/* * Copyright (c) 2003-2006 The Regents of The University of Michigan * Copyright (c) 1992-1995 Hewlett-Packard Development Company * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ali G. Saidi * Nathan L. Binkert */ // modified to use the Hudson style "impure.h" instead of ev5_impure.sdl // since we don't have a mechanism to expand the data structures.... pb Nov/95 #include "ev5_defs.h" #include "ev5_impure.h" #include "ev5_alpha_defs.h" #include "ev5_paldef.h" #include "ev5_osfalpha_defs.h" #include "fromHudsonMacros.h" #include "fromHudsonOsf.h" #include "dc21164FromGasSources.h" #define DEBUGSTORE(c) nop #define DEBUG_EXC_ADDR()\ bsr r25, put_exc_addr; \ DEBUGSTORE(13) ; \ DEBUGSTORE(10) // This is the fix for the user-mode super page references causing the // machine to crash. #define hw_rei_spe hw_rei #define vmaj 1 #define vmin 18 #define vms_pal 1 #define osf_pal 2 #define pal_type osf_pal #define osfpal_version_l ((pal_type<<16) | (vmaj<<8) | (vmin<<0)) /////////////////////////// // PALtemp register usage /////////////////////////// // The EV5 Ibox holds 24 PALtemp registers. This maps the OSF PAL usage // for these PALtemps: // // pt0 local scratch // pt1 local scratch // pt2 entUna pt_entUna // pt3 CPU specific impure area pointer pt_impure // pt4 memory management temp // pt5 memory management temp // pt6 memory management temp // pt7 entIF pt_entIF // pt8 intmask pt_intmask // pt9 entSys pt_entSys // pt10 // pt11 entInt pt_entInt // pt12 entArith pt_entArith // pt13 reserved for system specific PAL // pt14 reserved for system specific PAL // pt15 reserved for system specific PAL // pt16 MISC: scratch ! WHAMI<7:0> ! 0 0 0 MCES<4:0> pt_misc, pt_whami, // pt_mces // pt17 sysval pt_sysval // pt18 usp pt_usp // pt19 ksp pt_ksp // pt20 PTBR pt_ptbr // pt21 entMM pt_entMM // pt22 kgp pt_kgp // pt23 PCBB pt_pcbb // // ///////////////////////////// // PALshadow register usage ///////////////////////////// // // EV5 shadows R8-R14 and R25 when in PALmode and ICSR<shadow_enable> = 1. // This maps the OSF PAL usage of R8 - R14 and R25: // // r8 ITBmiss/DTBmiss scratch // r9 ITBmiss/DTBmiss scratch // r10 ITBmiss/DTBmiss scratch // r11 PS // r12 local scratch // r13 local scratch // r14 local scratch // r25 local scratch // // .sbttl "PALcode configuration options" // There are a number of options that may be assembled into this version of // PALcode. They should be adjusted in a prefix assembly file (i.e. do not edit // the following). The options that can be adjusted cause the resultant PALcode // to reflect the desired target system. // multiprocessor support can be enabled for a max of n processors by // setting the following to the number of processors on the system. // Note that this is really the max cpuid. #define max_cpuid 1 #ifndef max_cpuid #define max_cpuid 8 #endif #define osf_svmin 1 #define osfpal_version_h ((max_cpuid<<16) | (osf_svmin<<0)) // // RESET - Reset Trap Entry Point // // RESET - offset 0000 // Entry: // Vectored into via hardware trap on reset, or branched to // on swppal. // // r0 = whami // r1 = pal_base // r2 = base of scratch area // r3 = halt code // // // Function: // // .text 0 . = 0x0000 .globl _start .globl Pal_Base _start: Pal_Base: HDW_VECTOR(PAL_RESET_ENTRY) Trap_Reset: nop /* * store into r1 */ br r1,sys_reset // Specify PAL version info as a constant // at a known location (reset + 8). .long osfpal_version_l // <pal_type@16> ! <vmaj@8> ! <vmin@0> .long osfpal_version_h // <max_cpuid@16> ! <osf_svmin@0> .long 0 .long 0 pal_impure_start: .quad 0 pal_debug_ptr: .quad 0 // reserved for debug pointer ; 20 // // IACCVIO - Istream Access Violation Trap Entry Point // // IACCVIO - offset 0080 // Entry: // Vectored into via hardware trap on Istream access violation or sign check error on PC. // // Function: // Build stack frame // a0 <- Faulting VA // a1 <- MMCSR (1 for ACV) // a2 <- -1 (for ifetch fault) // vector via entMM // HDW_VECTOR(PAL_IACCVIO_ENTRY) Trap_Iaccvio: DEBUGSTORE(0x42) sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit mtpr r31, ev5__ps // Set Ibox current mode to kernel bis r11, r31, r12 // Save PS bge r25, TRAP_IACCVIO_10_ // no stack swap needed if cm=kern mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel - // no virt ref for next 2 cycles mtpr r30, pt_usp // save user stack bis r31, r31, r12 // Set new PS mfpr r30, pt_ksp TRAP_IACCVIO_10_: lda sp, 0-osfsf_c_size(sp)// allocate stack space mfpr r14, exc_addr // get pc stq r16, osfsf_a0(sp) // save regs bic r14, 3, r16 // pass pc/va as a0 stq r17, osfsf_a1(sp) // a1 or r31, mmcsr_c_acv, r17 // pass mm_csr as a1 stq r18, osfsf_a2(sp) // a2 mfpr r13, pt_entmm // get entry point stq r11, osfsf_ps(sp) // save old ps bis r12, r31, r11 // update ps stq r16, osfsf_pc(sp) // save pc stq r29, osfsf_gp(sp) // save gp mtpr r13, exc_addr // load exc_addr with entMM // 1 cycle to hw_rei mfpr r29, pt_kgp // get the kgp subq r31, 1, r18 // pass flag of istream, as a2 hw_rei_spe // // INTERRUPT - Interrupt Trap Entry Point // // INTERRUPT - offset 0100 // Entry: // Vectored into via trap on hardware interrupt // // Function: // check for halt interrupt // check for passive release (current ipl geq requestor) // if necessary, switch to kernel mode push stack frame, // update ps (including current mode and ipl copies), sp, and gp // pass the interrupt info to the system module // // HDW_VECTOR(PAL_INTERRUPT_ENTRY) Trap_Interrupt: mfpr r13, ev5__intid // Fetch level of interruptor mfpr r25, ev5__isr // Fetch interrupt summary register srl r25, isr_v_hlt, r9 // Get HLT bit mfpr r14, ev5__ipl mtpr r31, ev5__dtb_cm // Set Mbox current mode to kern blbs r9, sys_halt_interrupt // halt_interrupt if HLT bit set cmple r13, r14, r8 // R8 = 1 if intid .less than or eql. ipl bne r8, sys_passive_release // Passive release is current rupt is lt or eq ipl and r11, osfps_m_mode, r10 // get mode bit beq r10, TRAP_INTERRUPT_10_ // Skip stack swap in kernel mtpr r30, pt_usp // save user stack mfpr r30, pt_ksp // get kern stack TRAP_INTERRUPT_10_: lda sp, (0-osfsf_c_size)(sp)// allocate stack space mfpr r14, exc_addr // get pc stq r11, osfsf_ps(sp) // save ps stq r14, osfsf_pc(sp) // save pc stq r29, osfsf_gp(sp) // push gp stq r16, osfsf_a0(sp) // a0 // pvc_violate 354 // ps is cleared anyway, if store to stack faults. mtpr r31, ev5__ps // Set Ibox current mode to kernel stq r17, osfsf_a1(sp) // a1 stq r18, osfsf_a2(sp) // a2 subq r13, 0x11, r12 // Start to translate from EV5IPL->OSFIPL srl r12, 1, r8 // 1d, 1e: ipl 6. 1f: ipl 7. subq r13, 0x1d, r9 // Check for 1d, 1e, 1f cmovge r9, r8, r12 // if .ge. 1d, then take shifted value bis r12, r31, r11 // set new ps mfpr r12, pt_intmask and r11, osfps_m_ipl, r14 // Isolate just new ipl (not really needed, since all non-ipl bits zeroed already) /* * Lance had space problems. We don't. */ extbl r12, r14, r14 // Translate new OSFIPL->EV5IPL mfpr r29, pt_kgp // update gp mtpr r14, ev5__ipl // load the new IPL into Ibox br r31, sys_interrupt // Go handle interrupt // // ITBMISS - Istream TBmiss Trap Entry Point // // ITBMISS - offset 0180 // Entry: // Vectored into via hardware trap on Istream translation buffer miss. // // Function: // Do a virtual fetch of the PTE, and fill the ITB if the PTE is valid. // Can trap into DTBMISS_DOUBLE. // This routine can use the PALshadow registers r8, r9, and r10 // // HDW_VECTOR(PAL_ITB_MISS_ENTRY) Trap_Itbmiss: // Real MM mapping nop mfpr r8, ev5__ifault_va_form // Get virtual address of PTE. nop mfpr r10, exc_addr // Get PC of faulting instruction in case of DTBmiss. pal_itb_ldq: ld_vpte r8, 0(r8) // Get PTE, traps to DTBMISS_DOUBLE in case of TBmiss mtpr r10, exc_addr // Restore exc_address if there was a trap. mfpr r31, ev5__va // Unlock VA in case there was a double miss nop and r8, osfpte_m_foe, r25 // Look for FOE set. blbc r8, invalid_ipte_handler // PTE not valid. nop bne r25, foe_ipte_handler // FOE is set nop mtpr r8, ev5__itb_pte // Ibox remembers the VA, load the PTE into the ITB. hw_rei_stall // // // DTBMISS_SINGLE - Dstream Single TBmiss Trap Entry Point // // DTBMISS_SINGLE - offset 0200 // Entry: // Vectored into via hardware trap on Dstream single translation // buffer miss. // // Function: // Do a virtual fetch of the PTE, and fill the DTB if the PTE is valid. // Can trap into DTBMISS_DOUBLE. // This routine can use the PALshadow registers r8, r9, and r10 // HDW_VECTOR(PAL_DTB_MISS_ENTRY) Trap_Dtbmiss_Single: mfpr r8, ev5__va_form // Get virtual address of PTE - 1 cycle delay. E0. mfpr r10, exc_addr // Get PC of faulting instruction in case of error. E1. // DEBUGSTORE(0x45) // DEBUG_EXC_ADDR() // Real MM mapping mfpr r9, ev5__mm_stat // Get read/write bit. E0. mtpr r10, pt6 // Stash exc_addr away pal_dtb_ldq: ld_vpte r8, 0(r8) // Get PTE, traps to DTBMISS_DOUBLE in case of TBmiss nop // Pad MF VA mfpr r10, ev5__va // Get original faulting VA for TB load. E0. nop mtpr r8, ev5__dtb_pte // Write DTB PTE part. E0. blbc r8, invalid_dpte_handler // Handle invalid PTE mtpr r10, ev5__dtb_tag // Write DTB TAG part, completes DTB load. No virt ref for 3 cycles. mfpr r10, pt6 // Following 2 instructions take 2 cycles mtpr r10, exc_addr // Return linkage in case we trapped. E1. mfpr r31, pt0 // Pad the write to dtb_tag hw_rei // Done, return // // DTBMISS_DOUBLE - Dstream Double TBmiss Trap Entry Point // // // DTBMISS_DOUBLE - offset 0280 // Entry: // Vectored into via hardware trap on Double TBmiss from single // miss flows. // // r8 - faulting VA // r9 - original MMstat // r10 - original exc_addr (both itb,dtb miss) // pt6 - original exc_addr (dtb miss flow only) // VA IPR - locked with original faulting VA // // Function: // Get PTE, if valid load TB and return. // If not valid then take TNV/ACV exception. // // pt4 and pt5 are reserved for this flow. // // // HDW_VECTOR(PAL_DOUBLE_MISS_ENTRY) Trap_Dtbmiss_double: mtpr r8, pt4 // save r8 to do exc_addr check mfpr r8, exc_addr blbc r8, Trap_Dtbmiss_Single //if not in palmode, should be in the single routine, dummy! mfpr r8, pt4 // restore r8 nop mtpr r22, pt5 // Get some scratch space. E1. // Due to virtual scheme, we can skip the first lookup and go // right to fetch of level 2 PTE sll r8, (64-((2*page_seg_size_bits)+page_offset_size_bits)), r22 // Clean off upper bits of VA mtpr r21, pt4 // Get some scratch space. E1. srl r22, 61-page_seg_size_bits, r22 // Get Va<seg1>*8 mfpr r21, pt_ptbr // Get physical address of the page table. nop addq r21, r22, r21 // Index into page table for level 2 PTE. sll r8, (64-((1*page_seg_size_bits)+page_offset_size_bits)), r22 // Clean off upper bits of VA ldq_p r21, 0(r21) // Get level 2 PTE (addr<2:0> ignored) srl r22, 61-page_seg_size_bits, r22 // Get Va<seg1>*8 blbc r21, double_pte_inv // Check for Invalid PTE. srl r21, 32, r21 // extract PFN from PTE sll r21, page_offset_size_bits, r21 // get PFN * 2^13 for add to <seg3>*8 addq r21, r22, r21 // Index into page table for level 3 PTE. nop ldq_p r21, 0(r21) // Get level 3 PTE (addr<2:0> ignored) blbc r21, double_pte_inv // Check for invalid PTE. mtpr r21, ev5__dtb_pte // Write the PTE. E0. mfpr r22, pt5 // Restore scratch register mtpr r8, ev5__dtb_tag // Write the TAG. E0. No virtual references in subsequent 3 cycles. mfpr r21, pt4 // Restore scratch register nop // Pad write to tag. nop nop // Pad write to tag. nop hw_rei // // UNALIGN -- Dstream unalign trap // // UNALIGN - offset 0300 // Entry: // Vectored into via hardware trap on unaligned Dstream reference. // // Function: // Build stack frame // a0 <- Faulting VA // a1 <- Opcode // a2 <- src/dst register number // vector via entUna // HDW_VECTOR(PAL_UNALIGN_ENTRY) Trap_Unalign: /* DEBUGSTORE(0x47)*/ sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit mtpr r31, ev5__ps // Set Ibox current mode to kernel mfpr r8, ev5__mm_stat // Get mmstat --ok to use r8, no tbmiss mfpr r14, exc_addr // get pc srl r8, mm_stat_v_ra, r13 // Shift Ra field to ls bits blbs r14, pal_pal_bug_check // Bugcheck if unaligned in PAL blbs r8, UNALIGN_NO_DISMISS // lsb only set on store or fetch_m // not set, must be a load and r13, 0x1F, r8 // isolate ra cmpeq r8, 0x1F, r8 // check for r31/F31 bne r8, dfault_fetch_ldr31_err // if its a load to r31 or f31 -- dismiss the fault UNALIGN_NO_DISMISS: bis r11, r31, r12 // Save PS bge r25, UNALIGN_NO_DISMISS_10_ // no stack swap needed if cm=kern mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel - // no virt ref for next 2 cycles mtpr r30, pt_usp // save user stack bis r31, r31, r12 // Set new PS mfpr r30, pt_ksp UNALIGN_NO_DISMISS_10_: mfpr r25, ev5__va // Unlock VA lda sp, 0-osfsf_c_size(sp)// allocate stack space mtpr r25, pt0 // Stash VA stq r18, osfsf_a2(sp) // a2 stq r11, osfsf_ps(sp) // save old ps srl r13, mm_stat_v_opcode-mm_stat_v_ra, r25// Isolate opcode stq r29, osfsf_gp(sp) // save gp addq r14, 4, r14 // inc PC past the ld/st stq r17, osfsf_a1(sp) // a1 and r25, mm_stat_m_opcode, r17// Clean opocde for a1 stq r16, osfsf_a0(sp) // save regs mfpr r16, pt0 // a0 <- va/unlock stq r14, osfsf_pc(sp) // save pc mfpr r25, pt_entuna // get entry point bis r12, r31, r11 // update ps br r31, unalign_trap_cont // // DFAULT - Dstream Fault Trap Entry Point // // DFAULT - offset 0380 // Entry: // Vectored into via hardware trap on dstream fault or sign check // error on DVA. // // Function: // Ignore faults on FETCH/FETCH_M // Check for DFAULT in PAL // Build stack frame // a0 <- Faulting VA // a1 <- MMCSR (1 for ACV, 2 for FOR, 4 for FOW) // a2 <- R/W // vector via entMM // // HDW_VECTOR(PAL_D_FAULT_ENTRY) Trap_Dfault: // DEBUGSTORE(0x48) sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit mtpr r31, ev5__ps // Set Ibox current mode to kernel mfpr r13, ev5__mm_stat // Get mmstat mfpr r8, exc_addr // get pc, preserve r14 srl r13, mm_stat_v_opcode, r9 // Shift opcode field to ls bits blbs r8, dfault_in_pal bis r8, r31, r14 // move exc_addr to correct place bis r11, r31, r12 // Save PS mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel - // no virt ref for next 2 cycles and r9, mm_stat_m_opcode, r9 // Clean all but opcode cmpeq r9, evx_opc_sync, r9 // Is the opcode fetch/fetchm? bne r9, dfault_fetch_ldr31_err // Yes, dismiss the fault //dismiss exception if load to r31/f31 blbs r13, dfault_no_dismiss // mm_stat<0> set on store or fetchm // not a store or fetch, must be a load srl r13, mm_stat_v_ra, r9 // Shift rnum to low bits and r9, 0x1F, r9 // isolate rnum nop cmpeq r9, 0x1F, r9 // Is the rnum r31 or f31? bne r9, dfault_fetch_ldr31_err // Yes, dismiss the fault dfault_no_dismiss: and r13, 0xf, r13 // Clean extra bits in mm_stat bge r25, dfault_trap_cont // no stack swap needed if cm=kern mtpr r30, pt_usp // save user stack bis r31, r31, r12 // Set new PS mfpr r30, pt_ksp br r31, dfault_trap_cont // // MCHK - Machine Check Trap Entry Point // // MCHK - offset 0400 // Entry: // Vectored into via hardware trap on machine check. // // Function: // // HDW_VECTOR(PAL_MCHK_ENTRY) Trap_Mchk: DEBUGSTORE(0x49) mtpr r31, ic_flush_ctl // Flush the Icache br r31, sys_machine_check // // OPCDEC - Illegal Opcode Trap Entry Point // // OPCDEC - offset 0480 // Entry: // Vectored into via hardware trap on illegal opcode. // // Build stack frame // a0 <- code // a1 <- unpred // a2 <- unpred // vector via entIF // // HDW_VECTOR(PAL_OPCDEC_ENTRY) Trap_Opcdec: DEBUGSTORE(0x4a) //simos DEBUG_EXC_ADDR() sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit mtpr r31, ev5__ps // Set Ibox current mode to kernel mfpr r14, exc_addr // get pc blbs r14, pal_pal_bug_check // check opcdec in palmode bis r11, r31, r12 // Save PS bge r25, TRAP_OPCDEC_10_ // no stack swap needed if cm=kern mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel - // no virt ref for next 2 cycles mtpr r30, pt_usp // save user stack bis r31, r31, r12 // Set new PS mfpr r30, pt_ksp TRAP_OPCDEC_10_: lda sp, 0-osfsf_c_size(sp)// allocate stack space addq r14, 4, r14 // inc pc stq r16, osfsf_a0(sp) // save regs bis r31, osf_a0_opdec, r16 // set a0 stq r11, osfsf_ps(sp) // save old ps mfpr r13, pt_entif // get entry point stq r18, osfsf_a2(sp) // a2 stq r17, osfsf_a1(sp) // a1 stq r29, osfsf_gp(sp) // save gp stq r14, osfsf_pc(sp) // save pc bis r12, r31, r11 // update ps mtpr r13, exc_addr // load exc_addr with entIF // 1 cycle to hw_rei, E1 mfpr r29, pt_kgp // get the kgp, E1 hw_rei_spe // done, E1 // // ARITH - Arithmetic Exception Trap Entry Point // // ARITH - offset 0500 // Entry: // Vectored into via hardware trap on arithmetic excpetion. // // Function: // Build stack frame // a0 <- exc_sum // a1 <- exc_mask // a2 <- unpred // vector via entArith // // HDW_VECTOR(PAL_ARITH_ENTRY) Trap_Arith: DEBUGSTORE(0x4b) and r11, osfps_m_mode, r12 // get mode bit mfpr r31, ev5__va // unlock mbox bis r11, r31, r25 // save ps mfpr r14, exc_addr // get pc nop blbs r14, pal_pal_bug_check // arith trap from PAL mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel - // no virt ref for next 2 cycles beq r12, TRAP_ARITH_10_ // if zero we are in kern now bis r31, r31, r25 // set the new ps mtpr r30, pt_usp // save user stack nop mfpr r30, pt_ksp // get kern stack TRAP_ARITH_10_: lda sp, 0-osfsf_c_size(sp) // allocate stack space mtpr r31, ev5__ps // Set Ibox current mode to kernel nop // Pad current mode write and stq mfpr r13, ev5__exc_sum // get the exc_sum mfpr r12, pt_entarith stq r14, osfsf_pc(sp) // save pc stq r17, osfsf_a1(sp) mfpr r17, ev5__exc_mask // Get exception register mask IPR - no mtpr exc_sum in next cycle stq r11, osfsf_ps(sp) // save ps bis r25, r31, r11 // set new ps stq r16, osfsf_a0(sp) // save regs srl r13, exc_sum_v_swc, r16 // shift data to correct position stq r18, osfsf_a2(sp) // pvc_violate 354 // ok, but make sure reads of exc_mask/sum are not in same trap shadow mtpr r31, ev5__exc_sum // Unlock exc_sum and exc_mask stq r29, osfsf_gp(sp) mtpr r12, exc_addr // Set new PC - 1 bubble to hw_rei - E1 mfpr r29, pt_kgp // get the kern gp - E1 hw_rei_spe // done - E1 // // FEN - Illegal Floating Point Operation Trap Entry Point // // FEN - offset 0580 // Entry: // Vectored into via hardware trap on illegal FP op. // // Function: // Build stack frame // a0 <- code // a1 <- unpred // a2 <- unpred // vector via entIF // // HDW_VECTOR(PAL_FEN_ENTRY) Trap_Fen: sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit mtpr r31, ev5__ps // Set Ibox current mode to kernel mfpr r14, exc_addr // get pc blbs r14, pal_pal_bug_check // check opcdec in palmode mfpr r13, ev5__icsr nop bis r11, r31, r12 // Save PS bge r25, TRAP_FEN_10_ // no stack swap needed if cm=kern mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel - // no virt ref for next 2 cycles mtpr r30, pt_usp // save user stack bis r31, r31, r12 // Set new PS mfpr r30, pt_ksp TRAP_FEN_10_: lda sp, 0-osfsf_c_size(sp)// allocate stack space srl r13, icsr_v_fpe, r25 // Shift FP enable to bit 0 stq r16, osfsf_a0(sp) // save regs mfpr r13, pt_entif // get entry point stq r18, osfsf_a2(sp) // a2 stq r11, osfsf_ps(sp) // save old ps stq r29, osfsf_gp(sp) // save gp bis r12, r31, r11 // set new ps stq r17, osfsf_a1(sp) // a1 blbs r25,fen_to_opcdec // If FP is enabled, this is really OPCDEC. bis r31, osf_a0_fen, r16 // set a0 stq r14, osfsf_pc(sp) // save pc mtpr r13, exc_addr // load exc_addr with entIF // 1 cycle to hw_rei -E1 mfpr r29, pt_kgp // get the kgp -E1 hw_rei_spe // done -E1 // FEN trap was taken, but the fault is really opcdec. ALIGN_BRANCH fen_to_opcdec: addq r14, 4, r14 // save PC+4 bis r31, osf_a0_opdec, r16 // set a0 stq r14, osfsf_pc(sp) // save pc mtpr r13, exc_addr // load exc_addr with entIF // 1 cycle to hw_rei mfpr r29, pt_kgp // get the kgp hw_rei_spe // done ////////////////////////////////////////////////////////////////////////////// // Misc handlers - Start area for misc code. ////////////////////////////////////////////////////////////////////////////// // // dfault_trap_cont // A dfault trap has been taken. The sp has been updated if necessary. // Push a stack frame a vector via entMM. // // Current state: // r12 - new PS // r13 - MMstat // VA - locked // // ALIGN_BLOCK dfault_trap_cont: lda sp, 0-osfsf_c_size(sp)// allocate stack space mfpr r25, ev5__va // Fetch VA/unlock stq r18, osfsf_a2(sp) // a2 and r13, 1, r18 // Clean r/w bit for a2 stq r16, osfsf_a0(sp) // save regs bis r25, r31, r16 // a0 <- va stq r17, osfsf_a1(sp) // a1 srl r13, 1, r17 // shift fault bits to right position stq r11, osfsf_ps(sp) // save old ps bis r12, r31, r11 // update ps stq r14, osfsf_pc(sp) // save pc mfpr r25, pt_entmm // get entry point stq r29, osfsf_gp(sp) // save gp cmovlbs r17, 1, r17 // a2. acv overrides fox. mtpr r25, exc_addr // load exc_addr with entMM // 1 cycle to hw_rei mfpr r29, pt_kgp // get the kgp hw_rei_spe // done // //unalign_trap_cont // An unalign trap has been taken. Just need to finish up a few things. // // Current state: // r25 - entUna // r13 - shifted MMstat // // ALIGN_BLOCK unalign_trap_cont: mtpr r25, exc_addr // load exc_addr with entUna // 1 cycle to hw_rei mfpr r29, pt_kgp // get the kgp and r13, mm_stat_m_ra, r18 // Clean Ra for a2 hw_rei_spe // done // // dfault_in_pal // Dfault trap was taken, exc_addr points to a PAL PC. // r9 - mmstat<opcode> right justified // r8 - exception address // // These are the cases: // opcode was STQ -- from a stack builder, KSP not valid halt // r14 - original exc_addr // r11 - original PS // opcode was STL_C -- rti or retsys clear lock_flag by stack write, // KSP not valid halt // r11 - original PS // r14 - original exc_addr // opcode was LDQ -- retsys or rti stack read, KSP not valid halt // r11 - original PS // r14 - original exc_addr // opcode was HW_LD -- itbmiss or dtbmiss, bugcheck due to fault on page tables // r10 - original exc_addr // r11 - original PS // // // ALIGN_BLOCK dfault_in_pal: DEBUGSTORE(0x50) bic r8, 3, r8 // Clean PC mfpr r9, pal_base mfpr r31, va // unlock VA // if not real_mm, should never get here from miss flows subq r9, r8, r8 // pal_base - offset lda r9, pal_itb_ldq-pal_base(r8) nop beq r9, dfault_do_bugcheck lda r9, pal_dtb_ldq-pal_base(r8) beq r9, dfault_do_bugcheck // // KSP invalid halt case -- ksp_inval_halt: DEBUGSTORE(76) bic r11, osfps_m_mode, r11 // set ps to kernel mode mtpr r0, pt0 mtpr r31, dtb_cm // Make sure that the CM IPRs are all kernel mode mtpr r31, ips mtpr r14, exc_addr // Set PC to instruction that caused trouble bsr r0, pal_update_pcb // update the pcb lda r0, hlt_c_ksp_inval(r31) // set halt code to hw halt br r31, sys_enter_console // enter the console ALIGN_BRANCH dfault_do_bugcheck: bis r10, r31, r14 // bugcheck expects exc_addr in r14 br r31, pal_pal_bug_check // // dfault_fetch_ldr31_err - ignore faults on fetch(m) and loads to r31/f31 // On entry - // r14 - exc_addr // VA is locked // // ALIGN_BLOCK dfault_fetch_ldr31_err: mtpr r11, ev5__dtb_cm mtpr r11, ev5__ps // Make sure ps hasn't changed mfpr r31, va // unlock the mbox addq r14, 4, r14 // inc the pc to skip the fetch mtpr r14, exc_addr // give ibox new PC mfpr r31, pt0 // pad exc_addr write hw_rei ALIGN_BLOCK // // sys_from_kern // callsys from kernel mode - OS bugcheck machine check // // sys_from_kern: mfpr r14, exc_addr // PC points to call_pal subq r14, 4, r14 lda r25, mchk_c_os_bugcheck(r31) // fetch mchk code br r31, pal_pal_mchk // Continuation of long call_pal flows // // wrent_tbl // Table to write *int in paltemps. // 4 instructions/entry // r16 has new value // // ALIGN_BLOCK wrent_tbl: //orig pvc_jsr wrent, dest=1 nop mtpr r16, pt_entint mfpr r31, pt0 // Pad for mt->mf paltemp rule hw_rei //orig pvc_jsr wrent, dest=1 nop mtpr r16, pt_entarith mfpr r31, pt0 // Pad for mt->mf paltemp rule hw_rei //orig pvc_jsr wrent, dest=1 nop mtpr r16, pt_entmm mfpr r31, pt0 // Pad for mt->mf paltemp rule hw_rei //orig pvc_jsr wrent, dest=1 nop mtpr r16, pt_entif mfpr r31, pt0 // Pad for mt->mf paltemp rule hw_rei //orig pvc_jsr wrent, dest=1 nop mtpr r16, pt_entuna mfpr r31, pt0 // Pad for mt->mf paltemp rule hw_rei //orig pvc_jsr wrent, dest=1 nop mtpr r16, pt_entsys mfpr r31, pt0 // Pad for mt->mf paltemp rule hw_rei ALIGN_BLOCK // // tbi_tbl // Table to do tbi instructions // 4 instructions per entry // tbi_tbl: // -2 tbia //orig pvc_jsr tbi, dest=1 mtpr r31, ev5__dtb_ia // Flush DTB mtpr r31, ev5__itb_ia // Flush ITB hw_rei_stall nop // Pad table // -1 tbiap //orig pvc_jsr tbi, dest=1 mtpr r31, ev5__dtb_iap // Flush DTB mtpr r31, ev5__itb_iap // Flush ITB hw_rei_stall nop // Pad table // 0 unused //orig pvc_jsr tbi, dest=1 hw_rei // Pad table nop nop nop // 1 tbisi //orig pvc_jsr tbi, dest=1 nop nop mtpr r17, ev5__itb_is // Flush ITB hw_rei_stall // 2 tbisd //orig pvc_jsr tbi, dest=1 mtpr r17, ev5__dtb_is // Flush DTB. nop nop hw_rei_stall // 3 tbis //orig pvc_jsr tbi, dest=1 mtpr r17, ev5__dtb_is // Flush DTB br r31, tbi_finish ALIGN_BRANCH tbi_finish: mtpr r17, ev5__itb_is // Flush ITB hw_rei_stall ALIGN_BLOCK // // bpt_bchk_common: // Finish up the bpt/bchk instructions // bpt_bchk_common: stq r18, osfsf_a2(sp) // a2 mfpr r13, pt_entif // get entry point stq r12, osfsf_ps(sp) // save old ps stq r14, osfsf_pc(sp) // save pc stq r29, osfsf_gp(sp) // save gp mtpr r13, exc_addr // load exc_addr with entIF // 1 cycle to hw_rei mfpr r29, pt_kgp // get the kgp hw_rei_spe // done ALIGN_BLOCK // // rti_to_user // Finish up the rti instruction // rti_to_user: mtpr r11, ev5__dtb_cm // set Mbox current mode - no virt ref for 2 cycles mtpr r11, ev5__ps // set Ibox current mode - 2 bubble to hw_rei mtpr r31, ev5__ipl // set the ipl. No hw_rei for 2 cycles mtpr r25, pt_ksp // save off incase RTI to user mfpr r30, pt_usp hw_rei_spe // and back ALIGN_BLOCK // // rti_to_kern // Finish up the rti instruction // rti_to_kern: and r12, osfps_m_ipl, r11 // clean ps mfpr r12, pt_intmask // get int mask extbl r12, r11, r12 // get mask for this ipl mtpr r25, pt_ksp // save off incase RTI to user mtpr r12, ev5__ipl // set the new ipl. or r25, r31, sp // sp // pvc_violate 217 // possible hidden mt->mf ipl not a problem in callpals hw_rei ALIGN_BLOCK // // swpctx_cont // Finish up the swpctx instruction // swpctx_cont: bic r25, r24, r25 // clean icsr<FPE,PMP> sll r12, icsr_v_fpe, r12 // shift new fen to pos ldq_p r14, osfpcb_q_mmptr(r16)// get new mmptr srl r22, osfpcb_v_pme, r22 // get pme down to bit 0 or r25, r12, r25 // icsr with new fen srl r23, 32, r24 // move asn to low asn pos and r22, 1, r22 sll r24, itb_asn_v_asn, r12 sll r22, icsr_v_pmp, r22 nop or r25, r22, r25 // icsr with new pme sll r24, dtb_asn_v_asn, r24 subl r23, r13, r13 // gen new cc offset mtpr r12, itb_asn // no hw_rei_stall in 0,1,2,3,4 mtpr r24, dtb_asn // Load up new ASN mtpr r25, icsr // write the icsr sll r14, page_offset_size_bits, r14 // Move PTBR into internal position. ldq_p r25, osfpcb_q_usp(r16) // get new usp insll r13, 4, r13 // >> 32 // pvc_violate 379 // ldq_p can't trap except replay. only problem if mf same ipr in same shadow mtpr r14, pt_ptbr // load the new ptbr mtpr r13, cc // set new offset ldq_p r30, osfpcb_q_ksp(r16) // get new ksp // pvc_violate 379 // ldq_p can't trap except replay. only problem if mf same ipr in same shadow mtpr r25, pt_usp // save usp no_pm_change_10_: hw_rei_stall // back we go ALIGN_BLOCK // // swppal_cont - finish up the swppal call_pal // swppal_cont: mfpr r2, pt_misc // get misc bits sll r0, pt_misc_v_switch, r0 // get the "I've switched" bit or r2, r0, r2 // set the bit mtpr r31, ev5__alt_mode // ensure alt_mode set to 0 (kernel) mtpr r2, pt_misc // update the chip or r3, r31, r4 mfpr r3, pt_impure // pass pointer to the impure area in r3 //orig fix_impure_ipr r3 // adjust impure pointer for ipr read //orig restore_reg1 bc_ctl, r1, r3, ipr=1 // pass cns_bc_ctl in r1 //orig restore_reg1 bc_config, r2, r3, ipr=1 // pass cns_bc_config in r2 //orig unfix_impure_ipr r3 // restore impure pointer lda r3, CNS_Q_IPR(r3) RESTORE_SHADOW(r1,CNS_Q_BC_CTL,r3); RESTORE_SHADOW(r1,CNS_Q_BC_CFG,r3); lda r3, -CNS_Q_IPR(r3) or r31, r31, r0 // set status to success // pvc_violate 1007 jmp r31, (r4) // and call our friend, it's her problem now swppal_fail: addq r0, 1, r0 // set unknown pal or not loaded hw_rei // and return // .sbttl "Memory management" ALIGN_BLOCK // //foe_ipte_handler // IFOE detected on level 3 pte, sort out FOE vs ACV // // on entry: // with // R8 = pte // R10 = pc // // Function // Determine TNV vs ACV vs FOE. Build stack and dispatch // Will not be here if TNV. // foe_ipte_handler: sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit mtpr r31, ev5__ps // Set Ibox current mode to kernel bis r11, r31, r12 // Save PS for stack write bge r25, foe_ipte_handler_10_ // no stack swap needed if cm=kern mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel - // no virt ref for next 2 cycles mtpr r30, pt_usp // save user stack bis r31, r31, r11 // Set new PS mfpr r30, pt_ksp srl r8, osfpte_v_ure-osfpte_v_kre, r8 // move pte user bits to kern nop foe_ipte_handler_10_: srl r8, osfpte_v_kre, r25 // get kre to <0> lda sp, 0-osfsf_c_size(sp)// allocate stack space or r10, r31, r14 // Save pc/va in case TBmiss or fault on stack mfpr r13, pt_entmm // get entry point stq r16, osfsf_a0(sp) // a0 or r14, r31, r16 // pass pc/va as a0 stq r17, osfsf_a1(sp) // a1 nop stq r18, osfsf_a2(sp) // a2 lda r17, mmcsr_c_acv(r31) // assume ACV stq r16, osfsf_pc(sp) // save pc cmovlbs r25, mmcsr_c_foe, r17 // otherwise FOE stq r12, osfsf_ps(sp) // save ps subq r31, 1, r18 // pass flag of istream as a2 stq r29, osfsf_gp(sp) mtpr r13, exc_addr // set vector address mfpr r29, pt_kgp // load kgp hw_rei_spe // out to exec ALIGN_BLOCK // //invalid_ipte_handler // TNV detected on level 3 pte, sort out TNV vs ACV // // on entry: // with // R8 = pte // R10 = pc // // Function // Determine TNV vs ACV. Build stack and dispatch. // invalid_ipte_handler: sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit mtpr r31, ev5__ps // Set Ibox current mode to kernel bis r11, r31, r12 // Save PS for stack write bge r25, invalid_ipte_handler_10_ // no stack swap needed if cm=kern mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel - // no virt ref for next 2 cycles mtpr r30, pt_usp // save user stack bis r31, r31, r11 // Set new PS mfpr r30, pt_ksp srl r8, osfpte_v_ure-osfpte_v_kre, r8 // move pte user bits to kern nop invalid_ipte_handler_10_: srl r8, osfpte_v_kre, r25 // get kre to <0> lda sp, 0-osfsf_c_size(sp)// allocate stack space or r10, r31, r14 // Save pc/va in case TBmiss on stack mfpr r13, pt_entmm // get entry point stq r16, osfsf_a0(sp) // a0 or r14, r31, r16 // pass pc/va as a0 stq r17, osfsf_a1(sp) // a1 nop stq r18, osfsf_a2(sp) // a2 and r25, 1, r17 // Isolate kre stq r16, osfsf_pc(sp) // save pc xor r17, 1, r17 // map to acv/tnv as a1 stq r12, osfsf_ps(sp) // save ps subq r31, 1, r18 // pass flag of istream as a2 stq r29, osfsf_gp(sp) mtpr r13, exc_addr // set vector address mfpr r29, pt_kgp // load kgp hw_rei_spe // out to exec ALIGN_BLOCK // //invalid_dpte_handler // INVALID detected on level 3 pte, sort out TNV vs ACV // // on entry: // with // R10 = va // R8 = pte // R9 = mm_stat // PT6 = pc // // Function // Determine TNV vs ACV. Build stack and dispatch // invalid_dpte_handler: mfpr r12, pt6 blbs r12, tnv_in_pal // Special handler if original faulting reference was in PALmode bis r12, r31, r14 // save PC in case of tbmiss or fault srl r9, mm_stat_v_opcode, r25 // shift opc to <0> mtpr r11, pt0 // Save PS for stack write and r25, mm_stat_m_opcode, r25 // isolate opcode cmpeq r25, evx_opc_sync, r25 // is it FETCH/FETCH_M? blbs r25, nmiss_fetch_ldr31_err // yes //dismiss exception if load to r31/f31 blbs r9, invalid_dpte_no_dismiss // mm_stat<0> set on store or fetchm // not a store or fetch, must be a load srl r9, mm_stat_v_ra, r25 // Shift rnum to low bits and r25, 0x1F, r25 // isolate rnum nop cmpeq r25, 0x1F, r25 // Is the rnum r31 or f31? bne r25, nmiss_fetch_ldr31_err // Yes, dismiss the fault invalid_dpte_no_dismiss: sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit mtpr r31, ev5__ps // Set Ibox current mode to kernel mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel - // no virt ref for next 2 cycles bge r25, invalid_dpte_no_dismiss_10_ // no stack swap needed if cm=kern srl r8, osfpte_v_ure-osfpte_v_kre, r8 // move pte user bits to kern mtpr r30, pt_usp // save user stack bis r31, r31, r11 // Set new PS mfpr r30, pt_ksp invalid_dpte_no_dismiss_10_: srl r8, osfpte_v_kre, r12 // get kre to <0> lda sp, 0-osfsf_c_size(sp)// allocate stack space or r10, r31, r25 // Save va in case TBmiss on stack and r9, 1, r13 // save r/w flag stq r16, osfsf_a0(sp) // a0 or r25, r31, r16 // pass va as a0 stq r17, osfsf_a1(sp) // a1 or r31, mmcsr_c_acv, r17 // assume acv srl r12, osfpte_v_kwe-osfpte_v_kre, r25 // get write enable to <0> stq r29, osfsf_gp(sp) stq r18, osfsf_a2(sp) // a2 cmovlbs r13, r25, r12 // if write access move acv based on write enable or r13, r31, r18 // pass flag of dstream access and read vs write mfpr r25, pt0 // get ps stq r14, osfsf_pc(sp) // save pc mfpr r13, pt_entmm // get entry point stq r25, osfsf_ps(sp) // save ps mtpr r13, exc_addr // set vector address mfpr r29, pt_kgp // load kgp cmovlbs r12, mmcsr_c_tnv, r17 // make p2 be tnv if access ok else acv hw_rei_spe // out to exec // // // We come here if we are erring on a dtb_miss, and the instr is a // fetch, fetch_m, of load to r31/f31. // The PC is incremented, and we return to the program. // essentially ignoring the instruction and error. // // ALIGN_BLOCK nmiss_fetch_ldr31_err: mfpr r12, pt6 addq r12, 4, r12 // bump pc to pc+4 mtpr r12, exc_addr // and set entry point mfpr r31, pt0 // pad exc_addr write hw_rei // ALIGN_BLOCK // // double_pte_inv // We had a single tbmiss which turned into a double tbmiss which found // an invalid PTE. Return to single miss with a fake pte, and the invalid // single miss flow will report the error. // // on entry: // r21 PTE // r22 available // VA IPR locked with original fault VA // pt4 saved r21 // pt5 saved r22 // pt6 original exc_addr // // on return to tbmiss flow: // r8 fake PTE // // // double_pte_inv: srl r21, osfpte_v_kre, r21 // get the kre bit to <0> mfpr r22, exc_addr // get the pc lda r22, 4(r22) // inc the pc lda r8, osfpte_m_prot(r31) // make a fake pte with xre and xwe set cmovlbc r21, r31, r8 // set to all 0 for acv if pte<kre> is 0 mtpr r22, exc_addr // set for rei mfpr r21, pt4 // restore regs mfpr r22, pt5 // restore regs hw_rei // back to tb miss ALIGN_BLOCK // //tnv_in_pal // The only places in pal that ld or store are the // stack builders, rti or retsys. Any of these mean we // need to take a ksp not valid halt. // // tnv_in_pal: br r31, ksp_inval_halt // .sbttl "Icache flush routines" ALIGN_BLOCK // // Common Icache flush routine. // // // pal_ic_flush: nop mtpr r31, ev5__ic_flush_ctl // Icache flush - E1 nop nop // Now, do 44 NOPs. 3RFB prefetches (24) + IC buffer,IB,slot,issue (20) nop nop nop nop nop nop nop nop nop nop // 10 nop nop nop nop nop nop nop nop nop nop // 20 nop nop nop nop nop nop nop nop nop nop // 30 nop nop nop nop nop nop nop nop nop nop // 40 nop nop one_cycle_and_hw_rei: nop nop hw_rei_stall ALIGN_BLOCK // //osfpal_calpal_opcdec // Here for all opcdec CALL_PALs // // Build stack frame // a0 <- code // a1 <- unpred // a2 <- unpred // vector via entIF // // osfpal_calpal_opcdec: sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit mtpr r31, ev5__ps // Set Ibox current mode to kernel mfpr r14, exc_addr // get pc nop bis r11, r31, r12 // Save PS for stack write bge r25, osfpal_calpal_opcdec_10_ // no stack swap needed if cm=kern mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel - // no virt ref for next 2 cycles mtpr r30, pt_usp // save user stack bis r31, r31, r11 // Set new PS mfpr r30, pt_ksp osfpal_calpal_opcdec_10_: lda sp, 0-osfsf_c_size(sp)// allocate stack space nop stq r16, osfsf_a0(sp) // save regs bis r31, osf_a0_opdec, r16 // set a0 stq r18, osfsf_a2(sp) // a2 mfpr r13, pt_entif // get entry point stq r12, osfsf_ps(sp) // save old ps stq r17, osfsf_a1(sp) // a1 stq r14, osfsf_pc(sp) // save pc nop stq r29, osfsf_gp(sp) // save gp mtpr r13, exc_addr // load exc_addr with entIF // 1 cycle to hw_rei mfpr r29, pt_kgp // get the kgp hw_rei_spe // done // //pal_update_pcb // Update the PCB with the current SP, AST, and CC info // // r0 - return linkage // ALIGN_BLOCK pal_update_pcb: mfpr r12, pt_pcbb // get pcbb and r11, osfps_m_mode, r25 // get mode beq r25, pal_update_pcb_10_ // in kern? no need to update user sp mtpr r30, pt_usp // save user stack stq_p r30, osfpcb_q_usp(r12) // store usp br r31, pal_update_pcb_20_ // join common pal_update_pcb_10_: stq_p r30, osfpcb_q_ksp(r12) // store ksp pal_update_pcb_20_: rpcc r13 // get cyccounter srl r13, 32, r14 // move offset addl r13, r14, r14 // merge for new time stl_p r14, osfpcb_l_cc(r12) // save time //orig pvc_jsr updpcb, bsr=1, dest=1 ret r31, (r0) // // pal_save_state // // Function // All chip state saved, all PT's, SR's FR's, IPR's // // // Regs' on entry... // // R0 = halt code // pt0 = r0 // R1 = pointer to impure // pt4 = r1 // R3 = return addr // pt5 = r3 // // register usage: // r0 = halt_code // r1 = addr of impure area // r3 = return_address // r4 = scratch // // ALIGN_BLOCK .globl pal_save_state pal_save_state: // // // start of implementation independent save routine // // the impure area is larger than the addressibility of hw_ld and hw_st // therefore, we need to play some games: The impure area // is informally divided into the "machine independent" part and the // "machine dependent" part. The state that will be saved in the // "machine independent" part are gpr's, fpr's, hlt, flag, mchkflag (use (un)fix_impure_gpr macros). // All others will be in the "machine dependent" part (use (un)fix_impure_ipr macros). // The impure pointer will need to be adjusted by a different offset for each. The store/restore_reg // macros will automagically adjust the offset correctly. // // The distributed code is commented out and followed by corresponding SRC code. // Beware: SAVE_IPR and RESTORE_IPR blow away r0(v0) //orig fix_impure_gpr r1 // adjust impure area pointer for stores to "gpr" part of impure area lda r1, 0x200(r1) // Point to center of CPU segment //orig store_reg1 flag, r31, r1, ipr=1 // clear dump area flag SAVE_GPR(r31,CNS_Q_FLAG,r1) // Clear the valid flag //orig store_reg1 hlt, r0, r1, ipr=1 SAVE_GPR(r0,CNS_Q_HALT,r1) // Save the halt code mfpr r0, pt0 // get r0 back //orig //orig store_reg1 0, r0, r1 // save r0 SAVE_GPR(r0,CNS_Q_GPR+0x00,r1) // Save r0 mfpr r0, pt4 // get r1 back //orig //orig store_reg1 1, r0, r1 // save r1 SAVE_GPR(r0,CNS_Q_GPR+0x08,r1) // Save r1 //orig store_reg 2 // save r2 SAVE_GPR(r2,CNS_Q_GPR+0x10,r1) // Save r2 mfpr r0, pt5 // get r3 back //orig //orig store_reg1 3, r0, r1 // save r3 SAVE_GPR(r0,CNS_Q_GPR+0x18,r1) // Save r3 // reason code has been saved // r0 has been saved // r1 has been saved // r2 has been saved // r3 has been saved // pt0, pt4, pt5 have been lost // // Get out of shadow mode // mfpr r2, icsr // Get icsr ldah r0, (1<<(icsr_v_sde-16))(r31) bic r2, r0, r0 // ICSR with SDE clear mtpr r0, icsr // Turn off SDE mfpr r31, pt0 // SDE bubble cycle 1 mfpr r31, pt0 // SDE bubble cycle 2 mfpr r31, pt0 // SDE bubble cycle 3 nop // save integer regs R4-r31 SAVE_GPR(r4,CNS_Q_GPR+0x20,r1) SAVE_GPR(r5,CNS_Q_GPR+0x28,r1) SAVE_GPR(r6,CNS_Q_GPR+0x30,r1) SAVE_GPR(r7,CNS_Q_GPR+0x38,r1) SAVE_GPR(r8,CNS_Q_GPR+0x40,r1) SAVE_GPR(r9,CNS_Q_GPR+0x48,r1) SAVE_GPR(r10,CNS_Q_GPR+0x50,r1) SAVE_GPR(r11,CNS_Q_GPR+0x58,r1) SAVE_GPR(r12,CNS_Q_GPR+0x60,r1) SAVE_GPR(r13,CNS_Q_GPR+0x68,r1) SAVE_GPR(r14,CNS_Q_GPR+0x70,r1) SAVE_GPR(r15,CNS_Q_GPR+0x78,r1) SAVE_GPR(r16,CNS_Q_GPR+0x80,r1) SAVE_GPR(r17,CNS_Q_GPR+0x88,r1) SAVE_GPR(r18,CNS_Q_GPR+0x90,r1) SAVE_GPR(r19,CNS_Q_GPR+0x98,r1) SAVE_GPR(r20,CNS_Q_GPR+0xA0,r1) SAVE_GPR(r21,CNS_Q_GPR+0xA8,r1) SAVE_GPR(r22,CNS_Q_GPR+0xB0,r1) SAVE_GPR(r23,CNS_Q_GPR+0xB8,r1) SAVE_GPR(r24,CNS_Q_GPR+0xC0,r1) SAVE_GPR(r25,CNS_Q_GPR+0xC8,r1) SAVE_GPR(r26,CNS_Q_GPR+0xD0,r1) SAVE_GPR(r27,CNS_Q_GPR+0xD8,r1) SAVE_GPR(r28,CNS_Q_GPR+0xE0,r1) SAVE_GPR(r29,CNS_Q_GPR+0xE8,r1) SAVE_GPR(r30,CNS_Q_GPR+0xF0,r1) SAVE_GPR(r31,CNS_Q_GPR+0xF8,r1) // save all paltemp regs except pt0 //orig unfix_impure_gpr r1 // adjust impure area pointer for gpr stores //orig fix_impure_ipr r1 // adjust impure area pointer for pt stores lda r1, -0x200(r1) // Restore the impure base address. lda r1, CNS_Q_IPR(r1) // Point to the base of IPR area. SAVE_IPR(pt0,CNS_Q_PT+0x00,r1) // the osf code didn't save/restore palTemp 0 ?? pboyle SAVE_IPR(pt1,CNS_Q_PT+0x08,r1) SAVE_IPR(pt2,CNS_Q_PT+0x10,r1) SAVE_IPR(pt3,CNS_Q_PT+0x18,r1) SAVE_IPR(pt4,CNS_Q_PT+0x20,r1) SAVE_IPR(pt5,CNS_Q_PT+0x28,r1) SAVE_IPR(pt6,CNS_Q_PT+0x30,r1) SAVE_IPR(pt7,CNS_Q_PT+0x38,r1) SAVE_IPR(pt8,CNS_Q_PT+0x40,r1) SAVE_IPR(pt9,CNS_Q_PT+0x48,r1) SAVE_IPR(pt10,CNS_Q_PT+0x50,r1) SAVE_IPR(pt11,CNS_Q_PT+0x58,r1) SAVE_IPR(pt12,CNS_Q_PT+0x60,r1) SAVE_IPR(pt13,CNS_Q_PT+0x68,r1) SAVE_IPR(pt14,CNS_Q_PT+0x70,r1) SAVE_IPR(pt15,CNS_Q_PT+0x78,r1) SAVE_IPR(pt16,CNS_Q_PT+0x80,r1) SAVE_IPR(pt17,CNS_Q_PT+0x88,r1) SAVE_IPR(pt18,CNS_Q_PT+0x90,r1) SAVE_IPR(pt19,CNS_Q_PT+0x98,r1) SAVE_IPR(pt20,CNS_Q_PT+0xA0,r1) SAVE_IPR(pt21,CNS_Q_PT+0xA8,r1) SAVE_IPR(pt22,CNS_Q_PT+0xB0,r1) SAVE_IPR(pt23,CNS_Q_PT+0xB8,r1) // Restore shadow mode mfpr r31, pt0 // pad write to icsr out of shadow of store (trap does not abort write) mfpr r31, pt0 mtpr r2, icsr // Restore original ICSR mfpr r31, pt0 // SDE bubble cycle 1 mfpr r31, pt0 // SDE bubble cycle 2 mfpr r31, pt0 // SDE bubble cycle 3 nop // save all integer shadow regs SAVE_SHADOW( r8,CNS_Q_SHADOW+0x00,r1) // also called p0...p7 in the Hudson code SAVE_SHADOW( r9,CNS_Q_SHADOW+0x08,r1) SAVE_SHADOW(r10,CNS_Q_SHADOW+0x10,r1) SAVE_SHADOW(r11,CNS_Q_SHADOW+0x18,r1) SAVE_SHADOW(r12,CNS_Q_SHADOW+0x20,r1) SAVE_SHADOW(r13,CNS_Q_SHADOW+0x28,r1) SAVE_SHADOW(r14,CNS_Q_SHADOW+0x30,r1) SAVE_SHADOW(r25,CNS_Q_SHADOW+0x38,r1) SAVE_IPR(excAddr,CNS_Q_EXC_ADDR,r1) SAVE_IPR(palBase,CNS_Q_PAL_BASE,r1) SAVE_IPR(mmStat,CNS_Q_MM_STAT,r1) SAVE_IPR(va,CNS_Q_VA,r1) SAVE_IPR(icsr,CNS_Q_ICSR,r1) SAVE_IPR(ipl,CNS_Q_IPL,r1) SAVE_IPR(ips,CNS_Q_IPS,r1) SAVE_IPR(itbAsn,CNS_Q_ITB_ASN,r1) SAVE_IPR(aster,CNS_Q_ASTER,r1) SAVE_IPR(astrr,CNS_Q_ASTRR,r1) SAVE_IPR(sirr,CNS_Q_SIRR,r1) SAVE_IPR(isr,CNS_Q_ISR,r1) SAVE_IPR(iVptBr,CNS_Q_IVPTBR,r1) SAVE_IPR(mcsr,CNS_Q_MCSR,r1) SAVE_IPR(dcMode,CNS_Q_DC_MODE,r1) //orig pvc_violate 379 // mf maf_mode after a store ok (pvc doesn't distinguish ld from st) //orig store_reg maf_mode, ipr=1 // save ipr -- no mbox instructions for //orig // PVC violation applies only to pvc$osf35$379: // loads. HW_ST ok here, so ignore SAVE_IPR(mafMode,CNS_Q_MAF_MODE,r1) // MBOX INST->MF MAF_MODE IN 0,1,2 //the following iprs are informational only -- will not be restored SAVE_IPR(icPerr,CNS_Q_ICPERR_STAT,r1) SAVE_IPR(PmCtr,CNS_Q_PM_CTR,r1) SAVE_IPR(intId,CNS_Q_INT_ID,r1) SAVE_IPR(excSum,CNS_Q_EXC_SUM,r1) SAVE_IPR(excMask,CNS_Q_EXC_MASK,r1) ldah r14, 0xFFF0(zero) zap r14, 0xE0, r14 // Get base address of CBOX IPRs NOP // Pad mfpr dcPerr out of shadow of NOP // last store NOP SAVE_IPR(dcPerr,CNS_Q_DCPERR_STAT,r1) // read cbox ipr state mb ldq_p r2, scCtl(r14) ldq_p r13, ldLock(r14) ldq_p r4, scAddr(r14) ldq_p r5, eiAddr(r14) ldq_p r6, bcTagAddr(r14) ldq_p r7, fillSyn(r14) bis r5, r4, zero // Make sure all loads complete before bis r7, r6, zero // reading registers that unlock them. ldq_p r8, scStat(r14) // Unlocks scAddr. ldq_p r9, eiStat(r14) // Unlocks eiAddr, bcTagAddr, fillSyn. ldq_p zero, eiStat(r14) // Make sure it is really unlocked. mb // save cbox ipr state SAVE_SHADOW(r2,CNS_Q_SC_CTL,r1); SAVE_SHADOW(r13,CNS_Q_LD_LOCK,r1); SAVE_SHADOW(r4,CNS_Q_SC_ADDR,r1); SAVE_SHADOW(r5,CNS_Q_EI_ADDR,r1); SAVE_SHADOW(r6,CNS_Q_BC_TAG_ADDR,r1); SAVE_SHADOW(r7,CNS_Q_FILL_SYN,r1); SAVE_SHADOW(r8,CNS_Q_SC_STAT,r1); SAVE_SHADOW(r9,CNS_Q_EI_STAT,r1); //bc_config? sl_rcv? // restore impure base //orig unfix_impure_ipr r1 lda r1, -CNS_Q_IPR(r1) // save all floating regs mfpr r0, icsr // get icsr or r31, 1, r2 // get a one sll r2, icsr_v_fpe, r2 // Shift it into ICSR<FPE> position or r2, r0, r0 // set FEN on mtpr r0, icsr // write to icsr, enabling FEN // map the save area virtually mtpr r31, dtbIa // Clear all DTB entries srl r1, va_s_off, r0 // Clean off byte-within-page offset sll r0, pte_v_pfn, r0 // Shift to form PFN lda r0, pte_m_prot(r0) // Set all read/write enable bits mtpr r0, dtbPte // Load the PTE and set valid mtpr r1, dtbTag // Write the PTE and tag into the DTB // map the next page too - in case the impure area crosses a page boundary lda r4, (1<<va_s_off)(r1) // Generate address for next page srl r4, va_s_off, r0 // Clean off byte-within-page offset sll r0, pte_v_pfn, r0 // Shift to form PFN lda r0, pte_m_prot(r0) // Set all read/write enable bits mtpr r0, dtbPte // Load the PTE and set valid mtpr r4, dtbTag // Write the PTE and tag into the DTB sll r31, 0, r31 // stall cycle 1 sll r31, 0, r31 // stall cycle 2 sll r31, 0, r31 // stall cycle 3 nop // add offset for saving fpr regs //orig fix_impure_gpr r1 lda r1, 0x200(r1) // Point to center of CPU segment // now save the regs - F0-F31 mf_fpcr f0 // original SAVE_FPR(f0,CNS_Q_FPR+0x00,r1) SAVE_FPR(f1,CNS_Q_FPR+0x08,r1) SAVE_FPR(f2,CNS_Q_FPR+0x10,r1) SAVE_FPR(f3,CNS_Q_FPR+0x18,r1) SAVE_FPR(f4,CNS_Q_FPR+0x20,r1) SAVE_FPR(f5,CNS_Q_FPR+0x28,r1) SAVE_FPR(f6,CNS_Q_FPR+0x30,r1) SAVE_FPR(f7,CNS_Q_FPR+0x38,r1) SAVE_FPR(f8,CNS_Q_FPR+0x40,r1) SAVE_FPR(f9,CNS_Q_FPR+0x48,r1) SAVE_FPR(f10,CNS_Q_FPR+0x50,r1) SAVE_FPR(f11,CNS_Q_FPR+0x58,r1) SAVE_FPR(f12,CNS_Q_FPR+0x60,r1) SAVE_FPR(f13,CNS_Q_FPR+0x68,r1) SAVE_FPR(f14,CNS_Q_FPR+0x70,r1) SAVE_FPR(f15,CNS_Q_FPR+0x78,r1) SAVE_FPR(f16,CNS_Q_FPR+0x80,r1) SAVE_FPR(f17,CNS_Q_FPR+0x88,r1) SAVE_FPR(f18,CNS_Q_FPR+0x90,r1) SAVE_FPR(f19,CNS_Q_FPR+0x98,r1) SAVE_FPR(f20,CNS_Q_FPR+0xA0,r1) SAVE_FPR(f21,CNS_Q_FPR+0xA8,r1) SAVE_FPR(f22,CNS_Q_FPR+0xB0,r1) SAVE_FPR(f23,CNS_Q_FPR+0xB8,r1) SAVE_FPR(f24,CNS_Q_FPR+0xC0,r1) SAVE_FPR(f25,CNS_Q_FPR+0xC8,r1) SAVE_FPR(f26,CNS_Q_FPR+0xD0,r1) SAVE_FPR(f27,CNS_Q_FPR+0xD8,r1) SAVE_FPR(f28,CNS_Q_FPR+0xE0,r1) SAVE_FPR(f29,CNS_Q_FPR+0xE8,r1) SAVE_FPR(f30,CNS_Q_FPR+0xF0,r1) SAVE_FPR(f31,CNS_Q_FPR+0xF8,r1) //switch impure offset from gpr to ipr--- //orig unfix_impure_gpr r1 //orig fix_impure_ipr r1 //orig store_reg1 fpcsr, f0, r1, fpcsr=1 SAVE_FPR(f0,CNS_Q_FPCSR,r1) // fpcsr loaded above into f0 -- can it reach lda r1, -0x200(r1) // Restore the impure base address // and back to gpr --- //orig unfix_impure_ipr r1 //orig fix_impure_gpr r1 //orig lda r0, cns_mchksize(r31) // get size of mchk area //orig store_reg1 mchkflag, r0, r1, ipr=1 //orig mb lda r1, CNS_Q_IPR(r1) // Point to base of IPR area again // save this using the IPR base (it is closer) not the GRP base as they used...pb lda r0, MACHINE_CHECK_SIZE(r31) // get size of mchk area SAVE_SHADOW(r0,CNS_Q_MCHK,r1); mb //orig or r31, 1, r0 // get a one //orig store_reg1 flag, r0, r1, ipr=1 // set dump area flag //orig mb lda r1, -CNS_Q_IPR(r1) // back to the base lda r1, 0x200(r1) // Point to center of CPU segment or r31, 1, r0 // get a one SAVE_GPR(r0,CNS_Q_FLAG,r1) // // set dump area valid flag mb // restore impure area base //orig unfix_impure_gpr r1 lda r1, -0x200(r1) // Point to center of CPU segment mtpr r31, dtb_ia // clear the dtb mtpr r31, itb_ia // clear the itb //orig pvc_jsr savsta, bsr=1, dest=1 ret r31, (r3) // and back we go // .sbttl "PAL_RESTORE_STATE" // // // Pal_restore_state // // // register usage: // r1 = addr of impure area // r3 = return_address // all other regs are scratchable, as they are about to // be reloaded from ram. // // Function: // All chip state restored, all SRs, FRs, PTs, IPRs // *** except R1, R3, PT0, PT4, PT5 *** // // ALIGN_BLOCK pal_restore_state: //need to restore sc_ctl,bc_ctl,bc_config??? if so, need to figure out a safe way to do so. // map the console io area virtually mtpr r31, dtbIa // Clear all DTB entries srl r1, va_s_off, r0 // Clean off byte-within-page offset sll r0, pte_v_pfn, r0 // Shift to form PFN lda r0, pte_m_prot(r0) // Set all read/write enable bits mtpr r0, dtbPte // Load the PTE and set valid mtpr r1, dtbTag // Write the PTE and tag into the DTB // map the next page too, in case impure area crosses page boundary lda r4, (1<<VA_S_OFF)(r1) // Generate address for next page srl r4, va_s_off, r0 // Clean off byte-within-page offset sll r0, pte_v_pfn, r0 // Shift to form PFN lda r0, pte_m_prot(r0) // Set all read/write enable bits mtpr r0, dtbPte // Load the PTE and set valid mtpr r4, dtbTag // Write the PTE and tag into the DTB // save all floating regs mfpr r0, icsr // Get current ICSR bis zero, 1, r2 // Get a '1' or r2, (1<<(icsr_v_sde-icsr_v_fpe)), r2 sll r2, icsr_v_fpe, r2 // Shift bits into position bis r2, r2, r0 // Set ICSR<SDE> and ICSR<FPE> mtpr r0, icsr // Update the