from __future__ import generators import os import re import sys ##################################################################### # # M5 Python Configuration Utility # # The basic idea is to write simple Python programs that build Python # objects corresponding to M5 SimObjects for the deisred simulation # configuration. For now, the Python emits a .ini file that can be # parsed by M5. In the future, some tighter integration between M5 # and the Python interpreter may allow bypassing the .ini file. # # Each SimObject class in M5 is represented by a Python class with the # same name. The Python inheritance tree mirrors the M5 C++ tree # (e.g., SimpleCPU derives from BaseCPU in both cases, and all # SimObjects inherit from a single SimObject base class). To specify # an instance of an M5 SimObject in a configuration, the user simply # instantiates the corresponding Python object. The parameters for # that SimObject are given by assigning to attributes of the Python # object, either using keyword assignment in the constructor or in # separate assignment statements. For example: # # cache = BaseCache('my_cache', root, size=64*K) # cache.hit_latency = 3 # cache.assoc = 8 # # (The first two constructor arguments specify the name of the created # cache and its parent node in the hierarchy.) # # The magic lies in the mapping of the Python attributes for SimObject # classes to the actual SimObject parameter specifications. This # allows parameter validity checking in the Python code. Continuing # the example above, the statements "cache.blurfl=3" or # "cache.assoc='hello'" would both result in runtime errors in Python, # since the BaseCache object has no 'blurfl' parameter and the 'assoc' # parameter requires an integer, respectively. This magic is done # primarily by overriding the special __setattr__ method that controls # assignment to object attributes. # # The Python module provides another class, ConfigNode, which is a # superclass of SimObject. ConfigNode implements the parent/child # relationship for building the configuration hierarchy tree. # Concrete instances of ConfigNode can be used to group objects in the # hierarchy, but do not correspond to SimObjects themselves (like a # .ini section with "children=" but no "type=". # # Once a set of Python objects have been instantiated in a hierarchy, # calling 'instantiate(obj)' (where obj is the root of the hierarchy) # will generate a .ini file. See simple-4cpu.py for an example # (corresponding to m5-test/simple-4cpu.ini). # ##################################################################### ##################################################################### # # ConfigNode/SimObject classes # # The Python class hierarchy rooted by ConfigNode (which is the base # class of SimObject, which in turn is the base class of all other M5 # SimObject classes) has special attribute behavior. In general, an # object in this hierarchy has three categories of attribute-like # things: # # 1. Regular Python methods and variables. These must start with an # underscore to be treated normally. # # 2. SimObject parameters. These values are stored as normal Python # attributes, but all assignments to these attributes are checked # against the pre-defined set of parameters stored in the class's # _param_dict dictionary. Assignments to attributes that do not # correspond to predefined parameters, or that are not of the correct # type, incur runtime errors. # # 3. Hierarchy children. The child nodes of a ConfigNode are stored # in the node's _children dictionary, but can be accessed using the # Python attribute dot-notation (just as they are printed out by the # simulator). Children cannot be created using attribute assigment; # they must be added by specifying the parent node in the child's # constructor or using the '+=' operator. # The SimObject parameters are the most complex, for a few reasons. # First, both parameter descriptions and parameter values are # inherited. Thus parameter description lookup must go up the # inheritance chain like normal attribute lookup, but this behavior # must be explicitly coded since the lookup occurs in each class's # _param_dict attribute. Second, because parameter values can be set # on SimObject classes (to implement default values), the parameter # checking behavior must be enforced on class attribute assignments as # well as instance attribute assignments. Finally, because we allow # class specialization via inheritance (e.g., see the L1Cache class in # the simple-4cpu.py example), we must do parameter checking even on # class instantiation. To provide all these features, we use a # metaclass to define most of the SimObject parameter behavior for # this class