1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
|
/*****************************************************************************
* McPAT/CACTI
* SOFTWARE LICENSE AGREEMENT
* Copyright 2012 Hewlett-Packard Development Company, L.P.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
*
***************************************************************************/
#include "router.h"
Router::Router(
double flit_size_,
double vc_buf, /* vc size = vc_buffer_size * flit_size */
double vc_c,
TechnologyParameter::DeviceType *dt,
double I_,
double O_,
double M_
):flit_size(flit_size_),
deviceType(dt),
I(I_),
O(O_),
M(M_)
{
vc_buffer_size = vc_buf;
vc_count = vc_c;
min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio*g_tp.min_w_nmos_;
double technology = g_ip->F_sz_um;
Vdd = dt->Vdd;
/*Crossbar parameters. Transmisson gate is employed for connector*/
NTtr = 10*technology*1e-6/2; /*Transmission gate's nmos tr. length*/
PTtr = 20*technology*1e-6/2; /* pmos tr. length*/
wt = 15*technology*1e-6/2; /*track width*/
ht = 15*technology*1e-6/2; /*track height*/
// I = 5; /*Number of crossbar input ports*/
// O = 5; /*Number of crossbar output ports*/
NTi = 12.5*technology*1e-6/2;
PTi = 25*technology*1e-6/2;
NTid = 60*technology*1e-6/2; //m
PTid = 120*technology*1e-6/2; // m
NTod = 60*technology*1e-6/2; // m
PTod = 120*technology*1e-6/2; // m
calc_router_parameters();
}
Router::~Router(){}
double //wire cap with triple spacing
Router::Cw3(double length) {
Wire wc(g_ip->wt, length, 1, 3, 3);
return (wc.wire_cap(length));
}
/*Function to calculate the gate capacitance*/
double
Router::gate_cap(double w) {
return (double) gate_C (w*1e6 /*u*/, 0);
}
/*Function to calculate the diffusion capacitance*/
double
Router::diff_cap(double w, int type /*0 for n-mos and 1 for p-mos*/,
double s /*number of stacking transistors*/) {
return (double) drain_C_(w*1e6 /*u*/, type, (int) s, 1, g_tp.cell_h_def);
}
/*crossbar related functions */
// Model for simple transmission gate
double
Router::transmission_buf_inpcap() {
return diff_cap(NTtr, 0, 1)+diff_cap(PTtr, 1, 1);
}
double
Router::transmission_buf_outcap() {
return diff_cap(NTtr, 0, 1)+diff_cap(PTtr, 1, 1);
}
double
Router::transmission_buf_ctrcap() {
return gate_cap(NTtr)+gate_cap(PTtr);
}
double
Router::crossbar_inpline() {
return (Cw3(O*flit_size*wt) + O*transmission_buf_inpcap() + gate_cap(NTid) +
gate_cap(PTid) + diff_cap(NTid, 0, 1) + diff_cap(PTid, 1, 1));
}
double
Router::crossbar_outline() {
return (Cw3(I*flit_size*ht) + I*transmission_buf_outcap() + gate_cap(NTod) +
gate_cap(PTod) + diff_cap(NTod, 0, 1) + diff_cap(PTod, 1, 1));
}
double
Router::crossbar_ctrline() {
return (Cw3(0.5*O*flit_size*wt) + flit_size*transmission_buf_ctrcap() +
diff_cap(NTi, 0, 1) + diff_cap(PTi, 1, 1) +
gate_cap(NTi) + gate_cap(PTi));
}
double
Router::tr_crossbar_power() {
return (crossbar_inpline()*Vdd*Vdd*flit_size/2 +
crossbar_outline()*Vdd*Vdd*flit_size/2)*2;
}
void Router::buffer_stats()
{
DynamicParameter dyn_p;
dyn_p.is_tag = false;
dyn_p.pure_cam = false;
dyn_p.fully_assoc = false;
dyn_p.pure_ram = true;
dyn_p.is_dram = false;
dyn_p.is_main_mem = false;
dyn_p.num_subarrays = 1;
dyn_p.num_mats = 1;
dyn_p.Ndbl = 1;
dyn_p.Ndwl = 1;
dyn_p.Nspd = 1;
dyn_p.deg_bl_muxing = 1;
dyn_p.deg_senseamp_muxing_non_associativity = 1;
dyn_p.Ndsam_lev_1 = 1;
dyn_p.Ndsam_lev_2 = 1;
dyn_p.Ndcm = 1;
dyn_p.number_addr_bits_mat = 8;
dyn_p.number_way_select_signals_mat = 1;
dyn_p.number_subbanks_decode = 0;
dyn_p.num_act_mats_hor_dir = 1;
dyn_p.V_b_sense = Vdd; // FIXME check power calc.
