (val3 & 0xf0000000) >> 28; if ((wake_op & OS::TGT_FUTEX_OP_ARG_SHIFT) >> 3 == 1) wake_oparg = (1 << wake_oparg); wake_op &= ~OS::TGT_FUTEX_OP_ARG_SHIFT; // perform operation on the value of the second futex if (wake_op == OS::TGT_FUTEX_OP_SET) newval = wake_oparg; else if (wake_op == OS::TGT_FUTEX_OP_ADD) newval += wake_oparg; else if (wake_op == OS::TGT_FUTEX_OP_OR) newval |= wake_oparg; else if (wake_op == OS::TGT_FUTEX_OP_ANDN) newval &= ~wake_oparg; else if (wake_op == OS::TGT_FUTEX_OP_XOR) newval ^= wake_oparg; // copy updated value back to simulated-space *(int*)buf.bufferPtr() = newval; buf.copyOut(tc->getVirtProxy()); // perform the first wake-up int woken1 = futex_map.wakeup(uaddr, process->tgid(), val); int woken2 = 0; // calculate the condition of the second wake-up bool is_wake2 = false; if (wake_cmp == OS::TGT_FUTEX_OP_CMP_EQ) is_wake2 = oldval == wake_cmparg; else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_NE) is_wake2 = oldval != wake_cmparg; else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_LT) is_wake2 = oldval < wake_cmparg; else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_LE) is_wake2 = oldval <= wake_cmparg; else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_GT) is_wake2 = oldval > wake_cmparg; else if (wake_cmp == OS::TGT_FUTEX_OP_CMP_GE) is_wake2 = oldval >= wake_cmparg; // perform the second wake-up if (is_wake2) woken2 = futex_map.wakeup(uaddr2, process->tgid(), timeout); return woken1 + woken2; } warn("futex: op %d not implemented; ignoring.", op); return -ENOSYS; } /// Pseudo Funcs - These functions use a different return convension, /// returning a second value in a register other than the normal return register SyscallReturn pipePseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target getpidPseudo() handler. SyscallReturn getpidPseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target getuidPseudo() handler. SyscallReturn getuidPseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// Target getgidPseudo() handler. SyscallReturn getgidPseudoFunc(SyscallDesc *desc, int num, ThreadContext *tc); /// A readable name for 1,000,000, for converting microseconds to seconds. const int one_million = 1000000; /// A readable name for 1,000,000,000, for converting nanoseconds to seconds. const int one_billion = 1000000000; /// Approximate seconds since the epoch (1/1/1970). About a billion, /// by my reckoning. We want to keep this a constant (not use the /// real-world time) to keep simulations repeatable. const unsigned seconds_since_epoch = 1000000000; /// Helper function to convert current elapsed time to seconds and /// microseconds. template void getElapsedTimeMicro(T1 &sec, T2 &usec) { uint64_t elapsed_usecs = curTick() / SimClock::Int::us; sec = elapsed_usecs / one_million; usec = elapsed_usecs % one_million; } /// Helper function to convert current elapsed time to seconds and /// nanoseconds. template void getElapsedTimeNano(T1 &sec, T2 &nsec) { uint64_t elapsed_nsecs = curTick() / SimClock::Int::ns; sec = elapsed_nsecs / one_billion; nsec = elapsed_nsecs % one_billion; } ////////////////////////////////////////////////////////////////////// // // The following emulation functions are generic, but need to be // templated to account for differences in types, constants, etc. // ////////////////////////////////////////////////////////////////////// typedef struct statfs hst_statfs; #if NO_STAT64 typedef struct stat hst_stat; typedef struct stat hst_stat64; #else typedef struct stat hst_stat; typedef struct stat64 hst_stat64; #endif //// Helper function to convert a host stat buffer to a target stat //// buffer. Also copies the target buffer out to the simulated //// memory space. Used by stat(), fstat(), and lstat(). template void convertStatBuf(target_stat &tgt, host_stat *host, ByteOrder bo, bool fakeTTY=false) { if (fakeTTY) tgt->st_dev = 0xA; else tgt->st_dev = host->st_dev; tgt->st_dev = htog(tgt->st_dev, bo); tgt->st_ino = host->st_ino; tgt->st_ino = htog(tgt->st_ino, bo); tgt->st_mode = host->st_mode; if (fakeTTY) { // Claim to be a character device tgt->st_mode &= ~S_IFMT; // Clear S_IFMT tgt->st_mode |= S_IFCHR; // Set S_IFCHR } tgt->st_mode = htog(tgt->st_mode, bo); tgt->st_nlink = host->st_nlink; tgt->st_nlink = htog(tgt->st_nlink, bo); tgt->st_uid = host->st_uid; tgt->st_uid = htog(tgt->st_uid, bo); tgt->st_gid = host->st_gid; tgt->st_gid = htog(tgt->st_gid, bo); if (fakeTTY) tgt->st_rdev = 0x880d; else tgt->st_rdev = host->st_rdev; tgt->st_rdev = htog(tgt->st_rdev, bo); tgt->st_size = host->st_size; tgt->st_size = htog(tgt->st_size, bo); tgt->st_atimeX = host->st_atime; tgt->st_atimeX = htog(tgt->st_atimeX, bo); tgt->st_mtimeX = host->st_mtime; tgt->st_mtimeX = htog(tgt->st_mtimeX, bo); tgt->st_ctimeX = host->st_ctime; tgt->st_ctimeX = htog(tgt->st_ctimeX, bo); // Force the block size to be 8KB. This helps to ensure buffered io works // consistently across different hosts. tgt->st_blksize = 0x2000; tgt->st_blksize = htog(tgt->st_blksize, bo); tgt->st_blocks = host->st_blocks; tgt->st_blocks = htog(tgt->st_blocks, bo); } // Same for stat64 template void convertStat64Buf(target_stat &tgt, host_stat64 *host, ByteOrder bo, bool fakeTTY=false) { convertStatBuf(tgt, host, bo, fakeTTY); #if defined(STAT_HAVE_NSEC) tgt->st_atime_nsec = host->st_atime_nsec; tgt->st_atime_nsec = htog(tgt->st_atime_nsec, bo); tgt->st_mtime_nsec = host->st_mtime_nsec; tgt->st_mtime_nsec = htog(tgt->st_mtime_nsec, bo); tgt->st_ctime_nsec = host->st_ctime_nsec; tgt->st_ctime_nsec = htog(tgt->st_ctime_nsec, bo); #else tgt->st_atime_nsec = 0; tgt->st_mtime_nsec = 0; tgt->st_ctime_nsec = 0; #endif } // Here are a couple of convenience functions template void copyOutStatBuf(PortProxy &mem, Addr addr, hst_stat *host, bool fakeTTY = false) { typedef TypedBufferArg tgt_stat_buf; tgt_stat_buf tgt(addr); convertStatBuf(tgt, host, OS::byteOrder, fakeTTY); tgt.copyOut(mem); } template void copyOutStat64Buf(PortProxy &mem, Addr addr, hst_stat64 *host, bool fakeTTY = false) { typedef TypedBufferArg tgt_stat_buf; tgt_stat_buf tgt(addr); convertStat64Buf( tgt, host, OS::byteOrder, fakeTTY); tgt.copyOut(mem); } template void copyOutStatfsBuf(PortProxy &mem, Addr addr, hst_statfs *host) { TypedBufferArg tgt(addr); const ByteOrder bo = OS::byteOrder; tgt->f_type = htog(host->f_type, bo); #if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) tgt->f_bsize = htog(host->f_iosize, bo); #else tgt->f_bsize = htog(host->f_bsize, bo); #endif tgt->f_blocks = htog(host->f_blocks, bo); tgt->f_bfree = htog(host->f_bfree, bo); tgt->f_bavail = htog(host->f_bavail, bo); tgt->f_files = htog(host->f_files, bo); tgt->f_ffree = htog(host->f_ffree, bo); memcpy(&tgt->f_fsid, &host->f_fsid, sizeof(host->f_fsid)); #if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) tgt->f_namelen = htog(host->f_namemax, bo); tgt->f_frsize = htog(host->f_bsize, bo); #elif defined(__APPLE__) tgt->f_namelen = 0; tgt->f_frsize = 0; #else tgt->f_namelen = htog(host->f_namelen, bo); tgt->f_frsize = htog(host->f_frsize, bo); #endif #if defined(__linux__) memcpy(&tgt->f_spare, &host->f_spare, sizeof(host->f_spare)); #else /* * The fields are different sizes per OS. Don't bother with * f_spare or f_reserved on non-Linux for now. */ memset(&tgt->f_spare, 0, sizeof(tgt->f_spare)); #endif tgt.copyOut(mem); } /// Target ioctl() handler. For the most part, programs call ioctl() /// only to find out if their stdout is a tty, to determine whether to /// do line or block buffering. We always claim that output fds are /// not TTYs to provide repeatable results. template SyscallReturn ioctlFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto p = tc->getProcessPtr(); int tgt_fd = p->getSyscallArg(tc, index); unsigned req = p->getSyscallArg(tc, index); DPRINTF_SYSCALL(Verbose, "ioctl(%d, 0x%x, ...)