hierarchy. # ##################################################################### # The metaclass for ConfigNode (and thus for everything that derives # from ConfigNode, including SimObject). This class controls how new # classes that derive from ConfigNode are instantiated, and provides # inherited class behavior (just like a class controls how instances # of that class are instantiated, and provides inherited instance # behavior). class MetaConfigNode(type): # __new__ is called before __init__, and is where the statements # in the body of the class definition get loaded into the class's # __dict__. We intercept this to filter out parameter assignments # and only allow "private" attributes to be passed to the base # __new__ (starting with underscore). def __new__(cls, name, bases, dict): priv_keys = [k for k in dict.iterkeys() if k.startswith('_')] priv_dict = {} for k in priv_keys: priv_dict[k] = dict[k]; del dict[k] # entries left in dict will get passed to __init__, where we'll # deal with them as params. return super(MetaConfigNode, cls).__new__(cls, name, bases, priv_dict) # initialization: start out with an empty param dict (makes life # simpler if we can assume _param_dict is always valid). Also # build inheritance list to simplify searching for inherited # params. Finally set parameters specified in class definition # (if any). def __init__(cls, name, bases, dict): super(MetaConfigNode, cls).__init__(cls, name, bases, {}) # initialize _param_dict to empty cls._param_dict = {} # __mro__ is the ordered list of classes Python uses for # method resolution. We want to pick out the ones that have a # _param_dict attribute for doing parameter lookups. cls._param_bases = \ [c for c in cls.__mro__ if hasattr(c, '_param_dict')] # initialize attributes with values from class definition for (pname, value) in dict.items(): try: setattr(cls, pname, value) except Exception, exc: print "Error setting '%s' to '%s' on class '%s'\n" \ % (pname, value, cls.__name__), exc # set the class's parameter dictionary (called when loading # class descriptions) def set_param_dict(cls, param_dict): # should only be called once (current one should be empty one # from __init__) assert not cls._param_dict cls._param_dict = param_dict # initialize attributes with default values for (pname, param) in param_dict.items(): try: setattr(cls, pname, param.default) except Exception, exc: print "Error setting '%s' default on class '%s'\n" \ % (pname, cls.__name__), exc # Lookup a parameter description by name in the given class. Use # the _param_bases list defined in __init__ to go up the # inheritance hierarchy if necessary. def lookup_param(cls, param_name): for c in cls._param_bases: param = c._param_dict.get(param_name) if param: return param return None # Set attribute (called on foo.attr_name = value when foo is an # instance of class cls). def __setattr__(cls, attr_name, value): # normal processing for private attributes if attr_name.startswith('_'): object.__setattr__(cls, attr_name, value) return # no '_': must be SimObject param param = cls.lookup_param(attr_name) if not param: raise AttributeError, \ "Class %s has no parameter %s" % (cls.__name__, attr_name) # It's ok: set attribute by delegating to 'object' class. # Note the use of param.make_value() to verify/canonicalize # the assigned value object.__setattr__(cls, attr_name, param.make_value(value)) # generator that iterates across all parameters for this class and # all classes it inherits from def all_param_names(cls): for c in cls._param_bases: for p in c._param_dict.iterkeys(): yield p # The ConfigNode class is the root of the special hierarchy. Most of # the code in this class deals with the configuration hierarchy itself # (parent/child node relationships). class ConfigNode(object): # Specify metaclass. Any class inheriting from ConfigNode will # get this metaclass. __metaclass__ = MetaConfigNode # Constructor. Since bare ConfigNodes don't have parameters, just # worry about the name and the parent/child stuff. def __init__(self, _name, _parent=None): # Type-check _name if type(_name) != str: if isinstance(_name, ConfigNode): # special case message for common error of trying to # coerce a SimObject to the wrong type raise TypeError, \ "Attempt to coerce %s to %s" \ % (_name.__class__.__name__, self.__class__.__name__) else: raise TypeError, \ "%s name must be string (was %s, %s)" \ % (self.__class__.__name__, _name, type(_name)) # if specified, parent must be a subclass of ConfigNode if _parent != None and not isinstance(_parent, ConfigNode): raise TypeError, \ "%s parent must be ConfigNode subclass (was %s, %s)" \ % (self.__class__.__name__, _name, type(_name)) self._name = _name self._parent = _parent self._children = {} if (_parent): _parent.