dyn_p.ram_cell_tech_type = 0;
dyn_p.num_r_subarray = (int) vc_buffer_size;
dyn_p.num_c_subarray = (int) flit_size * (int) vc_count;
dyn_p.num_mats_h_dir = 1;
dyn_p.num_mats_v_dir = 1;
dyn_p.num_do_b_subbank = (int)flit_size;
dyn_p.num_di_b_subbank = (int)flit_size;
dyn_p.num_do_b_mat = (int) flit_size;
dyn_p.num_di_b_mat = (int) flit_size;
dyn_p.num_do_b_mat = (int) flit_size;
dyn_p.num_di_b_mat = (int) flit_size;
dyn_p.num_do_b_bank_per_port = (int) flit_size;
dyn_p.num_di_b_bank_per_port = (int) flit_size;
dyn_p.out_w = (int) flit_size;
dyn_p.use_inp_params = 1;
dyn_p.num_wr_ports = (unsigned int) vc_count;
dyn_p.num_rd_ports = 1;//(unsigned int) vc_count;//based on Bill Dally's book
dyn_p.num_rw_ports = 0;
dyn_p.num_se_rd_ports =0;
dyn_p.num_search_ports =0;
dyn_p.cell.h = g_tp.sram.b_h + 2 * g_tp.wire_outside_mat.pitch * (dyn_p.num_wr_ports +
dyn_p.num_rw_ports - 1 + dyn_p.num_rd_ports);
dyn_p.cell.w = g_tp.sram.b_w + 2 * g_tp.wire_outside_mat.pitch * (dyn_p.num_rw_ports - 1 +
(dyn_p.num_rd_ports - dyn_p.num_se_rd_ports) +
dyn_p.num_wr_ports) + g_tp.wire_outside_mat.pitch * dyn_p.num_se_rd_ports;
Mat buff(dyn_p);
buff.compute_delays(0);
buff.compute_power_energy();
buffer.power.readOp = buff.power.readOp;
buffer.power.writeOp = buffer.power.readOp; //FIXME
buffer.area = buff.area;
}
void
Router::cb_stats ()
{
if (1) {
Crossbar c_b(I, O, flit_size);
c_b.compute_power();
crossbar.delay = c_b.delay;
crossbar.power.readOp.dynamic = c_b.power.readOp.dynamic;
crossbar.power.readOp.leakage = c_b.power.readOp.leakage;
crossbar.power.readOp.gate_leakage = c_b.power.readOp.gate_leakage;
crossbar.area = c_b.area;
// c_b.print_crossbar();
}
else {
crossbar.power.readOp.dynamic = tr_crossbar_power();
crossbar.power.readOp.leakage = flit_size * I * O *
cmos_Isub_leakage(NTtr*g_tp.min_w_nmos_, PTtr*min_w_pmos, 1, tg);
crossbar.power.readOp.gate_leakage = flit_size * I * O *
cmos_Ig_leakage(NTtr*g_tp.min_w_nmos_, PTtr*min_w_pmos, 1, tg);
}
}
void
Router::get_router_power()
{
/* calculate buffer stats */
buffer_stats();
/* calculate cross-bar stats */
cb_stats();
/* calculate arbiter stats */
Arbiter vcarb(vc_count, flit_size, buffer.area.w);
Arbiter cbarb(I, flit_size, crossbar.area.w);
vcarb.compute_power();
cbarb.compute_power();
arbiter.power.readOp.dynamic = vcarb.power.readOp.dynamic * I +
cbarb.power.readOp.dynamic * O;
arbiter.power.readOp.leakage = vcarb.power.readOp.leakage * I +
cbarb.power.readOp.leakage * O;
arbiter.power.readOp.gate_leakage = vcarb.power.readOp.gate_leakage * I +
cbarb.power.readOp.gate_leakage * O;
// arb_stats();
power.readOp.dynamic = ((buffer.power.readOp.dynamic+buffer.power.writeOp.dynamic) +
crossbar.power.readOp.dynamic +
arbiter.power.readOp.dynamic)*MIN(I, O)*M;
double pppm_t[4] = {1,I,I,1};
power = power + (buffer.power*pppm_t + crossbar.power + arbiter.power)*pppm_lkg;
}
void
Router::get_router_delay ()
{
FREQUENCY=5; // move this to config file --TODO
cycle_time = (1/(double)FREQUENCY)*1e3; //ps
delay = 4;
max_cyc = 17 * g_tp.FO4; //s
max_cyc *= 1e12; //ps
if (cycle_time < max_cyc) {
FREQUENCY = (1/max_cyc)*1e3; //GHz
}
}
void
Router::get_router_area()
{
area.h = I*buffer.area.h;
area.w = buffer.area.w+crossbar.area.w;
}
void
Router::calc_router_parameters()
{
/* calculate router frequency and pipeline cycles */
get_router_delay();
/* router power stats */
get_router_power();
/* area stats */
get_router_area();
}
void
Router::print_router()
{
cout << "\n\nRouter stats:\n";
cout << "\tRouter Area - "<< area.get_area()*1e-6<<"(mm^2)\n";
cout << "\tMaximum possible network frequency - " << (1/max_cyc)*1e3 << "GHz\n";
cout << "\tNetwork frequency - " << FREQUENCY <<" GHz\n";
cout << "\tNo. of Virtual channels - " << vc_count << "\n";
cout << "\tNo. of pipeline stages - " << delay << endl;
cout << "\tLink bandwidth - " << flit_size << " (bits)\n";
cout << "\tNo. of buffer entries per virtual channel - "<< vc_buffer_size << "\n";
cout << "\tSimple buffer Area - "<< buffer.area.get_area()*1e-6<<"(mm^2)\n";
cout << "\tSimple buffer access (Read) - " << buffer.power.readOp.dynamic * 1e9 <<" (nJ)\n";
cout << "\tSimple buffer leakage - " << buffer.power.readOp.leakage * 1e3 <<" (mW)\n";
cout << "\tCrossbar Area - "<< crossbar.area.get_area()*1e-6<<"(mm^2)\n";
cout << "\tCross bar access energy - " << crossbar.power.readOp.dynamic * 1e9<<" (nJ)\n";
cout << "\tCross bar leakage power - " << crossbar.power.readOp.leakage * 1e3<<" (mW)\n";
cout << "\tArbiter access energy (VC arb + Crossbar arb) - "<<arbiter.power.readOp.dynamic * 1e9 <<" (nJ)\n";
cout << "\tArbiter leakage (VC arb + Crossbar arb) - "<<arbiter.power.readOp.leakage * 1e3 <<" (mW)\n";
}
|