\n", tgt_fd, req); if (OS::isTtyReq(req)) return -ENOTTY; auto dfdp = std::dynamic_pointer_cast((*p->fds)[tgt_fd]); if (dfdp) { EmulatedDriver *emul_driver = dfdp->getDriver(); if (emul_driver) return emul_driver->ioctl(tc, req); } auto sfdp = std::dynamic_pointer_cast((*p->fds)[tgt_fd]); if (sfdp) { int status; switch (req) { case SIOCGIFCONF: { Addr conf_addr = p->getSyscallArg(tc, index); BufferArg conf_arg(conf_addr, sizeof(ifconf)); conf_arg.copyIn(tc->getVirtProxy()); ifconf *conf = (ifconf*)conf_arg.bufferPtr(); Addr ifc_buf_addr = (Addr)conf->ifc_buf; BufferArg ifc_buf_arg(ifc_buf_addr, conf->ifc_len); ifc_buf_arg.copyIn(tc->getVirtProxy()); conf->ifc_buf = (char*)ifc_buf_arg.bufferPtr(); status = ioctl(sfdp->getSimFD(), req, conf_arg.bufferPtr()); if (status != -1) { conf->ifc_buf = (char*)ifc_buf_addr; ifc_buf_arg.copyOut(tc->getVirtProxy()); conf_arg.copyOut(tc->getVirtProxy()); } return status; } case SIOCGIFFLAGS: #if defined(__linux__) case SIOCGIFINDEX: #endif case SIOCGIFNETMASK: case SIOCGIFADDR: #if defined(__linux__) case SIOCGIFHWADDR: #endif case SIOCGIFMTU: { Addr req_addr = p->getSyscallArg(tc, index); BufferArg req_arg(req_addr, sizeof(ifreq)); req_arg.copyIn(tc->getVirtProxy()); status = ioctl(sfdp->getSimFD(), req, req_arg.bufferPtr()); if (status != -1) req_arg.copyOut(tc->getVirtProxy()); return status; } } } /** * For lack of a better return code, return ENOTTY. Ideally, we should * return something better here, but at least we issue the warning. */ warn("Unsupported ioctl call (return ENOTTY): ioctl(%d, 0x%x, ...) @ \n", tgt_fd, req, tc->pcState()); return -ENOTTY; } template SyscallReturn openImpl(SyscallDesc *desc, int callnum, ThreadContext *tc, bool isopenat) { int index = 0; auto p = tc->getProcessPtr(); int tgt_dirfd = -1; /** * If using the openat variant, read in the target directory file * descriptor from the simulated process. */ if (isopenat) tgt_dirfd = p->getSyscallArg(tc, index); /** * Retrieve the simulated process' memory proxy and then read in the path * string from that memory space into the host's working memory space. */ std::string path; if (!tc->getVirtProxy().tryReadString(path, p->getSyscallArg(tc, index))) return -EFAULT; #ifdef __CYGWIN32__ int host_flags = O_BINARY; #else int host_flags = 0; #endif /** * Translate target flags into host flags. Flags exist which are not * ported between architectures which can cause check failures. */ int tgt_flags = p->getSyscallArg(tc, index); for (int i = 0; i < OS::NUM_OPEN_FLAGS; i++) { if (tgt_flags & OS::openFlagTable[i].tgtFlag) { tgt_flags &= ~OS::openFlagTable[i].tgtFlag; host_flags |= OS::openFlagTable[i].hostFlag; } } if (tgt_flags) { warn("open%s: cannot decode flags 0x%x", isopenat ? "at" : "", tgt_flags); } #ifdef __CYGWIN32__ host_flags |= O_BINARY; #endif int mode = p->getSyscallArg(tc, index); /** * If the simulated process called open or openat with AT_FDCWD specified, * take the current working directory value which was passed into the * process class as a Python parameter and append the current path to * create a full path. * Otherwise, openat with a valid target directory file descriptor has * been called. If the path option, which was passed in as a parameter, * is not absolute, retrieve the directory file descriptor's path and * prepend it to the path passed in as a parameter. * In every case, we should have a full path (which is relevant to the * host) to work with after this block has been passed. */ std::string redir_path = path; std::string abs_path = path; if (!isopenat || tgt_dirfd == OS::TGT_AT_FDCWD) { abs_path = p->absolutePath(path, true); redir_path = p->checkPathRedirect(path); } else if (!startswith(path, "/")) { std::shared_ptr fdep = ((*p->fds)[tgt_dirfd]); auto ffdp = std::dynamic_pointer_cast(fdep); if (!ffdp) return -EBADF; abs_path = ffdp->getFileName() + path; redir_path = p->checkPathRedirect(abs_path); } /** * Since this is an emulated environment, we create pseudo file * descriptors for device requests that have been registered with * the process class through Python; this allows us to create a file * descriptor for subsequent ioctl or mmap calls. */ if (startswith(abs_path, "/dev/")) { std::string filename = abs_path.substr(strlen("/dev/")); EmulatedDriver *drv = p->findDriver(filename); if (drv) { DPRINTF_SYSCALL(Verbose, "open%s: passing call to " "driver open with path[%s]\n", isopenat ? "at" : "", abs_path.c_str()); return drv->open(tc, mode, host_flags); } /** * Fall through here for pass through to host devices, such * as /dev/zero */ } /** * We make several attempts resolve a call to open. * * 1) Resolve any path redirection before hand. This will set the path * up with variable 'redir_path' which may contain a modified path or * the original path value. This should already be done in prior code. * 2) Try to handle the access using 'special_paths'. Some special_paths * and files cannot be called on the host and need to be handled as * special cases inside the simulator. These special_paths are handled by * C++ routines to provide output back to userspace. * 3) If the full path that was created above does not match any of the * special cases, pass it through to the open call on the __HOST__ to let * the host open the file on our behalf. Again, the openImpl tries to * USE_THE_HOST_FILESYSTEM_OPEN (with a possible redirection to the * faux-filesystem files). The faux-filesystem is dynamically created * during simulator configuration using Python functions. * 4) If the host cannot open the file, the open attempt failed in "3)". * Return the host's error code back through the system call to the * simulated process. If running a debug trace, also notify the user that * the open call failed. * * Any success will set sim_fd to something other than -1 and skip the * next conditions effectively bypassing them. */ int sim_fd = -1; std::string used_path; std::vector special_paths = { "/proc/meminfo/", "/system/", "/platform/", "/etc/passwd" }; for (auto entry : special_paths) { if (startswith(path, entry)) { sim_fd = OS::openSpecialFile(abs_path, p, tc); used_path = abs_path; } } if (sim_fd == -1) { sim_fd = open(redir_path.c_str(), host_flags, mode); used_path = redir_path; } if (sim_fd == -1) { int local = -errno; DPRINTF_SYSCALL(Verbose, "open%s: failed -> path:%s " "(inferred from:%s)\n", isopenat ? "at" : "", used_path.c_str(), path.c_str()); return local; } /** * The file was opened successfully and needs to be recorded in the * process' file descriptor array so that it can be retrieved later. * The target file descriptor that is chosen will be the lowest unused * file descriptor. * Return the indirect target file descriptor back to the simulated * process to act as a handle for the opened file. */ auto ffdp = std::make_shared(sim_fd, host_flags, path, 0); int tgt_fd = p->fds->allocFD(ffdp); DPRINTF_SYSCALL(Verbose, "open%s: sim_fd[%d], target_fd[%d] -> path:%s\n" "(inferred from:%s)\n", isopenat ? "at" : "", sim_fd, tgt_fd, used_path.c_str(), path.c_str()); return tgt_fd; } /// Target open() handler. template SyscallReturn openFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { return openImpl(desc, callnum, tc, false); } /// Target openat() handler. template SyscallReturn openatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { return openImpl(desc, callnum, tc, true); } /// Target unlinkat() handler. template SyscallReturn unlinkatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto process = tc->getProcessPtr(); int dirfd = process->getSyscallArg(tc, index); if (dirfd != OS::TGT_AT_FDCWD) warn("unlinkat: first argument not AT_FDCWD; unlikely to work"); return unlinkHelper(desc, callnum, tc, 1); } /// Target facessat() handler template SyscallReturn faccessatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto process = tc->getProcessPtr(); int dirfd = process->getSyscallArg(tc, index); if (dirfd != OS::TGT_AT_FDCWD) warn("faccessat: first argument not AT_FDCWD; unlikely to work"); return accessFunc(desc, callnum, tc, 1); } /// Target readlinkat() handler template SyscallReturn readlinkatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto process = tc->getProcessPtr(); int dirfd = process->getSyscallArg(tc, index); if (dirfd != OS::TGT_AT_FDCWD) warn("openat: first argument not AT_FDCWD; unlikely to work"); return readlinkFunc(desc, callnum, tc, 1); } /// Target renameat() handler. template