__addChild(self) # Set up absolute path from root. if (_parent and _parent._path != 'Universe'): self._path = _parent._path + '.' + self._name else: self._path = self._name # When printing (e.g. to .ini file), just give the name. def __str__(self): return self._name # Catch attribute accesses that could be requesting children, and # satisfy them. Note that __getattr__ is called only if the # regular attribute lookup fails, so private and parameter lookups # will already be satisfied before we ever get here. def __getattr__(self, name): try: return self._children[name] except KeyError: raise AttributeError, \ "Node '%s' has no attribute or child '%s'" \ % (self._name, name) # Set attribute. All attribute assignments go through here. Must # be private attribute (starts with '_') or valid parameter entry. # Basically identical to MetaConfigClass.__setattr__(), except # this handles instances rather than class attributes. def __setattr__(self, attr_name, value): if attr_name.startswith('_'): object.__setattr__(self, attr_name, value) return # not private; look up as param param = self.__class__.lookup_param(attr_name) if not param: raise AttributeError, \ "Class %s has no parameter %s" \ % (self.__class__.__name__, attr_name) # It's ok: set attribute by delegating to 'object' class. # Note the use of param.make_value() to verify/canonicalize # the assigned value object.__setattr__(self, attr_name, param.make_value(value)) # Add a child to this node. def __addChild(self, new_child): # set child's parent before calling this function assert new_child._parent == self if not isinstance(new_child, ConfigNode): raise TypeError, \ "ConfigNode child must also be of class ConfigNode" if new_child._name in self._children: raise AttributeError, \ "Node '%s' already has a child '%s'" \ % (self._name, new_child._name) self._children[new_child._name] = new_child # operator overload for '+='. You can say "node += child" to add # a child that was created with parent=None. An early attempt # at playing with syntax; turns out not to be that useful. def __iadd__(self, new_child): if new_child._parent != None: raise AttributeError, \ "Node '%s' already has a parent" % new_child._name new_child._parent = self self.__addChild(new_child) return self # Print instance info to .ini file. def _instantiate(self): print '[' + self._path + ']' # .ini section header if self._children: # instantiate children in sorted order for backward # compatibility (else we can end up with cpu1 before cpu0). child_names = self._children.keys() child_names.sort() print 'children =', for child_name in child_names: print child_name, print self._instantiateParams() print # recursively dump out children if self._children: for child_name in child_names: self._children[child_name]._instantiate() # ConfigNodes have no parameters. Overridden by SimObject. def _instantiateParams(self): pass # SimObject is a minimal extension of ConfigNode, implementing a # hierarchy node that corresponds to an M5 SimObject. It prints out a # "type=" line to indicate its SimObject class, prints out the # assigned parameters corresponding to its class, and allows # parameters to be set by keyword in the constructor. Note that most # of the heavy lifting for the SimObject param handling is done in the # MetaConfigNode metaclass. class SimObject(ConfigNode): # initialization: like ConfigNode, but handle keyword-based # parameter initializers. def __init__(self, _name, _parent=None, **params): ConfigNode.__init__(self, _name, _parent) for param, value in params.items(): setattr(self, param, value) # print type and parameter values to .ini file def _instantiateParams(self): print "type =", self.__class__._name for pname in self.__class__.all_param_names(): value = getattr(self, pname) if value != None: print pname, '=', value def _sim_code(cls): name = cls.__name__ param_names = cls._param_dict.keys() param_names.sort() code = "BEGIN_DECLARE_SIM_OBJECT_PARAMS(%s)\n" % name decls = [" " + cls._param_dict[pname].sim_decl(pname) \ for pname in param_names] code += "\n".join(decls) + "\n" code += "END_DECLARE_SIM_OBJECT_PARAMS(%s)\n\n" % name code += "BEGIN_INIT_SIM_OBJECT_PARAMS(%s)\n" % name inits = [" " + cls._param_dict[pname].sim_init(pname) \ for pname in param_names] code += ",\n".join(inits) + "\n" code += "END_INIT_SIM_OBJECT_PARAMS(%s)\n\n" % name return code _sim_code = classmethod(_sim_code) ##################################################################### # # Parameter description classes # # The _param_dict dictionary in each class maps parameter names to # either a Param or a VectorParam object. These objects contain the # parameter description string, the parameter type, and the default # value (loaded from the PARAM section of