chip mfpr r31, pt0 // FPE bubble cycle 1 //orig mfpr r31, pt0 // FPE bubble cycle 2 //orig mfpr r31, pt0 // FPE bubble cycle 3 //orig //orig fix_impure_ipr r1 //orig restore_reg1 fpcsr, f0, r1, fpcsr=1 //orig mt_fpcr f0 //orig //orig unfix_impure_ipr r1 //orig fix_impure_gpr r1 // adjust impure pointer offset for gpr access lda r1, 200(r1) // Point to base of IPR area again RESTORE_FPR(f0,CNS_Q_FPCSR,r1) // can it reach?? pb mt_fpcr f0 // original lda r1, 0x200(r1) // point to center of CPU segment // restore all floating regs RESTORE_FPR(f0,CNS_Q_FPR+0x00,r1) RESTORE_FPR(f1,CNS_Q_FPR+0x08,r1) RESTORE_FPR(f2,CNS_Q_FPR+0x10,r1) RESTORE_FPR(f3,CNS_Q_FPR+0x18,r1) RESTORE_FPR(f4,CNS_Q_FPR+0x20,r1) RESTORE_FPR(f5,CNS_Q_FPR+0x28,r1) RESTORE_FPR(f6,CNS_Q_FPR+0x30,r1) RESTORE_FPR(f7,CNS_Q_FPR+0x38,r1) RESTORE_FPR(f8,CNS_Q_FPR+0x40,r1) RESTORE_FPR(f9,CNS_Q_FPR+0x48,r1) RESTORE_FPR(f10,CNS_Q_FPR+0x50,r1) RESTORE_FPR(f11,CNS_Q_FPR+0x58,r1) RESTORE_FPR(f12,CNS_Q_FPR+0x60,r1) RESTORE_FPR(f13,CNS_Q_FPR+0x68,r1) RESTORE_FPR(f14,CNS_Q_FPR+0x70,r1) RESTORE_FPR(f15,CNS_Q_FPR+0x78,r1) RESTORE_FPR(f16,CNS_Q_FPR+0x80,r1) RESTORE_FPR(f17,CNS_Q_FPR+0x88,r1) RESTORE_FPR(f18,CNS_Q_FPR+0x90,r1) RESTORE_FPR(f19,CNS_Q_FPR+0x98,r1) RESTORE_FPR(f20,CNS_Q_FPR+0xA0,r1) RESTORE_FPR(f21,CNS_Q_FPR+0xA8,r1) RESTORE_FPR(f22,CNS_Q_FPR+0xB0,r1) RESTORE_FPR(f23,CNS_Q_FPR+0xB8,r1) RESTORE_FPR(f24,CNS_Q_FPR+0xC0,r1) RESTORE_FPR(f25,CNS_Q_FPR+0xC8,r1) RESTORE_FPR(f26,CNS_Q_FPR+0xD0,r1) RESTORE_FPR(f27,CNS_Q_FPR+0xD8,r1) RESTORE_FPR(f28,CNS_Q_FPR+0xE0,r1) RESTORE_FPR(f29,CNS_Q_FPR+0xE8,r1) RESTORE_FPR(f30,CNS_Q_FPR+0xF0,r1) RESTORE_FPR(f31,CNS_Q_FPR+0xF8,r1) // switch impure pointer from gpr to ipr area -- //orig unfix_impure_gpr r1 //orig fix_impure_ipr r1 lda r1, -0x200(r1) // Restore base address of impure area. lda r1, CNS_Q_IPR(r1) // Point to base of IPR area. // restore all pal regs RESTORE_IPR(pt0,CNS_Q_PT+0x00,r1) // the osf code didn't save/restore palTemp 0 ?? pboyle RESTORE_IPR(pt1,CNS_Q_PT+0x08,r1) RESTORE_IPR(pt2,CNS_Q_PT+0x10,r1) RESTORE_IPR(pt3,CNS_Q_PT+0x18,r1) RESTORE_IPR(pt4,CNS_Q_PT+0x20,r1) RESTORE_IPR(pt5,CNS_Q_PT+0x28,r1) RESTORE_IPR(pt6,CNS_Q_PT+0x30,r1) RESTORE_IPR(pt7,CNS_Q_PT+0x38,r1) RESTORE_IPR(pt8,CNS_Q_PT+0x40,r1) RESTORE_IPR(pt9,CNS_Q_PT+0x48,r1) RESTORE_IPR(pt10,CNS_Q_PT+0x50,r1) RESTORE_IPR(pt11,CNS_Q_PT+0x58,r1) RESTORE_IPR(pt12,CNS_Q_PT+0x60,r1) RESTORE_IPR(pt13,CNS_Q_PT+0x68,r1) RESTORE_IPR(pt14,CNS_Q_PT+0x70,r1) RESTORE_IPR(pt15,CNS_Q_PT+0x78,r1) RESTORE_IPR(pt16,CNS_Q_PT+0x80,r1) RESTORE_IPR(pt17,CNS_Q_PT+0x88,r1) RESTORE_IPR(pt18,CNS_Q_PT+0x90,r1) RESTORE_IPR(pt19,CNS_Q_PT+0x98,r1) RESTORE_IPR(pt20,CNS_Q_PT+0xA0,r1) RESTORE_IPR(pt21,CNS_Q_PT+0xA8,r1) RESTORE_IPR(pt22,CNS_Q_PT+0xB0,r1) RESTORE_IPR(pt23,CNS_Q_PT+0xB8,r1) //orig restore_reg exc_addr, ipr=1 // restore ipr //orig restore_reg pal_base, ipr=1 // restore ipr //orig restore_reg ipl, ipr=1 // restore ipr //orig restore_reg ps, ipr=1 // restore ipr //orig mtpr r0, dtb_cm // set current mode in mbox too //orig restore_reg itb_asn, ipr=1 //orig srl r0, itb_asn_v_asn, r0 //orig sll r0, dtb_asn_v_asn, r0 //orig mtpr r0, dtb_asn // set ASN in Mbox too //orig restore_reg ivptbr, ipr=1 //orig mtpr r0, mvptbr // use ivptbr value to restore mvptbr //orig restore_reg mcsr, ipr=1 //orig restore_reg aster, ipr=1 //orig restore_reg astrr, ipr=1 //orig restore_reg sirr, ipr=1 //orig restore_reg maf_mode, ipr=1 // no mbox instruction for 3 cycles //orig mfpr r31, pt0 // (may issue with mt maf_mode) //orig mfpr r31, pt0 // bubble cycle 1 //orig mfpr r31, pt0 // bubble cycle 2 //orig mfpr r31, pt0 // bubble cycle 3 //orig mfpr r31, pt0 // (may issue with following ld) // r0 gets the value of RESTORE_IPR in the macro and this code uses this side effect (gag) RESTORE_IPR(excAddr,CNS_Q_EXC_ADDR,r1) RESTORE_IPR(palBase,CNS_Q_PAL_BASE,r1) RESTORE_IPR(ipl,CNS_Q_IPL,r1) RESTORE_IPR(ips,CNS_Q_IPS,r1) mtpr r0, dtbCm // Set Mbox current mode too. RESTORE_IPR(itbAsn,CNS_Q_ITB_ASN,r1) srl r0, 4, r0 sll r0, 57, r0 mtpr r0, dtbAsn // Set Mbox ASN too RESTORE_IPR(iVptBr,CNS_Q_IVPTBR,r1) mtpr r0, mVptBr // Set Mbox VptBr too RESTORE_IPR(mcsr,CNS_Q_MCSR,r1) RESTORE_IPR(aster,CNS_Q_ASTER,r1) RESTORE_IPR(astrr,CNS_Q_ASTRR,r1) RESTORE_IPR(sirr,CNS_Q_SIRR,r1) RESTORE_IPR(mafMode,CNS_Q_MAF_MODE,r1) STALL STALL STALL STALL STALL // restore all integer shadow regs RESTORE_SHADOW( r8,CNS_Q_SHADOW+0x00,r1) // also called p0...p7 in the Hudson code RESTORE_SHADOW( r9,CNS_Q_SHADOW+0x08,r1) RESTORE_SHADOW(r10,CNS_Q_SHADOW+0x10,r1) RESTORE_SHADOW(r11,CNS_Q_SHADOW+0x18,r1) RESTORE_SHADOW(r12,CNS_Q_SHADOW+0x20,r1) RESTORE_SHADOW(r13,CNS_Q_SHADOW+0x28,r1) RESTORE_SHADOW(r14,CNS_Q_SHADOW+0x30,r1) RESTORE_SHADOW(r25,CNS_Q_SHADOW+0x38,r1) RESTORE_IPR(dcMode,CNS_Q_DC_MODE,r1) // // Get out of shadow mode // mfpr r31, pt0 // pad last load to icsr write (in case of replay, icsr will be written anyway) mfpr r31, pt0 // "" mfpr r0, icsr // Get icsr ldah r2, (1<<(ICSR_V_SDE-16))(r31) // Get a one in SHADOW_ENABLE bit location bic r0, r2, r2 // ICSR with SDE clear mtpr r2, icsr // Turn off SDE - no palshadow rd/wr for 3 bubble cycles mfpr r31, pt0 // SDE bubble cycle 1 mfpr r31, pt0 // SDE bubble cycle 2 mfpr r31, pt0 // SDE bubble cycle 3 nop // switch impure pointer from ipr to gpr area -- //orig unfix_impure_ipr r1 //orig fix_impure_gpr r1 // Restore GPRs (r0, r2 are restored later, r1 and r3 are trashed) ... lda r1, -CNS_Q_IPR(r1) // Restore base address of impure area lda r1, 0x200(r1) // Point to center of CPU segment // restore all integer regs RESTORE_GPR(r4,CNS_Q_GPR+0x20,r1) RESTORE_GPR(r5,CNS_Q_GPR+0x28,r1) RESTORE_GPR(r6,CNS_Q_GPR+0x30,r1) RESTORE_GPR(r7,CNS_Q_GPR+0x38,r1) RESTORE_GPR(r8,CNS_Q_GPR+0x40,r1) RESTORE_GPR(r9,CNS_Q_GPR+0x48,r1) RESTORE_GPR(r10,CNS_Q_GPR+0x50,r1) RESTORE_GPR(r11,CNS_Q_GPR+0x58,r1) RESTORE_GPR(r12,CNS_Q_GPR+0x60,r1) RESTORE_GPR(r13,CNS_Q_GPR+0x68,r1) RESTORE_GPR(r14,CNS_Q_GPR+0x70,r1) RESTORE_GPR(r15,CNS_Q_GPR+0x78,r1) RESTORE_GPR(r16,CNS_Q_GPR+0x80,r1) RESTORE_GPR(r17,CNS_Q_GPR+0x88,r1) RESTORE_GPR(r18,CNS_Q_GPR+0x90,r1) RESTORE_GPR(r19,CNS_Q_GPR+0x98,r1) RESTORE_GPR(r20,CNS_Q_GPR+0xA0,r1) RESTORE_GPR(r21,CNS_Q_GPR+0xA8,r1) RESTORE_GPR(r22,CNS_Q_GPR+0xB0,r1) RESTORE_GPR(r23,CNS_Q_GPR+0xB8,r1) RESTORE_GPR(r24,CNS_Q_GPR+0xC0,r1) RESTORE_GPR(r25,CNS_Q_GPR+0xC8,r1) RESTORE_GPR(r26,CNS_Q_GPR+0xD0,r1) RESTORE_GPR(r27,CNS_Q_GPR+0xD8,r1) RESTORE_GPR(r28,CNS_Q_GPR+0xE0,r1) RESTORE_GPR(r29,CNS_Q_GPR+0xE8,r1) RESTORE_GPR(r30,CNS_Q_GPR+0xF0,r1) RESTORE_GPR(r31,CNS_Q_GPR+0xF8,r1) //orig // switch impure pointer from gpr to ipr area -- //orig unfix_impure_gpr r1 //orig fix_impure_ipr r1 //orig restore_reg icsr, ipr=1 // restore original icsr- 4 bubbles to hw_rei lda t0, -0x200(t0) // Restore base address of impure area. lda t0, CNS_Q_IPR(t0) // Point to base of IPR area again. RESTORE_IPR(icsr,CNS_Q_ICSR,r1) //orig // and back again -- //orig unfix_impure_ipr r1 //orig fix_impure_gpr r1 //orig store_reg1 flag, r31, r1, ipr=1 // clear dump area valid flag //orig mb lda t0, -CNS_Q_IPR(t0) // Back to base of impure area again, lda t0, 0x200(t0) // and back to center of CPU segment SAVE_GPR(r31,CNS_Q_FLAG,r1) // Clear the dump area valid flag mb //orig // and back we go //orig// restore_reg 3 //orig restore_reg 2 //orig// restore_reg 1 //orig restore_reg 0 //orig // restore impure area base //orig unfix_impure_gpr r1 RESTORE_GPR(r2,CNS_Q_GPR+0x10,r1) RESTORE_GPR(r0,CNS_Q_GPR+0x00,r1) lda r1, -0x200(r1) // Restore impure base address mfpr r31, pt0 // stall for ldq_p above //orig mtpr r31, dtb_ia // clear the tb //orig mtpr r31, itb_ia // clear the itb //orig //orig pvc_jsr rststa, bsr=1, dest=1 ret r31, (r3) // back we go //orig // // pal_pal_bug_check -- code has found a bugcheck situation. // Set things up and join common machine check flow. // // Input: // r14 - exc_addr // // On exit: // pt0 - saved r0 // pt1 - saved r1 // pt4 - saved r4 // pt5 - saved r5 // pt6 - saved r6 // pt10 - saved exc_addr // pt_misc<47:32> - mchk code // pt_misc<31:16> - scb vector // r14 - base of Cbox IPRs in IO space // MCES<mchk> is set // ALIGN_BLOCK .globl pal_pal_bug_check_from_int pal_pal_bug_check_from_int: DEBUGSTORE(0x79) //simos DEBUG_EXC_ADDR() DEBUGSTORE(0x20) //simos bsr r25, put_hex lda r25, mchk_c_bugcheck(r31) addq r25, 1, r25 // set flag indicating we came from interrupt and stack is already pushed br r31, pal_pal_mchk nop pal_pal_bug_check: lda r25, mchk_c_bugcheck(r31) pal_pal_mchk: sll r25, 32, r25 // Move mchk code to position mtpr r14, pt10 // Stash exc_addr mtpr r14, exc_addr mfpr r12, pt_misc // Get MCES and scratch zap r12, 0x3c, r12 or r12, r25, r12 // Combine mchk code lda r25, scb_v_procmchk(r31) // Get SCB vector sll r25, 16, r25 // Move SCBv to position or r12, r25, r25 // Combine SCBv mtpr r0, pt0 // Stash for scratch bis r25, mces_m_mchk, r25 // Set MCES<MCHK> bit mtpr r25, pt_misc // Save mchk code!scbv!whami!mces ldah r14, 0xfff0(r31) mtpr r1, pt1 // Stash for scratch zap r14, 0xE0, r14 // Get Cbox IPR base mtpr r4, pt4 mtpr r5, pt5 mtpr r6, pt6 blbs r12, sys_double_machine_check // MCHK halt if double machine check br r31, sys_mchk_collect_iprs // Join common machine check flow // align_to_call_pal_section // Align to address of first call_pal entry point - 2000 // // HALT - PALcode for HALT instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // GO to console code // // .text 1 // . = 0x2000 CALL_PAL_PRIV(PAL_HALT_ENTRY) call_pal_halt: mfpr r31, pt0 // Pad exc_addr read mfpr r31, pt0 mfpr r12, exc_addr // get PC subq r12, 4, r12 // Point to the HALT mtpr r12, exc_addr mtpr r0, pt0 //orig pvc_jsr updpcb, bsr=1 bsr r0, pal_update_pcb // update the pcb lda r0, hlt_c_sw_halt(r31) // set halt code to sw halt br r31, sys_enter_console // enter the console // // CFLUSH - PALcode for CFLUSH instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // R16 - contains the PFN of the page to be flushed // // Function: // Flush all Dstream caches of 1 entire page // The CFLUSH routine is in the system specific module. // // CALL_PAL_PRIV(PAL_CFLUSH_ENTRY) Call_Pal_Cflush: br r31, sys_cflush // // DRAINA - PALcode for DRAINA instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // Implicit TRAPB performed by hardware. // // Function: // Stall instruction issue until all prior instructions are guaranteed to // complete without incurring aborts. For the EV5 implementation, this // means waiting until all pending DREADS are returned. // // CALL_PAL_PRIV(PAL_DRAINA_ENTRY) Call_Pal_Draina: ldah r14, 0x100(r31) // Init counter. Value? nop DRAINA_LOOP: subq r14, 1, r14 // Decrement counter mfpr r13, ev5__maf_mode // Fetch status bit srl r13, maf_mode_v_dread_pending, r13 ble r14, DRAINA_LOOP_TOO_LONG nop blbs r13, DRAINA_LOOP // Wait until all DREADS clear hw_rei DRAINA_LOOP_TOO_LONG: br r31, call_pal_halt // CALL_PAL OPCDECs CALL_PAL_PRIV(0x0003) CallPal_OpcDec03: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0004) CallPal_OpcDec04: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0005) CallPal_OpcDec05: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0006) CallPal_OpcDec06: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0007) CallPal_OpcDec07: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0008) CallPal_OpcDec08: br r31, osfpal_calpal_opcdec // // CSERVE - PALcode for CSERVE instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // Various functions for private use of console software // // option selector in r0 // arguments in r16.... // The CSERVE routine is in the system specific module. // // CALL_PAL_PRIV(PAL_CSERVE_ENTRY) Call_Pal_Cserve: br r31, sys_cserve // // swppal - PALcode for swppal instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // Vectored into via hardware PALcode instruction dispatch. // R16 contains the new PAL identifier // R17:R21 contain implementation-specific entry parameters // // R0 receives status: // 0 success (PAL was switched) // 1 unknown PAL variant // 2 known PAL variant, but PAL not loaded // // // Function: // Swap control to another PAL. // CALL_PAL_PRIV(PAL_SWPPAL_ENTRY) Call_Pal_Swppal: cmpule r16, 255, r0 // see if a kibble was passed cmoveq r16, r16, r0 // if r16=0 then a valid