SyscallReturn renameatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto process = tc->getProcessPtr(); int olddirfd = process->getSyscallArg(tc, index); if (olddirfd != OS::TGT_AT_FDCWD) warn("renameat: first argument not AT_FDCWD; unlikely to work"); std::string old_name; if (!tc->getVirtProxy().tryReadString(old_name, process->getSyscallArg(tc, index))) return -EFAULT; int newdirfd = process->getSyscallArg(tc, index); if (newdirfd != OS::TGT_AT_FDCWD) warn("renameat: third argument not AT_FDCWD; unlikely to work"); std::string new_name; if (!tc->getVirtProxy().tryReadString(new_name, process->getSyscallArg(tc, index))) return -EFAULT; // Adjust path for cwd and redirection old_name = process->checkPathRedirect(old_name); new_name = process->checkPathRedirect(new_name); int result = rename(old_name.c_str(), new_name.c_str()); return (result == -1) ? -errno : result; } /// Target sysinfo() handler. template SyscallReturn sysinfoFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto process = tc->getProcessPtr(); TypedBufferArg sysinfo(process->getSyscallArg(tc, index)); sysinfo->uptime = seconds_since_epoch; sysinfo->totalram = process->system->memSize(); sysinfo->mem_unit = 1; sysinfo.copyOut(tc->getVirtProxy()); return 0; } /// Target chmod() handler. template SyscallReturn chmodFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { std::string path; auto process = tc->getProcessPtr(); int index = 0; if (!tc->getVirtProxy().tryReadString(path, process->getSyscallArg(tc, index))) { return -EFAULT; } uint32_t mode = process->getSyscallArg(tc, index); mode_t hostMode = 0; // XXX translate mode flags via OS::something??? hostMode = mode; // Adjust path for cwd and redirection path = process->checkPathRedirect(path); // do the chmod int result = chmod(path.c_str(), hostMode); if (result < 0) return -errno; return 0; } template SyscallReturn pollFunc(SyscallDesc *desc, int num, ThreadContext *tc) { int index = 0; auto p = tc->getProcessPtr(); Addr fdsPtr = p->getSyscallArg(tc, index); int nfds = p->getSyscallArg(tc, index); int tmout = p->getSyscallArg(tc, index); BufferArg fdsBuf(fdsPtr, sizeof(struct pollfd) * nfds); fdsBuf.copyIn(tc->getVirtProxy()); /** * Record the target file descriptors in a local variable. We need to * replace them with host file descriptors but we need a temporary copy * for later. Afterwards, replace each target file descriptor in the * poll_fd array with its host_fd. */ int temp_tgt_fds[nfds]; for (index = 0; index < nfds; index++) { temp_tgt_fds[index] = ((struct pollfd *)fdsBuf.bufferPtr())[index].fd; auto tgt_fd = temp_tgt_fds[index]; auto hbfdp = std::dynamic_pointer_cast((*p->fds)[tgt_fd]); if (!hbfdp) return -EBADF; auto host_fd = hbfdp->getSimFD(); ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = host_fd; } /** * We cannot allow an infinite poll to occur or it will inevitably cause * a deadlock in the gem5 simulator with clone. We must pass in tmout with * a non-negative value, however it also makes no sense to poll on the * underlying host for any other time than tmout a zero timeout. */ int status; if (tmout < 0) { status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0); if (status == 0) { /** * If blocking indefinitely, check the signal list to see if a * signal would break the poll out of the retry cycle and try * to return the signal interrupt instead. */ System *sysh = tc->getSystemPtr(); std::list::iterator it; for (it=sysh->signalList.begin(); it!=sysh->signalList.end(); it++) if (it->receiver == p) return -EINTR; return SyscallReturn::retry(); } } else status = poll((struct pollfd *)fdsBuf.bufferPtr(), nfds, 0); if (status == -1) return -errno; /** * Replace each host_fd in the returned poll_fd array with its original * target file descriptor. */ for (index = 0; index < nfds; index++) { auto tgt_fd = temp_tgt_fds[index]; ((struct pollfd *)fdsBuf.bufferPtr())[index].fd = tgt_fd; } /** * Copy out the pollfd struct because the host may have updated fields * in the structure. */ fdsBuf.copyOut(tc->getVirtProxy()); return status; } /// Target fchmod() handler. template SyscallReturn fchmodFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto p = tc->getProcessPtr(); int tgt_fd = p->getSyscallArg(tc, index); uint32_t mode = p->getSyscallArg(tc, index); auto ffdp = std::dynamic_pointer_cast((*p->fds)[tgt_fd]); if (!ffdp) return -EBADF; int sim_fd = ffdp->getSimFD(); mode_t hostMode = mode; int result = fchmod(sim_fd, hostMode); return (result < 0) ? -errno : 0; } /// Target mremap() handler. template SyscallReturn mremapFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto process = tc->getProcessPtr(); Addr start = process->getSyscallArg(tc, index); uint64_t old_length = process->getSyscallArg(tc, index); uint64_t new_length = process->getSyscallArg(tc, index); uint64_t flags = process->getSyscallArg(tc, index); uint64_t provided_address = 0; bool use_provided_address = flags & OS::TGT_MREMAP_FIXED; if (use_provided_address) provided_address = process->getSyscallArg(tc, index); if ((start % TheISA::PageBytes != 0) || (provided_address % TheISA::PageBytes != 0)) { warn("mremap failing: arguments not page aligned"); return -EINVAL; } new_length = roundUp(new_length, TheISA::PageBytes); if (new_length > old_length) { std::shared_ptr mem_state = process->memState; Addr mmap_end = mem_state->getMmapEnd(); if ((start + old_length) == mmap_end && (!use_provided_address || provided_address == start)) { // This case cannot occur when growing downward, as // start is greater than or equal to mmap_end. uint64_t diff = new_length - old_length; process->allocateMem(mmap_end, diff); mem_state->setMmapEnd(mmap_end + diff); return start; } else { if (!use_provided_address && !(flags & OS::TGT_MREMAP_MAYMOVE)) { warn("can't remap here and MREMAP_MAYMOVE flag not set\n"); return -ENOMEM; } else { uint64_t new_start = provided_address; if (!use_provided_address) { new_start = process->mmapGrowsDown() ? mmap_end - new_length : mmap_end; mmap_end = process->mmapGrowsDown() ? new_start : mmap_end + new_length; mem_state->setMmapEnd(mmap_end); } process->pTable->remap(start, old_length, new_start); warn("mremapping to new vaddr %08p-%08p, adding %d\n", new_start, new_start + new_length, new_length - old_length); // add on the remaining unallocated pages process->allocateMem(new_start + old_length, new_length - old_length, use_provided_address /* clobber */); if (use_provided_address && ((new_start + new_length > mem_state->getMmapEnd() && !process->mmapGrowsDown()) || (new_start < mem_state->getMmapEnd() && process->mmapGrowsDown()))) { // something fishy going on here, at least notify the user // @todo: increase mmap_end? warn("mmap region limit exceeded with MREMAP_FIXED\n"); } warn("returning %08p as start\n", new_start); return new_start; } } } else { if (use_provided_address && provided_address != start) process->pTable->remap(start, new_length, provided_address); process->pTable->unmap(start + new_length, old_length - new_length); return use_provided_address ? provided_address : start; } } /// Target stat() handler. template SyscallReturn statFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { std::string path; auto process = tc->getProcessPtr(); int index = 0; if (!tc->getVirtProxy().tryReadString(path, process->getSyscallArg(tc, index))) { return -EFAULT; } Addr bufPtr = process->getSyscallArg(tc, index); // Adjust path for cwd and redirection path = process->checkPathRedirect(path); struct stat hostBuf; int result = stat(path.c_str(), &hostBuf); if (result < 0) return -errno; copyOutStatBuf(tc->getVirtProxy(), bufPtr, &hostBuf); return 0; } /// Target stat64() handler. template SyscallReturn stat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc) { std::string path; auto process = tc->getProcessPtr(); int index = 0; if (!tc->getVirtProxy().tryReadString(path, process->getSyscallArg(tc, index))) return -EFAULT; Addr bufPtr = process->getSyscallArg(tc, index); // Adjust path for cwd and redirection path = process->checkPathRedirect(path); #if NO_STAT64 struct stat hostBuf; int result = stat(path.c_str(), &hostBuf); #else