the .odesc files). The # make_value() method on these objects is used to force whatever value # is assigned to the parameter to the appropriate type. # # Note that the default values are loaded into the class's attribute # space when the parameter dictionary is initialized (in # MetaConfigNode.set_param_dict()); after that point they aren't # used. # ##################################################################### def isNullPointer(value): return isinstance(value, NullSimObject) def isSimObjectType(ptype): return issubclass(ptype, SimObject) # Regular parameter. class Param(object): # Constructor. E.g., Param(Int, "number of widgets", 5) def __init__(self, ptype, desc, default=None): self.ptype = ptype self.ptype_name = self.ptype.__name__ self.desc = desc self.default = default # Convert assigned value to appropriate type. Force parameter # value (rhs of '=') to ptype (or None, which means not set). def make_value(self, value): # nothing to do if None or already correct type. Also allow NULL # pointer to be assigned where a SimObject is expected. if value == None or isinstance(value, self.ptype) or \ isNullPointer(value) and isSimObjectType(self.ptype): return value # this type conversion will raise an exception if it's illegal return self.ptype(value) def sim_decl(self, name): return 'Param<%s> %s;' % (self.ptype_name, name) def sim_init(self, name): if self.default == None: return 'INIT_PARAM(%s, "%s")' % (name, self.desc) else: return 'INIT_PARAM_DFLT(%s, "%s", %s)' % \ (name, self.desc, str(self.default)) # The _VectorParamValue class is a wrapper for vector-valued # parameters. The leading underscore indicates that users shouldn't # see this class; it's magically generated by VectorParam. The # parameter values are stored in the 'value' field as a Python list of # whatever type the parameter is supposed to be. The only purpose of # storing these instead of a raw Python list is that we can override # the __str__() method to not print out '[' and ']' in the .ini file. class _VectorParamValue(object): def __init__(self, list): self.value = list def __str__(self): return ' '.join(map(str, self.value)) # Vector-valued parameter description. Just like Param, except that # the value is a vector (list) of the specified type instead of a # single value. class VectorParam(Param): # Inherit Param constructor. However, the resulting parameter # will be a list of ptype rather than a single element of ptype. def __init__(self, ptype, desc, default=None): Param.__init__(self, ptype, desc, default) # Convert assigned value to appropriate type. If the RHS is not a # list or tuple, it generates a single-element list. def make_value(self, value): if value == None: return value if isinstance(value, list) or isinstance(value, tuple): # list: coerce each element into new list val_list = [Param.make_value(self, v) for v in iter(value)] else: # singleton: coerce & wrap in a list val_list = [Param.make_value(self, value)] # wrap list in _VectorParamValue (see above) return _VectorParamValue(val_list) def sim_decl(self, name): return 'VectorParam<%s> %s;' % (self.ptype_name, name) # sim_init inherited from Param ##################################################################### # # Parameter Types # # Though native Python types could be used to specify parameter types # (the 'ptype' field of the Param and VectorParam classes), it's more # flexible to define our own set of types. This gives us more control # over how Python expressions are converted to values (via the # __init__() constructor) and how these values are printed out (via # the __str__() conversion method). Eventually we'll need these types # to correspond to distinct C++ types as well. # ##################################################################### # Integer parameter type. class Int(object): # Constructor. Value must be Python int or long (long integer). def __init__(self, value): t = type(value) if t == int or t == long: self.value = value else: raise TypeError, "Int param got value %s %s" % (repr(value), t) # Use Python string conversion. Note that this puts an 'L' on the # end of long integers; we can strip that off here if it gives us # trouble. def __str__(self): return str(self.value) # Counter, Addr, and Tick are just aliases for Int for now. class Counter(Int): pass class Addr(Int): pass class Tick(Int): pass # Boolean parameter type. class Bool(object): # Constructor. Typically the value will be one of the Python bool # constants True or False (or the aliases true and false below). # Also need to take integer 0 or 1 values since bool was not a # distinct type in Python 2.2. Parse a bunch of boolean-sounding # strings too just for kicks. def __init__(self, value): t = type(value) if t == bool: self.value = value elif t == int or t == long: if value == 1: self.value = True elif value == 0: self.value = False elif t == str: v = value.lower() if v == "true" or v == "t" or v == "yes" or v == "y": self.value = True elif v == "false" or v == "f" or v == "no" or v == "n": self.value = False # if we didn't set it yet, it must not be something we understand if not hasattr(self, 'value'): raise TypeError, "Bool param got value %s %s" % (repr(value), t) # Generate printable string version. def __str__(self): if self.value: return "true" else: return "false" # String-valued parameter. class String(object): # Constructor. Value must be Python string. def __init__(self, value): t = type(value) if t == str: self.value = value else: raise TypeError, "String param got value %s %s" % (repr(value), t) # Generate printable string version. Not too tricky. def __str__(self): return self.value # Special class for NULL pointers. Note the special check in # make_param_value() above that lets these be assigned where a # SimObject is required. class NullSimObject(object): # Constructor. No parameters, nothing to do. def __init__(self): pass def __str__(self): return "NULL" # The only instance you'll ever need... NULL = NullSimObject() # Enumerated types are a little more complex. The user specifies the # type as Enum(foo) where foo is either a list or dictionary of # alternatives (typically strings, but not necessarily so). (In the # long run, the integer value of the parameter will be the list index # or the corresponding dictionary value. For now, since we only check # that the alternative is valid and then spit it into a .ini file, # there's not much point in using the dictionary.) # What Enum() must do is generate a new type encapsulating the # provided list/dictionary so that specific values of the parameter # can be instances of that type. We define two hidden internal # classes (_ListEnum and _DictEnum) to serve as base classes, then # derive the new type from the appropriate base class on the fly. # Base class for list-based Enum types. class _ListEnum(object): # Constructor. Value must be a member of the type's map list. def __init__(self, value): if value in self.map: self.value = value self.index = self.map.index(value) else: raise TypeError, "Enum param got bad value '%s' (not in %s)" \ % (value, self.map) # Generate printable string version of value. def __str__(self): return str(self.value) class _DictEnum(object): # Constructor. Value must be a key in the type's map dictionary. def __init__(self, value): if value in self.map: self.value = value self.index = self.map[value] else: raise TypeError, "Enum param got bad value '%s' (not in %s)" \ % (value, self.map.keys()) # Generate printable string version of value. def __str__(self): return str(self.value) # Enum metaclass... calling Enum(foo) generates a new type (class) # that derives from _ListEnum or _DictEnum as appropriate. class Enum(type): # counter to generate unique names for generated classes counter = 1 def __new__(cls, map): if isinstance(map, dict): base = _DictEnum keys = map.keys() elif isinstance(map, list): base = _ListEnum keys = map else: raise TypeError, "Enum map must be list or dict (got %s)" % map classname = "Enum%04d" % Enum.counter Enum.counter += 1 # New class derives from selected base, and gets a 'map' # attribute containing the specified list or dict. return type.__new__(cls, classname, (base,), { 'map': map }) # # "Constants"... handy aliases for various values. # # For compatibility with C++ bool constants. false = False true = True # Some memory range specifications use this as a default upper bound. MAX_ADDR = 2 ** 63 # For power-of-two sizing, e.g. 64*K gives an integer value 65536. K = 1024 M = K*K G = K*M ##################################################################### # # Object description loading. # # The final step is to define the classes corresponding to M5 objects # and their parameters. These classes are described in .odesc files # in the source tree. This code walks the tree to find those files # and loads up the descriptions (by evaluating them in pieces as # Python code). # # # Because SimObject classes inherit from other SimObject classes, and # can use arbitrary other SimObject classes as parameter types, we # have to do this in three steps: # # 1. Walk the tree to find all the .odesc files. Note that the base # of the filename *must* match the class name. This step builds a # mapping from class names to file paths. # # 2. Start generating empty class definitions (via def_class()) using # the OBJECT field of the .odesc files to determine inheritance. # def_class() recurses on demand to define needed base classes before # derived classes. # # 3. Now that all of the classes are defined, go through the .odesc # files one more time loading the parameter descriptions. # ##################################################################### # dictionary: maps object names to file paths odesc_file = {} # dictionary: maps object names to boolean flag indicating whether # class definition was loaded yet. Since SimObject is defined in # m5.config.py, count it as loaded. odesc_loaded = { 'SimObject': True } # Find odesc files in namelist and initialize odesc_file and # odesc_loaded dictionaries. Called via os.path.walk() (see below). def find_odescs(process, dirpath, namelist): # Prune out SCCS directories so we don't process s.