/***************************************************************************** Licensed to Accellera Systems Initiative Inc. (Accellera) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. Accellera licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *****************************************************************************/ /***************************************************************************** simple_cpu.cpp -- Original Author: Martin Janssen, Synopsys, Inc., 2002-02-15 *****************************************************************************/ /***************************************************************************** MODIFICATION LOG - modifiers, enter your name, affiliation, date and changes you are making here. Name, Affiliation, Date: Description of Modification: *****************************************************************************/ #include "systemc.h" #define READ 0 #define WRITE 1 SC_MODULE( exec_decode ) { SC_HAS_PROCESS( exec_decode ); sc_in instruction; sc_signal& program_counter; unsigned pc; // Program counter unsigned cpu_reg[32]; // Cpu registers unsigned *data_mem; // The data memory exec_decode( sc_module_name NAME, sc_signal& INSTRUCTION, sc_signal& PROGRAM_COUNTER ) : program_counter(PROGRAM_COUNTER) { instruction(INSTRUCTION); SC_METHOD( entry ); // sensitive only to the clock sensitive << instruction; pc = 0x000000; // Power up reset value for (int i =0; i<32; i++) cpu_reg[i] = 0; // Initialize the data memory from file datamem FILE *fp = fopen("simple_cpu/datamem", "r"); if (fp == (FILE *) 0) return; // No data mem file to read // First field in this file is the size of data memory desired int size; fscanf(fp, "%d", &size); data_mem = new unsigned[size]; if (data_mem == (unsigned *) 0) { printf("Not enough memory left\n"); return; } unsigned mem_word; size = 0; while (fscanf(fp, "%x", &mem_word) != EOF) { data_mem[size++] = mem_word; } // Start off simulation by writing program_counter program_counter.write(pc); } // Functionality void entry(); }; void exec_decode::entry() { unsigned instr; unsigned opcode; unsigned regnum1, regnum2, regnum3; unsigned addr; int i; instr = instruction.read(); opcode = (instr & 0xe0000000) >> 29; // Extract opcode switch(opcode) { case 0x0: // Halt printf("CPU Halted\n"); printf("\tPC = 0x%x\n", pc); for (i = 0; i < 32; i++) printf("\tR[%d] = %x\n", i, cpu_reg[i]); // Don't write pc and execution will stop break; case 0x1: // Store regnum1 = (instr & 0x1f000000) >> 24; // Extract register number addr = (instr & 0x00ffffff); // Extract address printf("Store: Memory[0x%x] = R[%d]\n", addr, regnum1); data_mem[addr] = cpu_reg[regnum1]; pc = pc + 1; program_counter.write(pc); break; case 0x2: // Load regnum1 = (instr & 0x1f000000) >> 24; // Extract register number addr = (instr & 0x00ffffff); // Extract address printf("Load: R[%d] = Memory[0x%x]\n", regnum1, addr); cpu_reg[regnum1] = data_mem[addr]; pc = pc + 1; program_counter.write(pc); break; case 0x3: // Add regnum1 = (instr & 0x1f000000) >> 24; // Extract register number regnum2 = (instr & 0x00f80000) >> 19; // Extract register number regnum3 = (instr & 0x0007c000) >> 14; // Extract register number printf("R[%d] = R[%d] + R[%d]\n", regnum3, regnum1, regnum2); cpu_reg[regnum3] = cpu_reg[regnum1] + cpu_reg[regnum2]; pc = pc + 1; program_counter.write(pc); break; case 0x4: // Subtract regnum1 = (instr & 0x1f000000) >> 24; // Extract register number regnum2 = (instr & 0x00f80000) >> 19; // Extract register number regnum3 = (instr & 0x0007c000) >> 14; // Extract register number printf("R[%d] = R[%d] - R[%d]\n", regnum3, regnum1, regnum2); cpu_reg[regnum3] = cpu_reg[regnum1] - cpu_reg[regnum2]; pc = pc + 1; program_counter.write(pc); break; case 0x5: // Multiply regnum1 = (instr & 0x1f000000) >> 24; // Extract register number regnum2 = (instr & 0x00f80000) >> 19; // Extract register number regnum3 = (instr & 0x0007c000) >> 14; // Extract register number printf("R[%d] = R[%d] * R[%d]\n", regnum3, regnum1, regnum2); cpu_reg[regnum3] = cpu_reg[regnum1] * cpu_reg[regnum2]; pc = pc + 1; program_counter.write(pc); break; case 0x6: // Divide regnum1 = (instr & 0x1f000000) >> 24; // Extract register number regnum2 = (instr & 0x00f80000) >> 19; // Extract register number regnum3 = (instr & 0x0007c000) >> 14; // Extract register number printf("R[%d] = R[%d] / R[%d]\n", regnum3, regnum1, regnum2); if (cpu_reg[regnum2] == 0) { printf("Division exception - divide by zero\n"); } else { cpu_reg[regnum3] = cpu_reg[regnum1] / cpu_reg[regnum2]; } pc = pc + 1; program_counter.write(pc); break; case 0x7: // JNZ regnum1 = (instr & 0x1f000000) >> 24; // Extract register number addr = (instr & 0x00ffffff); // Extract address printf("JNZ R[%d] 0x%x\n", regnum1, addr); if (cpu_reg[regnum1] == 0x0) pc = pc + 1; else pc = addr; program_counter.write(pc); break; default: // Bad opcode printf("Bad opcode 0x%x\n", opcode); pc = pc + 1; program_counter.write(pc); break; } } SC_MODULE( fetch ) { SC_HAS_PROCESS( fetch ); sc_in program_counter; sc_signal& instruction; unsigned *prog_mem; // The program memory fetch( sc_module_name NAME, sc_signal& PROGRAM_COUNTER, sc_signal& INSTRUCTION ) : instruction(INSTRUCTION) { program_counter(PROGRAM_COUNTER); SC_METHOD( entry ); sensitive << program_counter; // Initialize the program memory from file progmem FILE *fp = fopen("simple_cpu/progmem", "r"); if (fp == (FILE *) 0) return; // No prog mem file to read // First field in this file is the size of program memory desired int size; fscanf(fp, "%d", &size); prog_mem = new unsigned[size]; if (prog_mem == (unsigned *) 0) { printf("Not enough memory left\n"); return; } unsigned mem_word; size = 0; while (fscanf(fp, "%x", &mem_word) != EOF) { prog_mem[size++] = mem_word; } instruction.write(0); } // Functionality void entry(); }; void fetch::entry() { unsigned pc, instr; pc = program_counter.read(); instr = prog_mem[pc]; instruction.write(instr); } int sc_main(int ac, char *av[]) { sc_signal pc; sc_signal instr; exec_decode ED("ED", instr, pc); fetch F("F", pc, instr); // instead of a testbench routine, we include the testbench here sc_start(1, SC_NS); sc_start( 10, SC_NS ); fflush( stdout ); return 0; }