struct stat64 hostBuf; int result = stat64(path.c_str(), &hostBuf); #endif if (result < 0) return -errno; copyOutStat64Buf(tc->getVirtProxy(), bufPtr, &hostBuf); return 0; } /// Target fstatat64() handler. template SyscallReturn fstatat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto process = tc->getProcessPtr(); int dirfd = process->getSyscallArg(tc, index); if (dirfd != OS::TGT_AT_FDCWD) warn("fstatat64: first argument not AT_FDCWD; unlikely to work"); std::string path; if (!tc->getVirtProxy().tryReadString(path, process->getSyscallArg(tc, index))) return -EFAULT; Addr bufPtr = process->getSyscallArg(tc, index); // Adjust path for cwd and redirection path = process->checkPathRedirect(path); #if NO_STAT64 struct stat hostBuf; int result = stat(path.c_str(), &hostBuf); #else struct stat64 hostBuf; int result = stat64(path.c_str(), &hostBuf); #endif if (result < 0) return -errno; copyOutStat64Buf(tc->getVirtProxy(), bufPtr, &hostBuf); return 0; } /// Target fstat64() handler. template SyscallReturn fstat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto p = tc->getProcessPtr(); int tgt_fd = p->getSyscallArg(tc, index); Addr bufPtr = p->getSyscallArg(tc, index); auto ffdp = std::dynamic_pointer_cast((*p->fds)[tgt_fd]); if (!ffdp) return -EBADF; int sim_fd = ffdp->getSimFD(); #if NO_STAT64 struct stat hostBuf; int result = fstat(sim_fd, &hostBuf); #else struct stat64 hostBuf; int result = fstat64(sim_fd, &hostBuf); #endif if (result < 0) return -errno; copyOutStat64Buf(tc->getVirtProxy(), bufPtr, &hostBuf, (sim_fd == 1)); return 0; } /// Target lstat() handler. template SyscallReturn lstatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { std::string path; auto process = tc->getProcessPtr(); int index = 0; if (!tc->getVirtProxy().tryReadString(path, process->getSyscallArg(tc, index))) { return -EFAULT; } Addr bufPtr = process->getSyscallArg(tc, index); // Adjust path for cwd and redirection path = process->checkPathRedirect(path); struct stat hostBuf; int result = lstat(path.c_str(), &hostBuf); if (result < 0) return -errno; copyOutStatBuf(tc->getVirtProxy(), bufPtr, &hostBuf); return 0; } /// Target lstat64() handler. template SyscallReturn lstat64Func(SyscallDesc *desc, int callnum, ThreadContext *tc) { std::string path; auto process = tc->getProcessPtr(); int index = 0; if (!tc->getVirtProxy().tryReadString(path, process->getSyscallArg(tc, index))) { return -EFAULT; } Addr bufPtr = process->getSyscallArg(tc, index); // Adjust path for cwd and redirection path = process->checkPathRedirect(path); #if NO_STAT64 struct stat hostBuf; int result = lstat(path.c_str(), &hostBuf); #else struct stat64 hostBuf; int result = lstat64(path.c_str(), &hostBuf); #endif if (result < 0) return -errno; copyOutStat64Buf(tc->getVirtProxy(), bufPtr, &hostBuf); return 0; } /// Target fstat() handler. template SyscallReturn fstatFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto p = tc->getProcessPtr(); int tgt_fd = p->getSyscallArg(tc, index); Addr bufPtr = p->getSyscallArg(tc, index); DPRINTF_SYSCALL(Verbose, "fstat(%d, ...)\n", tgt_fd); auto ffdp = std::dynamic_pointer_cast((*p->fds)[tgt_fd]); if (!ffdp) return -EBADF; int sim_fd = ffdp->getSimFD(); struct stat hostBuf; int result = fstat(sim_fd, &hostBuf); if (result < 0) return -errno; copyOutStatBuf(tc->getVirtProxy(), bufPtr, &hostBuf, (sim_fd == 1)); return 0; } /// Target statfs() handler. template SyscallReturn statfsFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { #if defined(__linux__) std::string path; auto process = tc->getProcessPtr(); int index = 0; if (!tc->getVirtProxy().tryReadString(path, process->getSyscallArg(tc, index))) { return -EFAULT; } Addr bufPtr = process->getSyscallArg(tc, index); // Adjust path for cwd and redirection path = process->checkPathRedirect(path); struct statfs hostBuf; int result = statfs(path.c_str(), &hostBuf); if (result < 0) return -errno; copyOutStatfsBuf(tc->getVirtProxy(), bufPtr, &hostBuf); return 0; #else warnUnsupportedOS("statfs"); return -1; #endif } template SyscallReturn cloneFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto p = tc->getProcessPtr(); RegVal flags = p->getSyscallArg(tc, index); RegVal newStack = p->getSyscallArg(tc, index); Addr ptidPtr = p->getSyscallArg(tc, index); #if THE_ISA == RISCV_ISA or THE_ISA == ARM_ISA /** * Linux sets CLONE_BACKWARDS flag for RISC-V and Arm. * The flag defines the list of clone() arguments in the following * order: flags -> newStack -> ptidPtr -> tlsPtr -> ctidPtr */ Addr tlsPtr = p->getSyscallArg(tc, index); Addr ctidPtr = p->getSyscallArg(tc, index); #else Addr ctidPtr = p->getSyscallArg(tc, index); Addr tlsPtr = p->getSyscallArg(tc, index); #endif if (((flags & OS::TGT_CLONE_SIGHAND)&& !(flags & OS::TGT_CLONE_VM)) || ((flags & OS::TGT_CLONE_THREAD) && !(flags & OS::TGT_CLONE_SIGHAND)) || ((flags & OS::TGT_CLONE_FS) && (flags & OS::TGT_CLONE_NEWNS)) || ((flags & OS::TGT_CLONE_NEWIPC) && (flags & OS::TGT_CLONE_SYSVSEM)) || ((flags & OS::TGT_CLONE_NEWPID) && (flags & OS::TGT_CLONE_THREAD)) || ((flags & OS::TGT_CLONE_VM) && !(newStack))) return -EINVAL; ThreadContext *ctc; if (!(ctc = p->findFreeContext())) { DPRINTF_SYSCALL(Verbose, "clone: no spare thread context in system" "[cpu %d, thread %d]", tc->cpuId(), tc->threadId()); return -EAGAIN; } /** * Note that ProcessParams is generated by swig and there are no other * examples of how to create anything but this default constructor. The * fields are manually initialized instead of passing parameters to the * constructor. */ ProcessParams *pp = new ProcessParams(); pp->executable.assign(*(new std::string(p->progName()))); pp->cmd.push_back(*(new std::string(p->progName()))); pp->system = p->system; pp->cwd.assign(p->tgtCwd); pp->input.assign("stdin"); pp->output.assign("stdout"); pp->errout.assign("stderr"); pp->uid = p->uid(); pp->euid = p->euid(); pp->gid = p->gid(); pp->egid = p->egid(); /* Find the first free PID that's less than the maximum */ std::set const& pids = p->system->PIDs; int temp_pid = *pids.begin(); do { temp_pid++; } while (pids.find(temp_pid) != pids.end()); if (temp_pid >= System::maxPID) fatal("temp_pid is too large: %d", temp_pid); pp->pid = temp_pid; pp->ppid = (flags & OS::TGT_CLONE_THREAD) ? p->ppid() : p->pid(); pp->useArchPT = p->useArchPT; pp->kvmInSE = p->kvmInSE; Process *cp = pp->create(); // TODO: there is no way to know when the Process SimObject is done with // the params pointer. Both the params pointer (pp) and the process // pointer (cp) are normally managed in python and are never cleaned up. Process *owner = ctc->getProcessPtr(); ctc->setProcessPtr(cp); cp->assignThreadContext(ctc->contextId()); owner->revokeThreadContext(ctc->contextId()); if (flags & OS::TGT_CLONE_PARENT_SETTID) { BufferArg ptidBuf(ptidPtr, sizeof(long)); long *ptid = (long *)ptidBuf.bufferPtr(); *ptid = cp->pid(); ptidBuf.copyOut(tc->getVirtProxy()); } if (flags & OS::TGT_CLONE_THREAD) { cp->pTable->shared = true; cp->useForClone = true; } cp->initState(); p->clone(tc, ctc, cp, flags); if (flags & OS::TGT_CLONE_THREAD) { delete cp->sigchld; cp->sigchld = p->sigchld; } else if (flags & OS::TGT_SIGCHLD) { *cp->sigchld = true; } if (flags & OS::TGT_CLONE_CHILD_SETTID) { BufferArg ctidBuf(ctidPtr, sizeof(long)); long *ctid = (long *)ctidBuf.bufferPtr(); *ctid = cp->pid(); ctidBuf.copyOut(ctc->getVirtProxy()); } if (flags & OS::TGT_CLONE_CHILD_CLEARTID) cp->childClearTID = (uint64_t)ctidPtr; ctc->clearArchRegs(); OS::archClone(flags, p, cp, tc, ctc, newStack, tlsPtr); cp->setSyscallReturn(ctc, 0); #if THE_ISA == ALPHA_ISA ctc->setIntReg(TheISA::SyscallSuccessReg, 0); #elif THE_ISA == SPARC_ISA tc->setIntReg(TheISA::SyscallPseudoReturnReg, 0); ctc->setIntReg(TheISA::SyscallPseudoReturnReg, 1); #endif if (p->kvmInSE) { #if THE_ISA == X86_ISA ctc->pcState(tc->readIntReg(TheISA::INTREG_RCX)); #else panic("KVM CPU model is not supported for this ISA"); #endif } else { TheISA::PCState cpc = tc->pcState(); cpc.advance(); ctc->pcState(cpc); } ctc->activate(); return cp->pid(); } /// Target fstatfs() handler. template SyscallReturn fstatfsFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto p = tc->getProcessPtr(); int tgt_fd = p->getSyscallArg(tc, index); Addr bufPtr = p->getSyscallArg(tc, index); auto ffdp = std::dynamic_pointer_cast((*p->fds)[tgt_fd]); if (!ffdp) return -EBADF; int sim_fd = ffdp->getSimFD(); struct statfs hostBuf; int result = fstatfs(sim_fd, &hostBuf); if (result < 0) return -errno; copyOutStatfsBuf(tc->getVirtProxy(), bufPtr, &hostBuf); return 0; } /// Target readv() handler. template SyscallReturn readvFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto p = tc->getProcessPtr(); int tgt_fd = p->getSyscallArg(tc, index); auto ffdp = std::dynamic_pointer_cast((*p->fds)[tgt_fd]); if (!ffdp) return -EBADF; int sim_fd = ffdp->getSimFD(); PortProxy &prox = tc->getVirtProxy(); uint64_t tiov_base = p->getSyscallArg(tc, index); size_t count = p->getSyscallArg(tc, index); typename OS::tgt_iovec tiov[count]; struct iovec hiov[count]; for (size_t i = 0; i < count; ++i) { prox.readBlob(tiov_base + (i * sizeof(typename OS::tgt_iovec)), &tiov[i], sizeof(typename OS::tgt_iovec)); hiov[i].iov_len = gtoh(tiov[i].iov_len, OS::byteOrder); hiov[i].iov_base = new char [hiov[i].iov_len]; } int result = readv(sim_fd, hiov, count); int local_errno = errno; for (size_t i = 0; i < count; ++i) { if (result != -1) { prox.writeBlob(htog(tiov[i].iov_base, OS::byteOrder), hiov[i].iov_base, hiov[i].iov_len); } delete [] (char *)hiov[i].iov_base; } return (result == -1) ? -local_errno : result; } /// Target writev() handler. template SyscallReturn writevFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto p = tc->getProcessPtr(); int tgt_fd = p->getSyscallArg(tc, index); auto hbfdp = std::dynamic_pointer_cast((*p->fds)[tgt_fd]); if (!hbfdp) return -EBADF; int sim_fd = hbfdp->getSimFD(); PortProxy &prox = tc->getVirtProxy(); uint64_t tiov_base = p->getSyscallArg(tc, index); size_t count = p->getSyscallArg(tc, index); struct iovec hiov[count]; for (size_t i = 0; i < count; ++i) { typename OS::tgt_iovec tiov; prox.readBlob(tiov_base + i*sizeof(typename OS::tgt_iovec), &tiov, sizeof(typename OS::tgt_iovec)); hiov[i].iov_len = gtoh(tiov.iov_len, OS::byteOrder); hiov[i].iov_base = new char [hiov[i].iov_len]; prox.readBlob(gtoh(tiov.iov_base, OS::byteOrder), hiov[i].iov_base, hiov[i].iov_len); } int result = writev(sim_fd, hiov, count); for (size_t i = 0; i < count; ++i) delete [] (char *)hiov[i].iov_base; return (result == -1) ? -errno : result; } /// Real mmap handler. template SyscallReturn mmapImpl(SyscallDesc *desc, int num, ThreadContext *tc, bool is_mmap2) { int index = 0; auto p = tc->getProcessPtr(); Addr start = p->getSyscallArg(tc, index); uint64_t length = p->getSyscallArg(tc, index); int prot = p->getSyscallArg(tc, index); int tgt_flags = p->getSyscallArg(tc, index); int tgt_fd = p->getSyscallArg(tc, index); int offset = p->getSyscallArg(tc, index); if (is_mmap2) offset *= TheISA::PageBytes; if (start & (TheISA::PageBytes - 1) || offset & (TheISA::PageBytes - 1) || (tgt_flags & OS::TGT_MAP_PRIVATE && tgt_flags & OS::TGT_MAP_SHARED) || (!(tgt_flags & OS::TGT_MAP_PRIVATE) && !(tgt_flags & OS::TGT_MAP_SHARED)) || !length) { return -EINVAL; } if ((prot & PROT_WRITE) && (tgt_flags & OS::TGT_MAP_SHARED)) { // With shared mmaps, there are two cases to consider: // 1) anonymous: writes should modify the mapping and this should be // visible to observers who share the mapping. Currently, it's // difficult to update the shared mapping because there's no // structure which maintains information about the which virtual // memory areas are shared. If that structure existed, it would be // possible to make the translations point to the same frames. // 2) file-backed: writes should modify the mapping and the file // which is backed by the mapping. The shared mapping problem is the // same as what was mentioned about the anonymous mappings. For // file-backed mappings, the writes to the file are difficult // because it requires syncing what the mapping holds with the file // that resides on the host system. So, any write on a real system // would cause the change to be propagated to the file mapping at // some point in the future (the inode is tracked along with the // mapping). This isn't guaranteed to always happen, but it usually // works well enough. The guarantee is provided by the msync system // call. We could force the change through with shared mappings with // a call to msync, but that again would require more information // than we currently maintain. warn("mmap: writing to shared mmap region is currently " "unsupported. The write succeeds on the target, but it " "will not be propagated to the host or shared mappings"); } length = roundUp(length, TheISA::PageBytes); int sim_fd = -1; uint8_t *pmap = nullptr; if (!(tgt_flags & OS::TGT_MAP_ANONYMOUS)) { std::shared_ptr fdep = (*p->fds)[tgt_fd]; auto dfdp = std::dynamic_pointer_cast(fdep); if (dfdp) { EmulatedDriver *emul_driver = dfdp->getDriver(); return emul_driver->mmap(tc, start, length, prot, tgt_flags, tgt_fd, offset); } auto ffdp = std::dynamic_pointer_cast(fdep); if (!ffdp) return -EBADF; sim_fd = ffdp->getSimFD(); pmap = (decltype(pmap))mmap(nullptr, length, PROT_READ, MAP_PRIVATE, sim_fd, offset); if (pmap == (decltype(pmap))-1) { warn("mmap: failed to map file into host address space"); return -errno; } } // Extend global mmap region if necessary. Note that we ignore the // start address unless MAP_FIXED is specified. if (!(tgt_flags & OS::TGT_MAP_FIXED)) { std::shared_ptr mem_state = p->memState; Addr mmap_end = mem_state->getMmapEnd(); start = p->mmapGrowsDown() ? mmap_end - length : mmap_end; mmap_end = p->mmapGrowsDown() ? start : mmap_end + length; mem_state->setMmapEnd(mmap_end); } DPRINTF_SYSCALL(Verbose, " mmap range is 0x%x - 0x%x\n", start, start + length - 1); // We only allow mappings to overwrite existing mappings if // TGT_MAP_FIXED is set. Otherwise it shouldn't be a problem // because we ignore the start hint if TGT_MAP_FIXED is not set. int clobber = tgt_flags & OS::TGT_MAP_FIXED; if (clobber) { for (auto tc : p->system->threadContexts) { // If we might be overwriting old mappings, we need to // invalidate potentially stale mappings out of the TLBs. tc->getDTBPtr()->flushAll(); tc->getITBPtr()->flushAll(); } } // Allocate physical memory and map it in. If the page table is already // mapped and clobber is not set, the simulator will issue throw a // fatal and bail out of the simulation. p->allocateMem(start, length, clobber); // Transfer content into target address space. PortProxy &tp = tc->getVirtProxy(); if (tgt_flags & OS::TGT_MAP_ANONYMOUS) { // In general, we should zero the mapped area for anonymous mappings, // with something like: // tp.memsetBlob(start, 0, length); // However, given that we don't support sparse mappings, and // some applications can map a couple of gigabytes of space // (intending sparse usage), that can get painfully expensive. // Fortunately, since we don't properly implement munmap either, // there's no danger of remapping used memory, so for now all // newly mapped memory should already be zeroed so we can skip it. } else { // It is possible to mmap an area larger than a file, however // accessing unmapped portions the system triggers a "Bus error" // on the host. We must know when to stop copying the file from // the host into the target address space. struct stat file_stat; if (fstat(sim_fd, &file_stat) > 0) fatal("mmap: cannot stat file"); // Copy the portion of the file that is resident. This requires // checking both the mmap size and the filesize that we are // trying to mmap into this space; the mmap size also depends // on the specified offset into the file. uint64_t size = std::min((uint64_t)file_stat.st_size - offset, length); tp.writeBlob(start, pmap, size); // Cleanup the mmap region before exiting this function. munmap(pmap, length); // Maintain the symbol table for dynamic executables. // The loader will call mmap to map the images into its address // space and we intercept that here. We can verify that we are // executing inside the loader by checking the program counter value. // XXX: with