*.odesc files. i = 0 while i < len(namelist): if namelist[i] == "SCCS": del namelist[i] else: i = i + 1 # Find .odesc files and record them. for name in namelist: if name.endswith('.odesc'): objname = name[:name.rindex('.odesc')] path = os.path.join(dirpath, name) if odesc_file.has_key(objname): print "Warning: duplicate object names:", \ odesc_file[objname], path odesc_file[objname] = path odesc_loaded[objname] = False # Regular expression string for parsing .odesc files. file_re_string = r''' ^OBJECT: \s* (\w+) \s* \( \s* (\w+) \s* \) \s* ^PARAMS: \s*\n ( (\s+.*\n)* ) ''' # Compiled regular expression object. file_re = re.compile(file_re_string, re.MULTILINE | re.VERBOSE) # .odesc file parsing function. Takes a filename and returns tuple of # object name, object base, and parameter description section. def parse_file(path): f = open(path, 'r').read() m = file_re.search(f) if not m: print "Can't parse", path sys.exit(1) return (m.group(1), m.group(2), m.group(3)) # Define SimObject class based on description in specified filename. # Class itself is empty except for _name attribute; parameter # descriptions will be loaded later. Will recurse to define base # classes as needed before defining specified class. def def_class(path): # load & parse file (obj, parent, params) = parse_file(path) # check to see if base class is defined yet; define it if not if not odesc_loaded.has_key(parent): print "No .odesc file found for", parent sys.exit(1) if not odesc_loaded[parent]: def_class(odesc_file[parent]) # define the class. The _name attribute of the class lets us # track the actual SimObject class name even when we derive new # subclasses in scripts (to provide new parameter value settings). s = "class %s(%s): _name = '%s'" % (obj, parent, obj) try: # execute in global namespace, so new class will be globally # visible exec s in globals() except Exception, exc: print "Object error in %s:" % path, exc # mark this file as loaded odesc_loaded[obj] = True # Munge an arbitrary Python code string to get it to execute (mostly # dealing with indentation). Stolen from isa_parser.py... see # comments there for a more detailed description. def fixPythonIndentation(s): # get rid of blank lines first s = re.sub(r'(?m)^\s*\n', '', s); if (s != '' and re.match(r'[ \t]', s[0])): s = 'if 1:\n' + s return s # Load parameter descriptions from .odesc file. Object class must # already be defined. def def_params(path): # load & parse file (obj_name, parent_name, param_code) = parse_file(path) # initialize param dict param_dict = {} # execute parameter descriptions. try: # "in globals(), param_dict" makes exec use the current # globals as the global namespace (so all of the Param # etc. objects are visible) and param_dict as the local # namespace (so the newly defined parameter variables will be # entered into param_dict). exec fixPythonIndentation(param_code) in globals(), param_dict except Exception, exc: print "Param error in %s:" % path, exc return # Convert object name string to Python class object obj = eval(obj_name) # Set the object's parameter description dictionary (see MetaConfigNode). obj.set_param_dict(param_dict) # Walk directory tree to find .odesc files. # Someday we'll have to make the root path an argument instead of # hard-coding it. For now the assumption is you're running this in # util/config. root = '../..' os.path.walk(root, find_odescs, None) # Iterate through file dictionary and define classes. for objname, path in odesc_file.iteritems(): if not odesc_loaded[objname]: def_class(path) sim_object_list = odesc_loaded.keys() sim_object_list.sort() # Iterate through files again and load parameters. for path in odesc_file.itervalues(): def_params(path) ##################################################################### # Hook to generate C++ parameter code. def gen_sim_code(file): for objname in sim_object_list: print >> file, eval("%s._sim_code()" % objname) # The final hook to generate .ini files. Called from configuration # script once config is built. def instantiate(*objs): for obj in objs: obj._instantiate()