address (ECO 59) or r16, r31, r3 // set r3 incase this is a address blbc r0, swppal_cont // nope, try it as an address cmpeq r16, 2, r0 // is it our friend OSF? blbc r0, swppal_fail // nope, don't know this fellow br r2, CALL_PAL_SWPPAL_10_ // tis our buddy OSF // .global osfpal_hw_entry_reset // .weak osfpal_hw_entry_reset // .long <osfpal_hw_entry_reset-pal_start> //orig halt // don't know how to get the address here - kludge ok, load pal at 0 .long 0 // ?? hack upon hack...pb CALL_PAL_SWPPAL_10_: ldl_p r3, 0(r2) // fetch target addr // ble r3, swppal_fail ; if OSF not linked in say not loaded. mfpr r2, pal_base // fetch pal base addq r2, r3, r3 // add pal base lda r2, 0x3FFF(r31) // get pal base checker mask and r3, r2, r2 // any funky bits set? cmpeq r2, 0, r0 // blbc r0, swppal_fail // return unknown if bad bit set. br r31, swppal_cont // .sbttl "CALL_PAL OPCDECs" CALL_PAL_PRIV(0x000B) CallPal_OpcDec0B: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x000C) CallPal_OpcDec0C: br r31, osfpal_calpal_opcdec // // wripir - PALcode for wripir instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // r16 = processor number to interrupt // // Function: // IPIR <- R16 // Handled in system-specific code // // Exit: // interprocessor interrupt is recorded on the target processor // and is initiated when the proper enabling conditions are present. // CALL_PAL_PRIV(PAL_WRIPIR_ENTRY) Call_Pal_Wrpir: br r31, sys_wripir // .sbttl "CALL_PAL OPCDECs" CALL_PAL_PRIV(0x000E) CallPal_OpcDec0E: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x000F) CallPal_OpcDec0F: br r31, osfpal_calpal_opcdec // // rdmces - PALcode for rdmces instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // R0 <- ZEXT(MCES) // CALL_PAL_PRIV(PAL_RDMCES_ENTRY) Call_Pal_Rdmces: mfpr r0, pt_mces // Read from PALtemp and r0, mces_m_all, r0 // Clear other bits hw_rei // // wrmces - PALcode for wrmces instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // If {R16<0> EQ 1} then MCES<0> <- 0 (MCHK) // If {R16<1> EQ 1} then MCES<1> <- 0 (SCE) // If {R16<2> EQ 1} then MCES<2> <- 0 (PCE) // MCES<3> <- R16<3> (DPC) // MCES<4> <- R16<4> (DSC) // // CALL_PAL_PRIV(PAL_WRMCES_ENTRY) Call_Pal_Wrmces: and r16, ((1<<mces_v_mchk) | (1<<mces_v_sce) | (1<<mces_v_pce)), r13 // Isolate MCHK, SCE, PCE mfpr r14, pt_mces // Get current value ornot r31, r13, r13 // Flip all the bits and r16, ((1<<mces_v_dpc) | (1<<mces_v_dsc)), r17 and r14, r13, r1 // Update MCHK, SCE, PCE bic r1, ((1<<mces_v_dpc) | (1<<mces_v_dsc)), r1 // Clear old DPC, DSC or r1, r17, r1 // Update DPC and DSC mtpr r1, pt_mces // Write MCES back nop // Pad to fix PT write->read restriction nop hw_rei // CALL_PAL OPCDECs CALL_PAL_PRIV(0x0012) CallPal_OpcDec12: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0013) CallPal_OpcDec13: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0014) CallPal_OpcDec14: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0015) CallPal_OpcDec15: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0016) CallPal_OpcDec16: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0017) CallPal_OpcDec17: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0018) CallPal_OpcDec18: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0019) CallPal_OpcDec19: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x001A) CallPal_OpcDec1A: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x001B) CallPal_OpcDec1B: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x001C) CallPal_OpcDec1C: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x001D) CallPal_OpcDec1D: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x001E) CallPal_OpcDec1E: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x001F) CallPal_OpcDec1F: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0020) CallPal_OpcDec20: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0021) CallPal_OpcDec21: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0022) CallPal_OpcDec22: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0023) CallPal_OpcDec23: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0024) CallPal_OpcDec24: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0025) CallPal_OpcDec25: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0026) CallPal_OpcDec26: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0027) CallPal_OpcDec27: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0028) CallPal_OpcDec28: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x0029) CallPal_OpcDec29: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x002A) CallPal_OpcDec2A: br r31, osfpal_calpal_opcdec // // wrfen - PALcode for wrfen instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // a0<0> -> ICSR<FPE> // Store new FEN in PCB // Final value of t0 (r1), t8..t10 (r22..r24) and a0 (r16) // are UNPREDICTABLE // // Issue: What about pending FP loads when FEN goes from on->off???? // CALL_PAL_PRIV(PAL_WRFEN_ENTRY) Call_Pal_Wrfen: or r31, 1, r13 // Get a one mfpr r1, ev5__icsr // Get current FPE sll r13, icsr_v_fpe, r13 // shift 1 to icsr<fpe> spot, e0 and r16, 1, r16 // clean new fen sll r16, icsr_v_fpe, r12 // shift new fen to correct bit position bic r1, r13, r1 // zero icsr<fpe> or r1, r12, r1 // Or new FEN into ICSR mfpr r12, pt_pcbb // Get PCBB - E1 mtpr r1, ev5__icsr // write new ICSR. 3 Bubble cycles to HW_REI stl_p r16, osfpcb_q_fen(r12) // Store FEN in PCB. mfpr r31, pt0 // Pad ICSR<FPE> write. mfpr r31, pt0 mfpr r31, pt0 // pvc_violate 225 // cuz PVC can't distinguish which bits changed hw_rei CALL_PAL_PRIV(0x002C) CallPal_OpcDec2C: br r31, osfpal_calpal_opcdec // // wrvptpr - PALcode for wrvptpr instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // vptptr <- a0 (r16) // CALL_PAL_PRIV(PAL_WRVPTPTR_ENTRY) Call_Pal_Wrvptptr: mtpr r16, ev5__mvptbr // Load Mbox copy mtpr r16, ev5__ivptbr // Load Ibox copy nop // Pad IPR write nop hw_rei CALL_PAL_PRIV(0x002E) CallPal_OpcDec2E: br r31, osfpal_calpal_opcdec CALL_PAL_PRIV(0x002F) CallPal_OpcDec2F: br r31, osfpal_calpal_opcdec // // swpctx - PALcode for swpctx instruction // // Entry: // hardware dispatch via callPal instruction // R16 -> new pcb // // Function: // dynamic state moved to old pcb // new state loaded from new pcb // pcbb pointer set // old pcbb returned in R0 // // Note: need to add perf monitor stuff // CALL_PAL_PRIV(PAL_SWPCTX_ENTRY) Call_Pal_Swpctx: rpcc r13 // get cyccounter mfpr r0, pt_pcbb // get pcbb ldq_p r22, osfpcb_q_fen(r16) // get new fen/pme ldq_p r23, osfpcb_l_cc(r16) // get new asn srl r13, 32, r25 // move offset mfpr r24, pt_usp // get usp stq_p r30, osfpcb_q_ksp(r0) // store old ksp // pvc_violate 379 // stq_p can't trap except replay. only problem if mf same ipr in same shadow. mtpr r16, pt_pcbb // set new pcbb stq_p r24, osfpcb_q_usp(r0) // store usp addl r13, r25, r25 // merge for new time stl_p r25, osfpcb_l_cc(r0) // save time ldah r24, (1<<(icsr_v_fpe-16))(r31) and r22, 1, r12 // isolate fen mfpr r25, icsr // get current icsr lda r24, (1<<icsr_v_pmp)(r24) br r31, swpctx_cont // // wrval - PALcode for wrval instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // sysvalue <- a0 (r16) // CALL_PAL_PRIV(PAL_WRVAL_ENTRY) Call_Pal_Wrval: nop mtpr r16, pt_sysval // Pad paltemp write nop nop hw_rei // // rdval - PALcode for rdval instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // v0 (r0) <- sysvalue // CALL_PAL_PRIV(PAL_RDVAL_ENTRY) Call_Pal_Rdval: nop mfpr r0, pt_sysval nop hw_rei // // tbi - PALcode for tbi instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // TB invalidate // r16/a0 = TBI type // r17/a1 = Va for TBISx instructions // CALL_PAL_PRIV(PAL_TBI_ENTRY) Call_Pal_Tbi: addq r16, 2, r16 // change range to 0-2 br r23, CALL_PAL_tbi_10_ // get our address CALL_PAL_tbi_10_: cmpult r16, 6, r22 // see if in range lda r23, tbi_tbl-CALL_PAL_tbi_10_(r23) // set base to start of table sll r16, 4, r16 // * 16 blbc r22, CALL_PAL_tbi_30_ // go rei, if not addq r23, r16, r23 // addr of our code //orig pvc_jsr tbi jmp r31, (r23) // and go do it CALL_PAL_tbi_30_: hw_rei nop // // wrent - PALcode for wrent instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // Update ent* in paltemps // r16/a0 = Address of entry routine // r17/a1 = Entry Number 0..5 // // r22, r23 trashed // CALL_PAL_PRIV(PAL_WRENT_ENTRY) Call_Pal_Wrent: cmpult r17, 6, r22 // see if in range br r23, CALL_PAL_wrent_10_ // get our address CALL_PAL_wrent_10_: bic r16, 3, r16 // clean pc blbc r22, CALL_PAL_wrent_30_ // go rei, if not in range lda r23, wrent_tbl-CALL_PAL_wrent_10_(r23) // set base to start of table sll r17, 4, r17 // *16 addq r17, r23, r23 // Get address in table //orig pvc_jsr wrent jmp r31, (r23) // and go do it CALL_PAL_wrent_30_: hw_rei // out of range, just return // // swpipl - PALcode for swpipl instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // v0 (r0) <- PS<IPL> // PS<IPL> <- a0<2:0> (r16) // // t8 (r22) is scratch // CALL_PAL_PRIV(PAL_SWPIPL_ENTRY) Call_Pal_Swpipl: and r16, osfps_m_ipl, r16 // clean New ipl mfpr r22, pt_intmask // get int mask extbl r22, r16, r22 // get mask for this ipl bis r11, r31, r0 // return old ipl bis r16, r31, r11 // set new ps mtpr r22, ev5__ipl // set new mask mfpr r31, pt0 // pad ipl write mfpr r31, pt0 // pad ipl write hw_rei // back // // rdps - PALcode for rdps instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // v0 (r0) <- ps // CALL_PAL_PRIV(PAL_RDPS_ENTRY) Call_Pal_Rdps: bis r11, r31, r0 // Fetch PALshadow PS nop // Must be 2 cycles long hw_rei // // wrkgp - PALcode for wrkgp instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // kgp <- a0 (r16) // CALL_PAL_PRIV(PAL_WRKGP_ENTRY) Call_Pal_Wrkgp: nop mtpr r16, pt_kgp nop // Pad for pt write->read restriction nop hw_rei // // wrusp - PALcode for wrusp instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // usp <- a0 (r16) // CALL_PAL_PRIV(PAL_WRUSP_ENTRY) Call_Pal_Wrusp: nop mtpr r16, pt_usp nop // Pad possible pt write->read restriction nop hw_rei // // wrperfmon - PALcode for wrperfmon instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // // Function: // Various control functions for the onchip performance counters // // option selector in r16 // option argument in r17 // returned status in r0 // // // r16 = 0 Disable performance monitoring for one or more cpu's // r17 = 0 disable no counters // r17 = bitmask disable counters specified in bit mask (1=disable) // // r16 = 1 Enable performance monitoring for one or more cpu's // r17 = 0 enable no counters // r17 = bitmask enable counters specified in bit mask (1=enable) // // r16 = 2 Mux select for one or more cpu's // r17 = Mux selection (cpu specific) // <24:19> bc_ctl<pm_mux_sel> field (see spec) // <31>,<7:4>,<3:0> pmctr <sel0>,<sel1>,<sel2> fields (see spec) // // r16 = 3 Options // r17 = (cpu specific) // <0> = 0 log all processes // <0> = 1 log only selected processes // <30,9,8> mode select - ku,kp,kk // // r16 = 4 Interrupt frequency select // r17 = (cpu specific) indicates interrupt frequencies desired for each // counter, with "zero interrupts" being an option // frequency info in r17 bits as defined by PMCTR_CTL<FRQx> below // // r16 = 5 Read Counters // r17 = na // r0 = value (same format as ev5 pmctr) // <0> = 0 Read failed // <0> = 1 Read succeeded // // r16 = 6 Write Counters // r17 = value (same format as ev5 pmctr; all counters written simultaneously) // // r16 = 7 Enable performance monitoring for one or more cpu's and reset counter to 0 // r17 = 0 enable no counters // r17 = bitmask enable & clear counters specified in bit mask (1=enable & clear) // //============================================================================= //Assumptions: //PMCTR_CTL: // // <15:14> CTL0 -- encoded frequency select and enable - CTR0 // <13:12> CTL1 -- " - CTR1 // <11:10> CTL2 -- " - CTR2 // // <9:8> FRQ0 -- frequency select for CTR0 (no enable info) // <7:6> FRQ1 -- frequency select for CTR1 // <5:4> FRQ2 -- frequency select for CTR2 // // <0> all vs. select processes (0=all,1=select) // // where // FRQx<1:0> // 0 1 disable interrupt // 1 0 frequency = 65536 (16384 for ctr2) // 1 1 frequency = 256 // note: FRQx<1:0> = 00 will keep counters from ever being