multiprogrammed workloads or multi-node configurations, // this will not work since there is a single global symbol table. if (p->interpImage.contains(tc->pcState().instAddr())) { std::shared_ptr fdep = (*p->fds)[tgt_fd]; auto ffdp = std::dynamic_pointer_cast(fdep); ObjectFile *lib = createObjectFile(ffdp->getFileName()); if (lib) { lib->loadAllSymbols(debugSymbolTable, lib->buildImage().minAddr(), start); } } // Note that we do not zero out the remainder of the mapping. This // is done by a real system, but it probably will not affect // execution (hopefully). } return start; } template SyscallReturn pwrite64Func(SyscallDesc *desc, int num, ThreadContext *tc) { int index = 0; auto p = tc->getProcessPtr(); int tgt_fd = p->getSyscallArg(tc, index); Addr bufPtr = p->getSyscallArg(tc, index); int nbytes = p->getSyscallArg(tc, index); int offset = p->getSyscallArg(tc, index); auto ffdp = std::dynamic_pointer_cast((*p->fds)[tgt_fd]); if (!ffdp) return -EBADF; int sim_fd = ffdp->getSimFD(); BufferArg bufArg(bufPtr, nbytes); bufArg.copyIn(tc->getVirtProxy()); int bytes_written = pwrite(sim_fd, bufArg.bufferPtr(), nbytes, offset); return (bytes_written == -1) ? -errno : bytes_written; } /// Target mmap() handler. template SyscallReturn mmapFunc(SyscallDesc *desc, int num, ThreadContext *tc) { return mmapImpl(desc, num, tc, false); } /// Target mmap2() handler. template SyscallReturn mmap2Func(SyscallDesc *desc, int num, ThreadContext *tc) { return mmapImpl(desc, num, tc, true); } /// Target getrlimit() handler. template SyscallReturn getrlimitFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto process = tc->getProcessPtr(); unsigned resource = process->getSyscallArg(tc, index); TypedBufferArg rlp(process->getSyscallArg(tc, index)); const ByteOrder bo = OS::byteOrder; switch (resource) { case OS::TGT_RLIMIT_STACK: // max stack size in bytes: make up a number (8MB for now) rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024; rlp->rlim_cur = htog(rlp->rlim_cur, bo); rlp->rlim_max = htog(rlp->rlim_max, bo); break; case OS::TGT_RLIMIT_DATA: // max data segment size in bytes: make up a number rlp->rlim_cur = rlp->rlim_max = 256 * 1024 * 1024; rlp->rlim_cur = htog(rlp->rlim_cur, bo); rlp->rlim_max = htog(rlp->rlim_max, bo); break; case OS::TGT_RLIMIT_NPROC: rlp->rlim_cur = rlp->rlim_max = tc->getSystemPtr()->numContexts(); rlp->rlim_cur = htog(rlp->rlim_cur, bo); rlp->rlim_max = htog(rlp->rlim_max, bo); break; default: warn("getrlimit: unimplemented resource %d", resource); return -EINVAL; break; } rlp.copyOut(tc->getVirtProxy()); return 0; } template SyscallReturn prlimitFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto process = tc->getProcessPtr(); if (process->getSyscallArg(tc, index) != 0) { warn("prlimit: ignoring rlimits for nonzero pid"); return -EPERM; } int resource = process->getSyscallArg(tc, index); Addr n = process->getSyscallArg(tc, index); if (n != 0) warn("prlimit: ignoring new rlimit"); Addr o = process->getSyscallArg(tc, index); if (o != 0) { const ByteOrder bo = OS::byteOrder; TypedBufferArg rlp(o); switch (resource) { case OS::TGT_RLIMIT_STACK: // max stack size in bytes: make up a number (8MB for now) rlp->rlim_cur = rlp->rlim_max = 8 * 1024 * 1024; rlp->rlim_cur = htog(rlp->rlim_cur, bo); rlp->rlim_max = htog(rlp->rlim_max, bo); break; case OS::TGT_RLIMIT_DATA: // max data segment size in bytes: make up a number rlp->rlim_cur = rlp->rlim_max = 256*1024*1024; rlp->rlim_cur = htog(rlp->rlim_cur, bo); rlp->rlim_max = htog(rlp->rlim_max, bo); break; default: warn("prlimit: unimplemented resource %d", resource); return -EINVAL; break; } rlp.copyOut(tc->getVirtProxy()); } return 0; } /// Target clock_gettime() function. template SyscallReturn clock_gettimeFunc(SyscallDesc *desc, int num, ThreadContext *tc) { int index = 1; auto p = tc->getProcessPtr(); //int clk_id = p->getSyscallArg(tc, index); TypedBufferArg tp(p->getSyscallArg(tc, index)); getElapsedTimeNano(tp->tv_sec, tp->tv_nsec); tp->tv_sec += seconds_since_epoch; tp->tv_sec = htog(tp->tv_sec, OS::byteOrder); tp->tv_nsec = htog(tp->tv_nsec, OS::byteOrder); tp.copyOut(tc->getVirtProxy()); return 0; } /// Target clock_getres() function. template SyscallReturn clock_getresFunc(SyscallDesc *desc, int num, ThreadContext *tc) { int index = 1; auto p = tc->getProcessPtr(); TypedBufferArg tp(p->getSyscallArg(tc, index)); // Set resolution at ns, which is what clock_gettime() returns tp->tv_sec = 0; tp->tv_nsec = 1; tp.copyOut(tc->getVirtProxy()); return 0; } /// Target gettimeofday() handler. template SyscallReturn gettimeofdayFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto process = tc->getProcessPtr(); TypedBufferArg tp(process->getSyscallArg(tc, index)); getElapsedTimeMicro(tp->tv_sec, tp->tv_usec); tp->tv_sec += seconds_since_epoch; tp->tv_sec = htog(tp->tv_sec, OS::byteOrder); tp->tv_usec = htog(tp->tv_usec, OS::byteOrder); tp.copyOut(tc->getVirtProxy()); return 0; } /// Target utimes() handler. template SyscallReturn utimesFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { std::string path; auto process = tc->getProcessPtr(); int index = 0; if (!tc->getVirtProxy().tryReadString(path, process->getSyscallArg(tc, index))) { return -EFAULT; } TypedBufferArg tp(process->getSyscallArg(tc, index)); tp.copyIn(tc->getVirtProxy()); struct timeval hostTimeval[2]; for (int i = 0; i < 2; ++i) { hostTimeval[i].tv_sec = gtoh((*tp)[i].tv_sec, OS::byteOrder); hostTimeval[i].tv_usec = gtoh((*tp)[i].tv_usec, OS::byteOrder); } // Adjust path for cwd and redirection path = process->checkPathRedirect(path); int result = utimes(path.c_str(), hostTimeval); if (result < 0) return -errno; return 0; } template SyscallReturn execveFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { desc->setFlags(0); auto p = tc->getProcessPtr(); int index = 0; std::string path; PortProxy & mem_proxy = tc->getVirtProxy(); if (!mem_proxy.tryReadString(path, p->getSyscallArg(tc, index))) return -EFAULT; if (access(path.c_str(), F_OK) == -1) return -EACCES; auto read_in = [](std::vector &vect, PortProxy &mem_proxy, Addr mem_loc) { for (int inc = 0; ; inc++) { BufferArg b((mem_loc + sizeof(Addr) * inc), sizeof(Addr)); b.copyIn(mem_proxy); if (!*(Addr*)b.bufferPtr()) break; vect.push_back(std::string()); mem_proxy.tryReadString(vect[inc], *(Addr*)b.bufferPtr()); } }; /** * Note that ProcessParams is generated by swig and there are no other * examples of how to create anything but this default constructor. The * fields are manually initialized instead of passing parameters to the * constructor. */ ProcessParams *pp = new ProcessParams(); pp->executable = path; Addr argv_mem_loc = p->getSyscallArg(tc, index); read_in(pp->cmd, mem_proxy, argv_mem_loc); Addr envp_mem_loc = p->getSyscallArg(tc, index); read_in(pp->env, mem_proxy, envp_mem_loc); pp->uid = p->uid(); pp->egid = p->egid(); pp->euid = p->euid(); pp->gid = p->gid(); pp->ppid = p->ppid(); pp->pid = p->pid(); pp->input.assign("cin"); pp->output.assign("cout"); pp->errout.assign("cerr"); pp->cwd.assign(p->tgtCwd); pp->system = p->system; /** * Prevent process object creation with identical PIDs (which will trip * a fatal check in Process constructor). The execve call is supposed to * take over the currently executing process' identity but replace * whatever it is doing with a new process image. Instead of hijacking * the process object in the simulator, we create a new process object * and bind to the previous process' thread below (hijacking the thread). */ p->system->PIDs.erase(p->pid()); Process *new_p = pp->create(); delete pp; /** * Work through the file descriptor array and close any files marked * close-on-exec. */ new_p->fds = p->fds; for (int i = 0; i < new_p->fds->getSize(); i++) { std::shared_ptr fdep = (*new_p->fds)[i]; if (fdep && fdep->getCOE()) new_p->fds->closeFDEntry(i); } *new_p->sigchld = true; delete p; tc->clearArchRegs(); tc->setProcessPtr(new_p); new_p->assignThreadContext(tc->contextId()); new_p->initState(); tc->activate(); TheISA::PCState pcState = tc->pcState(); tc->setNPC(pcState.instAddr()); desc->setFlags(SyscallDesc::SuppressReturnValue); return 0; } /// Target getrusage() function. template SyscallReturn getrusageFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto process = tc->getProcessPtr(); int who = process->getSyscallArg(tc, index); // THREAD, SELF, or CHILDREN TypedBufferArg rup(process->getSyscallArg(tc, index)); rup->ru_utime.tv_sec = 0; rup->ru_utime.tv_usec = 0; rup->ru_stime.tv_sec = 0; rup->ru_stime.tv_usec = 0; rup->ru_maxrss = 0; rup->ru_ixrss = 0; rup->ru_idrss = 0; rup->ru_isrss = 0; rup->ru_minflt = 0; rup->ru_majflt = 0; rup->ru_nswap = 0; rup->ru_inblock = 0; rup->ru_oublock = 0; rup->ru_msgsnd = 0; rup->ru_msgrcv = 0; rup->ru_nsignals = 0; rup->ru_nvcsw = 0; rup->ru_nivcsw = 0; switch (who) { case OS::TGT_RUSAGE_SELF: getElapsedTimeMicro(rup->ru_utime.tv_sec, rup->ru_utime.tv_usec); rup->ru_utime.tv_sec = htog(rup->ru_utime.tv_sec, OS::byteOrder); rup->ru_utime.tv_usec = htog(rup->ru_utime.tv_usec, OS::byteOrder); break; case OS::TGT_RUSAGE_CHILDREN: // do nothing. We have no child processes, so they take no time. break; default: // don't really handle THREAD or CHILDREN, but just warn and // plow ahead warn("getrusage() only supports RUSAGE_SELF. Parameter %d ignored.", who); } rup.copyOut(tc->getVirtProxy()); return 0; } /// Target times() function. template SyscallReturn timesFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int index = 0; auto process = tc->getProcessPtr(); TypedBufferArg bufp(process->getSyscallArg(tc, index)); // Fill in the time structure (in clocks) int64_t clocks = curTick() * OS::M5_SC_CLK_TCK / SimClock::Int::s; bufp->tms_utime = clocks; bufp->tms_stime = 0; bufp->tms_cutime = 0; bufp->tms_cstime = 0; // Convert to host endianness bufp->tms_utime = htog(bufp->tms_utime, OS::byteOrder); // Write back bufp.copyOut(tc->getVirtProxy()); // Return clock ticks since system boot return clocks; } /// Target time() function. template SyscallReturn timeFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { typename OS::time_t sec, usec; getElapsedTimeMicro(sec, usec); sec += seconds_since_epoch; int index = 0; auto process = tc->getProcessPtr(); Addr taddr = (Addr)process->getSyscallArg(tc, index); if (taddr != 0) { typename OS::time_t t = sec; t = htog(t, OS::byteOrder); PortProxy &p = tc->getVirtProxy(); p.writeBlob(taddr, &t, (int)sizeof(typename OS::time_t)); } return sec; } template SyscallReturn tgkillFunc(SyscallDesc *desc, int num, ThreadContext *tc) { int index = 0; auto process = tc->getProcessPtr(); int tgid = process->getSyscallArg(tc, index); int tid = process->getSyscallArg(tc, index); int sig = process->getSyscallArg(tc, index); /** * This system call is intended to allow killing a specific thread * within an arbitrary thread group if sanctioned with permission checks. * It's usually true that threads share the termination signal as pointed * out by the pthread_kill man page and this seems to be the intended * usage. Due to this being an emulated environment, assume the following: * Threads are allowed to call tgkill because the EUID for all threads * should be the same. There is no signal handling mechanism for kernel * registration of signal handlers since signals are poorly supported in * emulation mode. Since signal handlers cannot be registered, all * threads within in a thread group must share the termination signal. * We never exhaust PIDs so there's no chance of finding the wrong one * due to PID rollover. */ System *sys = tc->getSystemPtr(); Process *tgt_proc = nullptr; for (int i = 0; i < sys->numContexts(); i++) { Process *temp = sys->threadContexts[i]->getProcessPtr(); if (temp->pid() == tid) { tgt_proc = temp; break; } } if (sig != 0 || sig != OS::TGT_SIGABRT) return -EINVAL; if (tgt_proc == nullptr) return -ESRCH; if (tgid != -1 && tgt_proc->tgid() != tgid) return -ESRCH; if (sig == OS::TGT_SIGABRT) exitGroupFunc(desc, 252, tc); return 0; } template SyscallReturn socketFunc(SyscallDesc *desc, int num, ThreadContext *tc) { int index = 0; auto p = tc->getProcessPtr(); int domain = p->getSyscallArg(tc, index); int type = p->getSyscallArg(tc, index); int prot = p->getSyscallArg(tc, index); int sim_fd = socket(domain, type, prot); if (sim_fd == -1) return -errno; auto sfdp = std::make_shared(sim_fd, domain, type, prot); int tgt_fd = p->fds->allocFD(sfdp); return tgt_fd; } template SyscallReturn socketpairFunc(SyscallDesc *desc, int num, ThreadContext *tc) { int index = 0; auto p = tc->getProcessPtr(); int domain = p->getSyscallArg(tc, index); int type = p->getSyscallArg(tc, index); int prot = p->getSyscallArg(tc, index); Addr svPtr = p->getSyscallArg(tc, index); BufferArg svBuf((Addr)svPtr, 2 * sizeof(int)); int status = socketpair(domain, type, prot, (int *)svBuf.bufferPtr()); if (status == -1) return -errno; int *fds = (int *)svBuf.bufferPtr(); auto sfdp1 = std::make_shared(fds[0], domain, type, prot); fds[0] = p->fds->allocFD(sfdp1); auto sfdp2 = std::make_shared(fds[1], domain, type, prot); fds[1] = p->fds->allocFD(sfdp2); svBuf.copyOut(tc->getVirtProxy()); return status; } template SyscallReturn selectFunc(SyscallDesc *desc, int callnum, ThreadContext *tc) { int retval; int index = 0; auto p = tc->getProcessPtr(); int nfds_t = p->getSyscallArg(tc, index); Addr fds_read_ptr = p->getSyscallArg(tc, index); Addr fds_writ_ptr = p->getSyscallArg(tc, index); Addr fds_excp_ptr = p->getSyscallArg(tc, index); Addr time_val_ptr = p->getSyscallArg(tc, index); TypedBufferArg rd_t(fds_read_ptr); TypedBufferArg wr_t(fds_writ_ptr); TypedBufferArg ex_t(fds_excp_ptr); TypedBufferArg tp(time_val_ptr); /** * Host fields. Notice that these use the definitions from the system * headers instead of the gem5 headers and libraries. If the host and * target have different header file definitions, this will not work. */ fd_set rd_h; FD_ZERO(&rd_h); fd_set wr_h; FD_ZERO(&wr_h); fd_set ex_h; FD_ZERO(&ex_h); /** * Copy in the fd_set from the target. */ if (fds_read_ptr) rd_t.copyIn(tc->getVirtProxy()); if (fds_writ_ptr) wr_t.copyIn(tc->getVirtProxy()); if (fds_excp_ptr) ex_t.copyIn(tc->getVirtProxy()); /** * We need to translate the target file descriptor set into a host file * descriptor set. This involves both our internal process fd array * and the fd_set defined in Linux header files. The nfds field also * needs to be updated as it will be only target specific after * retrieving it from the target; the nfds value is expected to be the * highest file descriptor that needs to be checked, so we need to extend * it out for nfds_h when we do the update. */ int nfds_h = 0; std::map trans_map; auto try_add_host_set = [&](fd_set *tgt_set_entry, fd_set *hst_set_entry, int iter) -> bool { /** * By this point, we know that we are looking at a valid file * descriptor set on the target. We need to check if the target file * descriptor value passed in as iter is part of the set. */ if (FD_ISSET(iter, tgt_set_entry)) { /** * We know that the target file descriptor belongs to the set, * but we do not yet know if the file descriptor is valid or * that we have a host mapping. Check that now. */ auto hbfdp = std::dynamic_pointer_cast((*p->fds)[iter]); if (!hbfdp) return true; auto sim_fd = hbfdp->getSimFD(); /** * Add the sim_fd to tgt_fd translation into trans_map for use * later when we need to zero the target fd_set structures and * then update them with hits returned from the host select call. */ trans_map[sim_fd] = iter; /** * We know that the host file descriptor exists so now we check * if we need to update the max count for nfds_h before passing * the duplicated structure into the host. */ nfds_h = std::max(nfds_h - 1, sim_fd + 1); /** * Add the host file descriptor to the set that we are going to * pass into the host. */ FD_SET(sim_fd, hst_set_entry); } return false; }; for (int i = 0; i < nfds_t; i++) { if (fds_read_ptr) { bool ebadf = try_add_host_set((fd_set*)&*rd_t, &rd_h, i); if (ebadf) return -EBADF; } if (fds_writ_ptr) { bool ebadf = try_add_host_set((fd_set*)&*wr_t, &wr_h, i); if (ebadf) return -EBADF; } if (fds_excp_ptr) { bool ebadf = try_add_host_set((fd_set*)&*ex_t, &ex_h, i); if (ebadf) return -EBADF; } } if (time_val_ptr) { /** * It might be possible to