enabled. // //============================================================================= // CALL_PAL_PRIV(0x0039) // unsupported in Hudson code .. pboyle Nov/95 CALL_PAL_Wrperfmon: // "real" performance monitoring code cmpeq r16, 1, r0 // check for enable bne r0, perfmon_en // br if requested to enable cmpeq r16, 2, r0 // check for mux ctl bne r0, perfmon_muxctl // br if request to set mux controls cmpeq r16, 3, r0 // check for options bne r0, perfmon_ctl // br if request to set options cmpeq r16, 4, r0 // check for interrupt frequency select bne r0, perfmon_freq // br if request to change frequency select cmpeq r16, 5, r0 // check for counter read request bne r0, perfmon_rd // br if request to read counters cmpeq r16, 6, r0 // check for counter write request bne r0, perfmon_wr // br if request to write counters cmpeq r16, 7, r0 // check for counter clear/enable request bne r0, perfmon_enclr // br if request to clear/enable counters beq r16, perfmon_dis // br if requested to disable (r16=0) br r31, perfmon_unknown // br if unknown request // // rdusp - PALcode for rdusp instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // v0 (r0) <- usp // CALL_PAL_PRIV(PAL_RDUSP_ENTRY) Call_Pal_Rdusp: nop mfpr r0, pt_usp hw_rei CALL_PAL_PRIV(0x003B) CallPal_OpcDec3B: br r31, osfpal_calpal_opcdec // // whami - PALcode for whami instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // v0 (r0) <- whami // CALL_PAL_PRIV(PAL_WHAMI_ENTRY) Call_Pal_Whami: nop mfpr r0, pt_whami // Get Whami extbl r0, 1, r0 // Isolate just whami bits hw_rei // // retsys - PALcode for retsys instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // 00(sp) contains return pc // 08(sp) contains r29 // // Function: // Return from system call. // mode switched from kern to user. // stacks swapped, ugp, upc restored. // r23, r25 junked // CALL_PAL_PRIV(PAL_RETSYS_ENTRY) Call_Pal_Retsys: lda r25, osfsf_c_size(sp) // pop stack bis r25, r31, r14 // touch r25 & r14 to stall mf exc_addr mfpr r14, exc_addr // save exc_addr in case of fault ldq r23, osfsf_pc(sp) // get pc ldq r29, osfsf_gp(sp) // get gp stl_c r31, -4(sp) // clear lock_flag lda r11, 1<<osfps_v_mode(r31)// new PS:mode=user mfpr r30, pt_usp // get users stack bic r23, 3, r23 // clean return pc mtpr r31, ev5__ipl // zero ibox IPL - 2 bubbles to hw_rei mtpr r11, ev5__dtb_cm // set Mbox current mode - no virt ref for 2 cycles mtpr r11, ev5__ps // set Ibox current mode - 2 bubble to hw_rei mtpr r23, exc_addr // set return address - 1 bubble to hw_rei mtpr r25, pt_ksp // save kern stack rc r31 // clear inter_flag // pvc_violate 248 // possible hidden mt->mf pt violation ok in callpal hw_rei_spe // and back CALL_PAL_PRIV(0x003E) CallPal_OpcDec3E: br r31, osfpal_calpal_opcdec // // rti - PALcode for rti instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // 00(sp) -> ps // 08(sp) -> pc // 16(sp) -> r29 (gp) // 24(sp) -> r16 (a0) // 32(sp) -> r17 (a1) // 40(sp) -> r18 (a3) // CALL_PAL_PRIV(PAL_RTI_ENTRY) /* called once by platform_tlaser */ .globl Call_Pal_Rti Call_Pal_Rti: lda r25, osfsf_c_size(sp) // get updated sp bis r25, r31, r14 // touch r14,r25 to stall mf exc_addr mfpr r14, exc_addr // save PC in case of fault rc r31 // clear intr_flag ldq r12, -6*8(r25) // get ps ldq r13, -5*8(r25) // pc ldq r18, -1*8(r25) // a2 ldq r17, -2*8(r25) // a1 ldq r16, -3*8(r25) // a0 ldq r29, -4*8(r25) // gp bic r13, 3, r13 // clean return pc stl_c r31, -4(r25) // clear lock_flag and r12, osfps_m_mode, r11 // get mode mtpr r13, exc_addr // set return address beq r11, rti_to_kern // br if rti to Kern br r31, rti_to_user // out of call_pal space /////////////////////////////////////////////////// // Start the Unprivileged CALL_PAL Entry Points /////////////////////////////////////////////////// // // bpt - PALcode for bpt instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // Build stack frame // a0 <- code // a1 <- unpred // a2 <- unpred // vector via entIF // // // .text 1 // . = 0x3000 CALL_PAL_UNPRIV(PAL_BPT_ENTRY) Call_Pal_Bpt: sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit mtpr r31, ev5__ps // Set Ibox current mode to kernel bis r11, r31, r12 // Save PS for stack write bge r25, CALL_PAL_bpt_10_ // no stack swap needed if cm=kern mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel - // no virt ref for next 2 cycles mtpr r30, pt_usp // save user stack bis r31, r31, r11 // Set new PS mfpr r30, pt_ksp CALL_PAL_bpt_10_: lda sp, 0-osfsf_c_size(sp)// allocate stack space mfpr r14, exc_addr // get pc stq r16, osfsf_a0(sp) // save regs bis r31, osf_a0_bpt, r16 // set a0 stq r17, osfsf_a1(sp) // a1 br r31, bpt_bchk_common // out of call_pal space // // bugchk - PALcode for bugchk instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // Build stack frame // a0 <- code // a1 <- unpred // a2 <- unpred // vector via entIF // // // CALL_PAL_UNPRIV(PAL_BUGCHK_ENTRY) Call_Pal_Bugchk: sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit mtpr r31, ev5__ps // Set Ibox current mode to kernel bis r11, r31, r12 // Save PS for stack write bge r25, CALL_PAL_bugchk_10_ // no stack swap needed if cm=kern mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel - // no virt ref for next 2 cycles mtpr r30, pt_usp // save user stack bis r31, r31, r11 // Set new PS mfpr r30, pt_ksp CALL_PAL_bugchk_10_: lda sp, 0-osfsf_c_size(sp)// allocate stack space mfpr r14, exc_addr // get pc stq r16, osfsf_a0(sp) // save regs bis r31, osf_a0_bugchk, r16 // set a0 stq r17, osfsf_a1(sp) // a1 br r31, bpt_bchk_common // out of call_pal space CALL_PAL_UNPRIV(0x0082) CallPal_OpcDec82: br r31, osfpal_calpal_opcdec // // callsys - PALcode for callsys instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // Switch mode to kernel and build a callsys stack frame. // sp = ksp // gp = kgp // t8 - t10 (r22-r24) trashed // // // CALL_PAL_UNPRIV(PAL_CALLSYS_ENTRY) Call_Pal_Callsys: and r11, osfps_m_mode, r24 // get mode mfpr r22, pt_ksp // get ksp beq r24, sys_from_kern // sysCall from kern is not allowed mfpr r12, pt_entsys // get address of callSys routine // // from here on we know we are in user going to Kern // mtpr r31, ev5__dtb_cm // set Mbox current mode - no virt ref for 2 cycles mtpr r31, ev5__ps // set Ibox current mode - 2 bubble to hw_rei bis r31, r31, r11 // PS=0 (mode=kern) mfpr r23, exc_addr // get pc mtpr r30, pt_usp // save usp lda sp, 0-osfsf_c_size(r22)// set new sp stq r29, osfsf_gp(sp) // save user gp/r29 stq r24, osfsf_ps(sp) // save ps stq r23, osfsf_pc(sp) // save pc mtpr r12, exc_addr // set address // 1 cycle to hw_rei mfpr r29, pt_kgp // get the kern gp/r29 hw_rei_spe // and off we go! CALL_PAL_UNPRIV(0x0084) CallPal_OpcDec84: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x0085) CallPal_OpcDec85: br r31, osfpal_calpal_opcdec // // imb - PALcode for imb instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // Flush the writebuffer and flush the Icache // // // CALL_PAL_UNPRIV(PAL_IMB_ENTRY) Call_Pal_Imb: mb // Clear the writebuffer mfpr r31, ev5__mcsr // Sync with clear nop nop br r31, pal_ic_flush // Flush Icache // CALL_PAL OPCDECs CALL_PAL_UNPRIV(0x0087) CallPal_OpcDec87: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x0088) CallPal_OpcDec88: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x0089) CallPal_OpcDec89: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x008A) CallPal_OpcDec8A: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x008B) CallPal_OpcDec8B: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x008C) CallPal_OpcDec8C: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x008D) CallPal_OpcDec8D: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x008E) CallPal_OpcDec8E: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x008F) CallPal_OpcDec8F: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x0090) CallPal_OpcDec90: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x0091) CallPal_OpcDec91: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x0092) CallPal_OpcDec92: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x0093) CallPal_OpcDec93: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x0094) CallPal_OpcDec94: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x0095) CallPal_OpcDec95: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x0096) CallPal_OpcDec96: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x0097) CallPal_OpcDec97: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x0098) CallPal_OpcDec98: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x0099) CallPal_OpcDec99: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x009A) CallPal_OpcDec9A: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x009B) CallPal_OpcDec9B: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x009C) CallPal_OpcDec9C: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x009D) CallPal_OpcDec9D: br r31, osfpal_calpal_opcdec // // rdunique - PALcode for rdunique instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // v0 (r0) <- unique // // // CALL_PAL_UNPRIV(PAL_RDUNIQUE_ENTRY) CALL_PALrdunique_: mfpr r0, pt_pcbb // get pcb pointer ldq_p r0, osfpcb_q_unique(r0) // get new value hw_rei // // wrunique - PALcode for wrunique instruction // // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // unique <- a0 (r16) // // // CALL_PAL_UNPRIV(PAL_WRUNIQUE_ENTRY) CALL_PAL_Wrunique: nop mfpr r12, pt_pcbb // get pcb pointer stq_p r16, osfpcb_q_unique(r12)// get new value nop // Pad palshadow write hw_rei // back // CALL_PAL OPCDECs CALL_PAL_UNPRIV(0x00A0) CallPal_OpcDecA0: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00A1) CallPal_OpcDecA1: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00A2) CallPal_OpcDecA2: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00A3) CallPal_OpcDecA3: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00A4) CallPal_OpcDecA4: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00A5) CallPal_OpcDecA5: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00A6) CallPal_OpcDecA6: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00A7) CallPal_OpcDecA7: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00A8) CallPal_OpcDecA8: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00A9) CallPal_OpcDecA9: br r31, osfpal_calpal_opcdec // // gentrap - PALcode for gentrap instruction // // CALL_PAL_gentrap: // Entry: // Vectored into via hardware PALcode instruction dispatch. // // Function: // Build stack frame // a0 <- code // a1 <- unpred // a2 <- unpred // vector via entIF // // CALL_PAL_UNPRIV(0x00AA) // unsupported in Hudson code .. pboyle Nov/95 CALL_PAL_gentrap: sll r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit mtpr r31, ev5__ps // Set Ibox current mode to kernel bis r11, r31, r12 // Save PS for stack write bge r25, CALL_PAL_gentrap_10_ // no stack swap needed if cm=kern mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel - // no virt ref for next 2 cycles mtpr r30, pt_usp // save user stack bis r31, r31, r11 // Set new PS mfpr r30, pt_ksp CALL_PAL_gentrap_10_: lda sp, 0-osfsf_c_size(sp)// allocate stack space mfpr r14, exc_addr // get pc stq r16, osfsf_a0(sp) // save regs bis r31, osf_a0_gentrap, r16// set a0 stq r17, osfsf_a1(sp) // a1 br r31, bpt_bchk_common // out of call_pal space // CALL_PAL OPCDECs CALL_PAL_UNPRIV(0x00AB) CallPal_OpcDecAB: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00AC) CallPal_OpcDecAC: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00AD) CallPal_OpcDecAD: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00AE) CallPal_OpcDecAE: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00AF) CallPal_OpcDecAF: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00B0) CallPal_OpcDecB0: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00B1) CallPal_OpcDecB1: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00B2) CallPal_OpcDecB2: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00B3) CallPal_OpcDecB3: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00B4) CallPal_OpcDecB4: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00B5) CallPal_OpcDecB5: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00B6) CallPal_OpcDecB6: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00B7) CallPal_OpcDecB7: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00B8) CallPal_OpcDecB8: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00B9) CallPal_OpcDecB9: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00BA) CallPal_OpcDecBA: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00BB) CallPal_OpcDecBB: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00BC) CallPal_OpcDecBC: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00BD) CallPal_OpcDecBD: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00BE) CallPal_OpcDecBE: br r31, osfpal_calpal_opcdec CALL_PAL_UNPRIV(0x00BF) CallPal_OpcDecBF: // MODIFIED BY EGH 2/25/04 br r31, copypal_impl /*======================================================================*/ /* OSF/1 CALL_PAL CONTINUATION AREA */ /*======================================================================*/ .text 2 . = 0x4000 // Continuation of MTPR_PERFMON ALIGN_BLOCK // "real" performance monitoring code // mux ctl perfmon_muxctl: lda r8, 1(r31) // get a 1 sll r8, pmctr_v_sel0, r8 // move to sel0 position or r8, ((0xf<<pmctr_v_sel1) | (0xf<<pmctr_v_sel2)), r8 // build mux select mask and r17, r8, r25 // isolate pmctr mux select bits mfpr r0, ev5__pmctr bic r0, r8, r0 // clear old mux select bits or r0,r25, r25 // or in new mux select bits mtpr r25, ev5__pmctr // ok, now tackle cbox mux selects ldah r14, 0xfff0(r31) zap r14, 0xE0, r14 // Get Cbox IPR base //orig get_bc_ctl_shadow r16 // bc_ctl returned in lower longword // adapted from ev5_pal_macros.mar mfpr r16, pt_impure lda r16, CNS_Q_IPR(r16) RESTORE_SHADOW(r16,CNS_Q_BC_CTL,r16); lda r8, 0x3F(r31) // build mux select mask sll r8, bc_ctl_v_pm_mux_sel, r8 and r17, r8, r25 // isolate bc_ctl mux select bits bic r16, r8, r16 // isolate old mux select bits or r16, r25, r25 // create new bc_ctl mb // clear out cbox for future ipr write stq_p r25, ev5__bc_ctl(r14) // store to cbox ipr mb // clear out cbox for future ipr write //orig update_bc_ctl_shadow r25, r16 // r25=value, r16-overwritten with adjusted impure ptr // adapted from ev5_pal_macros.mar mfpr r16, pt_impure lda r16, CNS_Q_IPR(r16) SAVE_SHADOW(r25,CNS_Q_BC_CTL,r16); br r31, perfmon_success // requested to disable perf monitoring perfmon_dis: mfpr r14, ev5__pmctr // read ibox pmctr ipr perfmon_dis_ctr0: // and begin with ctr0 blbc r17, perfmon_dis_ctr1 // do not disable ctr0 lda r8, 3(r31) sll r8, pmctr_v_ctl0, r8 bic r14, r8, r14 // disable ctr0 perfmon_dis_ctr1: srl r17, 1, r17 blbc r17, perfmon_dis_ctr2 // do not disable ctr1 lda r8, 3(r31) sll r8, pmctr_v_ctl1, r8 bic r14, r8, r14 // disable ctr1 perfmon_dis_ctr2: srl r17, 1, r17 blbc r17, perfmon_dis_update // do not disable ctr2 lda r8, 3(r31) sll r8, pmctr_v_ctl2, r8 bic r14, r8, r14 // disable ctr2 perfmon_dis_update: mtpr r14, ev5__pmctr // update pmctr ipr //;the following code is not needed for ev5 pass2 and later, but doesn't hurt anything to leave in // adapted from ev5_pal_macros.mar //orig get_pmctr_ctl r8, r25 // pmctr_ctl bit in r8. adjusted impure pointer in r25 mfpr r25, pt_impure lda r25, CNS_Q_IPR(r25) RESTORE_SHADOW(r8,CNS_Q_PM_CTL,r25); lda r17, 0x3F(r31) // build mask sll r17, pmctr_v_ctl2, r17 // shift mask to correct position and r14, r17, r14 // isolate ctl bits bic r8, r17, r8 // clear out old ctl bits or r14, r8, r14 // create shadow ctl bits //orig store_reg1 pmctr_ctl, r14, r25, ipr=1 // update pmctr_ctl register //adjusted impure pointer still in r25 SAVE_SHADOW(r14,CNS_Q_PM_CTL,r25); br r31, perfmon_success // requested to enable perf monitoring //;the following code can be greatly simplified for pass2, but should work fine as is. perfmon_enclr: lda r9, 1(r31) // set enclr flag br perfmon_en_cont perfmon_en: bis r31, r31, r9 // clear enclr flag perfmon_en_cont: mfpr r8, pt_pcbb // get PCB base //orig get_pmctr_ctl r25, r25 mfpr r25, pt_impure lda r25, CNS_Q_IPR(r25) RESTORE_SHADOW(r25,CNS_Q_PM_CTL,r25); ldq_p r16, osfpcb_q_fen(r8) // read DAT/PME/FEN quadword mfpr r14, ev5__pmctr // read ibox pmctr ipr srl r16, osfpcb_v_pme, r16 // get pme bit mfpr r13, icsr and r16, 1, r16 // isolate pme bit // this code only needed in pass2 and later lda r12, 1<<icsr_v_pmp(r31) // pb bic r13, r12, r13 // clear pmp bit sll r16, icsr_v_pmp, r12 // move pme bit to icsr<pmp> position or r12, r13, r13 // new icsr with icsr<pmp> bit set/clear mtpr r13, icsr // update icsr bis r31, 1, r16 // set r16<0> on pass2 to update pmctr always (icsr provides real enable) sll r25, 6, r25 // shift frequency bits into pmctr_v_ctl positions bis r14, r31, r13 // copy pmctr perfmon_en_ctr0: // and begin with ctr0 blbc r17, perfmon_en_ctr1 // do not enable ctr0 blbc r9, perfmon_en_noclr0 // enclr flag set, clear ctr0 field lda r8, 0xffff(r31) zapnot r8, 3, r8 // ctr0<15:0> mask sll r8, pmctr_v_ctr0, r8 bic r14, r8, r14 // clear ctr bits bic r13, r8, r13 // clear ctr bits perfmon_en_noclr0: //orig get_addr r8, 3<<pmctr_v_ctl0, r31 LDLI(r8, (3<<pmctr_v_ctl0)) and r25, r8, r12 //isolate frequency select bits for ctr0 bic r14, r8, r14 // clear ctl0 bits in preparation for enabling or r14,r12,r14 // or in new ctl0 bits perfmon_en_ctr1: // enable ctr1 srl r17, 1, r17 // get ctr1 enable blbc r17, perfmon_en_ctr2 // do not enable ctr1 blbc r9, perfmon_en_noclr1 // if enclr flag set, clear ctr1 field lda r8, 0xffff(r31) zapnot r8, 3, r8 // ctr1<15:0> mask sll r8, pmctr_v_ctr1, r8 bic r14, r8, r14 // clear ctr bits bic r13, r8, r13 // clear ctr bits perfmon_en_noclr1: //orig get_addr r8, 3<<pmctr_v_ctl1, r31 LDLI(r8, (3<<pmctr_v_ctl1)) and r25, r8, r12 //isolate frequency select bits for ctr1 bic r14, r8, r14 // clear ctl1 bits in preparation for enabling or r14,r12,r14 // or in new ctl1 bits perfmon_en_ctr2: // enable ctr2 srl r17, 1, r17 // get ctr2 enable blbc r17, perfmon_en_return // do not enable ctr2 - return blbc r9, perfmon_en_noclr2 // if enclr flag set, clear ctr2 field lda r8, 0x3FFF(r31) // ctr2<13:0> mask sll r8, pmctr_v_ctr2, r8 bic r14, r8, r14 // clear ctr bits bic r13, r8, r13 // clear ctr bits perfmon_en_noclr2: //orig get_addr r8, 3<<pmctr_v_ctl2, r31 LDLI(r8, (3<<pmctr_v_ctl2)) and r25, r8, r12 //isolate frequency select bits for ctr2 bic r14, r8, r14 // clear ctl2 bits in preparation for enabling or r14,r12,r14 // or in new ctl2 bits perfmon_en_return: cmovlbs r16, r14, r13 // if pme enabled, move enables into pmctr // else only do the counter clears mtpr r13, ev5__pmctr // update pmctr ipr //;this code not needed for pass2 and later, but does not hurt to leave it in lda r8, 0x3F(r31) //orig get_pmctr_ctl r25, r12 // read pmctr ctl; r12=adjusted impure pointer mfpr r12, pt_impure lda r12, CNS_Q_IPR(r12) RESTORE_SHADOW(r25,CNS_Q_PM_CTL,r12); sll r8, pmctr_v_ctl2, r8 // build ctl mask and r8, r14, r14 // isolate new ctl bits bic r25, r8, r25 // clear out old ctl value or r25, r14, r14 // create new pmctr_ctl //orig store_reg1 pmctr_ctl, r14, r12, ipr=1 SAVE_SHADOW(r14,CNS_Q_PM_CTL,r12); // r12 still has the adjusted impure ptr br r31, perfmon_success // options... perfmon_ctl: // set mode //orig get_pmctr_ctl r14, r12 // read shadow pmctr ctl; r12=adjusted impure pointer mfpr r12, pt_impure lda r12, CNS_Q_IPR(r12) RESTORE_SHADOW(r14,CNS_Q_PM_CTL,r12); // build mode mask for pmctr register LDLI(r8, ((1<<pmctr_v_killu) | (1<<pmctr_v_killp) | (1<<pmctr_v_killk))) mfpr r0, ev5__pmctr and r17, r8, r25 // isolate pmctr mode bits bic r0, r8, r0 // clear old mode bits or r0, r25, r25 // or in new mode bits mtpr r25, ev5__pmctr // the following code will only be used in pass2, but should // not hurt anything if run in pass1. mfpr r8, icsr lda r25, 1<<icsr_v_pma(r31) // set icsr<pma> if r17<0>=0 bic r8, r25, r8 // clear old pma bit cmovlbs r17, r31, r25 // and clear icsr<pma> if r17<0>=1 or r8, r25, r8 mtpr r8, icsr // 4 bubbles to hw_rei mfpr r31, pt0 // pad icsr write mfpr r31, pt0 // pad icsr write // the following code not needed for pass2 and later, but // should work anyway. bis r14, 1, r14 // set for select processes blbs r17, perfmon_sp // branch if select processes bic r14, 1, r14 // all processes perfmon_sp: //orig store_reg1 pmctr_ctl, r14, r12, ipr=1 // update pmctr_ctl register SAVE_SHADOW(r14,CNS_Q_PM_CTL,r12); // r12 still has the adjusted impure ptr br r31, perfmon_success // counter frequency select perfmon_freq: //orig get_pmctr_ctl r14, r12 // read shadow pmctr ctl; r12=adjusted impure pointer mfpr r12, pt_impure lda r12, CNS_Q_IPR(r12) RESTORE_SHADOW(r14,CNS_Q_PM_CTL,r12); lda r8, 0x3F(r31) //orig sll r8, pmctr_ctl_v_frq2, r8 // build mask for frequency select field // I guess this should be a shift of 4 bits from the above control register structure #define pmctr_ctl_v_frq2_SHIFT 4 sll r8, pmctr_ctl_v_frq2_SHIFT, r8 // build mask for frequency select field and r8, r17, r17 bic r14, r8, r14 // clear out old frequency select bits or r17, r14, r14 // or in new frequency select info //orig store_reg1 pmctr_ctl, r14, r12, ipr=1 // update pmctr_ctl register SAVE_SHADOW(r14,CNS_Q_PM_CTL,r12); // r12 still has the adjusted impure ptr br r31, perfmon_success // read counters perfmon_rd: mfpr r0, ev5__pmctr or r0, 1, r0 // or in return status hw_rei // back to user // write counters perfmon_wr: mfpr r14, ev5__pmctr lda r8, 0x3FFF(r31) // ctr2<13:0> mask sll r8, pmctr_v_ctr2, r8 LDLI(r9, (0xFFFFFFFF)) // ctr2<15:0>,ctr1<15:0> mask sll r9, pmctr_v_ctr1, r9 or r8, r9, r8 // or ctr2, ctr1, ctr0 mask bic r14, r8, r14 // clear ctr fields and r17, r8, r25 // clear all but ctr fields or r25, r14, r14 // write ctr fields mtpr r14, ev5__pmctr // update pmctr ipr mfpr r31, pt0 // pad pmctr write (needed only to keep PVC happy) perfmon_success: or r31, 1, r0 // set success hw_rei // back to user perfmon_unknown: or r31, r31, r0 // set fail hw_rei // back to user ////////////////////////////////////////////////////////// // Copy code ////////////////////////////////////////////////////////// copypal_impl: mov r16, r0 #ifdef CACHE_COPY #ifndef CACHE_COPY_UNALIGNED and r16, 63, r8 and r17, 63, r9 bis r8, r9, r8 bne r8, cache_copy_done #endif bic r18, 63, r8 and r18, 63, r18 beq r8, cache_copy_done cache_loop: ldf f17, 0(r16) stf f17, 0(r16) addq r17, 64, r17 addq r16, 64, r16 subq r8, 64, r8 bne r8, cache_loop cache_copy_done: #endif ble r18, finished // if len <=0 we are finished ldq_u r8, 0(r17) xor r17, r16, r9 and r9, 7, r9 and r16, 7, r10 bne r9, unaligned beq r10, aligned ldq_u r9, 0(r16) addq r18, r10, r18 mskqh r8, r17, r8 mskql r9, r17, r9 bis r8, r9, r8 aligned: subq r18, 1, r10 bic r10, 7, r10 and r18, 7, r18 beq r10, aligned_done loop: stq_u r8, 0(r16) ldq_u r8, 8(r17) subq r10, 8, r10 lda r16,8(r16) lda r17,8(r17) bne r10, loop aligned_done: bne r18, few_left stq_u r8, 0(r16) br r31, finished few_left: mskql r8, r18, r10 ldq_u r9, 0(r16) mskqh r9, r18, r9 bis r10, r9, r10 stq_u r10, 0(r16) br r31, finished unaligned: addq r17, r18, r25 cmpule r18, 8, r9 bne r9, unaligned_few_left beq r10, unaligned_dest_aligned and r16, 7, r10 subq r31, r10, r10 addq r10, 8, r10 ldq_u r9, 7(r17) extql r8, r17, r8 extqh r9, r17, r9 bis r8, r9, r12 insql r12, r16, r12 ldq_u r13, 0(r16) mskql r13, r16, r13 bis r12, r13, r12 stq_u r12, 0(r16) addq r16, r10, r16 addq r17, r10, r17 subq r18, r10, r18 ldq_u r8, 0(r17) unaligned_dest_aligned: subq r18, 1, r10 bic r10, 7, r10 and r18, 7, r18 beq r10, unaligned_partial_left unaligned_loop: ldq_u r9, 7(r17) lda r17, 8(r17) extql r8, r17, r12 extqh r9, r17, r13 subq r10, 8, r10 bis r12, r13, r13 stq r13, 0(r16) lda r16, 8(r16) beq r10, unaligned_second_partial_left ldq_u r8, 7(r17) lda r17, 8(r17) extql r9, r17, r12 extqh r8, r17, r13 bis r12, r13, r13 subq r10, 8, r10 stq r13, 0(r16) lda r16, 8(r16) bne r10, unaligned_loop unaligned_partial_left: mov r8, r9 unaligned_second_partial_left: ldq_u r8, -1(r25) extql r9, r17, r9 extqh r8, r17, r8 bis r8, r9, r8 bne r18, few_left stq_u r8, 0(r16) br r31, finished unaligned_few_left: ldq_u r9, -1(r25) extql r8, r17, r8 extqh r9, r17, r9 bis r8, r9, r8 insqh r8, r16, r9 insql r8, r16, r8 lda r12, -1(r31) mskql r12, r18, r13 cmovne r13, r13, r12 insqh r12, r16, r13 insql r12, r16, r12 addq r16, r18, r10 ldq_u r14, 0(r16) ldq_u r25, -1(r10) bic r14, r12, r14 bic r25, r13, r25 and r8, r12, r8 and r9, r13, r9 bis r8, r14, r8 bis r9, r25, r9 stq_u r9, -1(r10) stq_u r8, 0(r16) finished: hw_rei