decrement the timeval based on some * derivation of wall clock determined from elapsed simulator ticks * but that seems like overkill. Rather, we just set the timeval with * zero timeout. (There is no reason to block during the simulation * as it only decreases simulator performance.) */ tp->tv_sec = 0; tp->tv_usec = 0; retval = select(nfds_h, fds_read_ptr ? &rd_h : nullptr, fds_writ_ptr ? &wr_h : nullptr, fds_excp_ptr ? &ex_h : nullptr, (timeval*)&*tp); } else { /** * If the timeval pointer is null, setup a new timeval structure to * pass into the host select call. Unfortunately, we will need to * manually check the return value and throw a retry fault if the * return value is zero. Allowing the system call to block will * likely deadlock the event queue. */ struct timeval tv = { 0, 0 }; retval = select(nfds_h, fds_read_ptr ? &rd_h : nullptr, fds_writ_ptr ? &wr_h : nullptr, fds_excp_ptr ? &ex_h : nullptr, &tv); if (retval == 0) { /** * If blocking indefinitely, check the signal list to see if a * signal would break the poll out of the retry cycle and try to * return the signal interrupt instead. */ for (auto sig : tc->getSystemPtr()->signalList) if (sig.receiver == p) return -EINTR; return SyscallReturn::retry(); } } if (retval == -1) return -errno; FD_ZERO((fd_set*)&*rd_t); FD_ZERO((fd_set*)&*wr_t); FD_ZERO((fd_set*)&*ex_t); /** * We need to translate the host file descriptor set into a target file * descriptor set. This involves both our internal process fd array * and the fd_set defined in header files. */ for (int i = 0; i < nfds_h; i++) { if (fds_read_ptr) { if (FD_ISSET(i, &rd_h)) FD_SET(trans_map[i], (fd_set*)&*rd_t); } if (fds_writ_ptr) { if (FD_ISSET(i, &wr_h)) FD_SET(trans_map[i], (fd_set*)&*wr_t); } if (fds_excp_ptr) { if (FD_ISSET(i, &ex_h)) FD_SET(trans_map[i], (fd_set*)&*ex_t); } } if (fds_read_ptr) rd_t.copyOut(tc->getVirtProxy()); if (fds_writ_ptr) wr_t.copyOut(tc->getVirtProxy()); if (fds_excp_ptr) ex_t.copyOut(tc->getVirtProxy()); if (time_val_ptr) tp.copyOut(tc->getVirtProxy()); return retval; } template SyscallReturn readFunc(SyscallDesc *desc, int num, ThreadContext *tc) { int index = 0; auto p = tc->getProcessPtr(); int tgt_fd = p->getSyscallArg(tc, index); Addr buf_ptr = p->getSyscallArg(tc, index); int nbytes = p->getSyscallArg(tc, index); auto hbfdp = std::dynamic_pointer_cast((*p->fds)[tgt_fd]); if (!hbfdp) return -EBADF; int sim_fd = hbfdp->getSimFD(); struct pollfd pfd; pfd.fd = sim_fd; pfd.events = POLLIN | POLLPRI; if ((poll(&pfd, 1, 0) == 0) && !(hbfdp->getFlags() & OS::TGT_O_NONBLOCK)) return SyscallReturn::retry(); BufferArg buf_arg(buf_ptr, nbytes); int bytes_read = read(sim_fd, buf_arg.bufferPtr(), nbytes); if (bytes_read > 0) buf_arg.copyOut(tc->getVirtProxy()); return (bytes_read == -1) ? -errno : bytes_read; } template SyscallReturn writeFunc(SyscallDesc *desc, int num, ThreadContext *tc) { int index = 0; auto p = tc->getProcessPtr(); int tgt_fd = p->getSyscallArg(tc, index); Addr buf_ptr = p->getSyscallArg(tc, index); int nbytes = p->getSyscallArg(tc, index); auto hbfdp = std::dynamic_pointer_cast((*p->fds)[tgt_fd]); if (!hbfdp) return -EBADF; int sim_fd = hbfdp->getSimFD(); BufferArg buf_arg(buf_ptr, nbytes); buf_arg.copyIn(tc->getVirtProxy()); struct pollfd pfd; pfd.fd = sim_fd; pfd.events = POLLOUT; /** * We don't want to poll on /dev/random. The kernel will not enable the * file descriptor for writing unless the entropy in the system falls * below write_wakeup_threshold. This is not guaranteed to happen * depending on host settings. */ auto ffdp = std::dynamic_pointer_cast(hbfdp); if (ffdp && (ffdp->getFileName() != "/dev/random")) { if (!poll(&pfd, 1, 0) && !(ffdp->getFlags() & OS::TGT_O_NONBLOCK)) return SyscallReturn::retry(); } int bytes_written = write(sim_fd, buf_arg.bufferPtr(), nbytes); if (bytes_written != -1) fsync(sim_fd); return (bytes_written == -1) ? -errno : bytes_written; } template SyscallReturn wait4Func(SyscallDesc *desc, int num, ThreadContext *tc) { int index = 0; auto p = tc->getProcessPtr(); pid_t pid = p->getSyscallArg(tc, index); Addr statPtr = p->getSyscallArg(tc, index); int options = p->getSyscallArg(tc, index); Addr rusagePtr = p->getSyscallArg(tc, index); if (rusagePtr) DPRINTF_SYSCALL(Verbose, "wait4: rusage pointer provided %lx, however " "functionality not supported. Ignoring rusage pointer.\n", rusagePtr); /** * Currently, wait4 is only implemented so that it will wait for children * exit conditions which are denoted by a SIGCHLD signals posted into the * system signal list. We return no additional information via any of the * parameters supplied to wait4. If nothing is found in the system signal * list, we will wait indefinitely for SIGCHLD to post by retrying the * call. */ System *sysh = tc->getSystemPtr(); std::list::iterator iter; for (iter=sysh->signalList.begin(); iter!=sysh->signalList.end(); iter++) { if (iter->receiver == p) { if (pid < -1) { if ((iter->sender->pgid() == -pid) && (iter->signalValue == OS::TGT_SIGCHLD)) goto success; } else if (pid == -1) { if (iter->signalValue == OS::TGT_SIGCHLD) goto success; } else if (pid == 0) { if ((iter->sender->pgid() == p->pgid()) && (iter->signalValue == OS::TGT_SIGCHLD)) goto success; } else { if ((iter->sender->pid() == pid) && (iter->signalValue == OS::TGT_SIGCHLD)) goto success; } } } return (options & OS::TGT_WNOHANG) ? 0 : SyscallReturn::retry(); success: // Set status to EXITED for WIFEXITED evaluations. const int EXITED = 0; BufferArg statusBuf(statPtr, sizeof(int)); *(int *)statusBuf.bufferPtr() = EXITED; statusBuf.copyOut(tc->getVirtProxy()); // Return the child PID. pid_t retval = iter->sender->pid(); sysh->signalList.erase(iter); return retval; } template SyscallReturn acceptFunc(SyscallDesc *desc, int num, ThreadContext *tc) { struct sockaddr sa; socklen_t addrLen; int host_fd; int index = 0; auto p = tc->getProcessPtr(); int tgt_fd = p->getSyscallArg(tc, index); Addr addrPtr = p->getSyscallArg(tc, index); Addr lenPtr = p->getSyscallArg(tc, index); BufferArg *lenBufPtr = nullptr; BufferArg *addrBufPtr = nullptr; auto sfdp = std::dynamic_pointer_cast((*p->fds)[tgt_fd]); if (!sfdp) return -EBADF; int sim_fd = sfdp->getSimFD(); /** * We poll the socket file descriptor first to guarantee that we do not * block on our accept call. The socket can be opened without the * non-blocking flag (it blocks). This will cause deadlocks between * communicating processes. */ struct pollfd pfd; pfd.fd = sim_fd; pfd.events = POLLIN | POLLPRI; if ((poll(&pfd, 1, 0) == 0) && !(sfdp->getFlags() & OS::TGT_O_NONBLOCK)) return SyscallReturn::retry(); if (lenPtr) { lenBufPtr = new BufferArg(lenPtr, sizeof(socklen_t)); lenBufPtr->copyIn(tc->getVirtProxy()); memcpy(&addrLen, (socklen_t *)lenBufPtr->bufferPtr(), sizeof(socklen_t)); } if (addrPtr) { addrBufPtr = new BufferArg(addrPtr, sizeof(struct sockaddr)); addrBufPtr->copyIn(tc->getVirtProxy()); memcpy(&sa, (struct sockaddr *)addrBufPtr->bufferPtr(), sizeof(struct sockaddr)); } host_fd = accept(sim_fd, &sa, &addrLen); if (host_fd == -1) return -errno; if (addrPtr) { memcpy(addrBufPtr->bufferPtr(), &sa, sizeof(sa)); addrBufPtr->copyOut(tc->getVirtProxy()); delete(addrBufPtr); } if (lenPtr) { *(socklen_t *)lenBufPtr->bufferPtr() = addrLen; lenBufPtr->copyOut(tc->getVirtProxy()); delete(lenBufPtr); } auto afdp = std::make_shared(host_fd, sfdp->_domain, sfdp->_type, sfdp->_protocol); return p->fds->allocFD(afdp); } /// Target eventfd() function. template SyscallReturn eventfdFunc(SyscallDesc *desc, int num, ThreadContext *tc) { #if defined(__linux__) int index = 0; auto p = tc->getProcessPtr(); unsigned initval = p->getSyscallArg(tc, index); int in_flags = p->getSyscallArg(tc, index); int sim_fd = eventfd(initval, in_flags); if (sim_fd == -1) return -errno; bool cloexec = in_flags & OS::TGT_O_CLOEXEC; int flags = cloexec ? OS::TGT_O_CLOEXEC : 0; flags |= (in_flags & OS::TGT_O_NONBLOCK) ? OS::TGT_O_NONBLOCK : 0; auto hbfdp = std::make_shared(flags, sim_fd, cloexec); int tgt_fd = p->fds->allocFD(hbfdp); return tgt_fd; #else warnUnsupportedOS("eventfd"); return -1; #endif } #endif // __SIM_SYSCALL_EMUL_HH__