1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
|
/*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
// @todo: Fix the instantaneous communication among all the stages within
// iew. There's a clear delay between issue and execute, yet backwards
// communication happens simultaneously.
#include <queue>
#include "base/timebuf.hh"
#include "cpu/o3/fu_pool.hh"
#include "cpu/o3/iew.hh"
using namespace std;
template<class Impl>
DefaultIEW<Impl>::DefaultIEW(Params *params)
: issueToExecQueue(params->backComSize, params->forwardComSize),
instQueue(params),
ldstQueue(params),
fuPool(params->fuPool),
commitToIEWDelay(params->commitToIEWDelay),
renameToIEWDelay(params->renameToIEWDelay),
issueToExecuteDelay(params->issueToExecuteDelay),
dispatchWidth(params->dispatchWidth),
issueWidth(params->issueWidth),
wbOutstanding(0),
wbWidth(params->wbWidth),
numThreads(params->numberOfThreads),
switchedOut(false)
{
_status = Active;
exeStatus = Running;
wbStatus = Idle;
// Setup wire to read instructions coming from issue.
fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
// Instruction queue needs the queue between issue and execute.
instQueue.setIssueToExecuteQueue(&issueToExecQueue);
instQueue.setIEW(this);
ldstQueue.setIEW(this);
for (int i=0; i < numThreads; i++) {
dispatchStatus[i] = Running;
stalls[i].commit = false;
fetchRedirect[i] = false;
bdelayDoneSeqNum[i] = 0;
}
wbMax = wbWidth * params->wbDepth;
updateLSQNextCycle = false;
ableToIssue = true;
skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
}
template <class Impl>
std::string
DefaultIEW<Impl>::name() const
{
return cpu->name() + ".iew";
}
template <class Impl>
void
DefaultIEW<Impl>::regStats()
{
using namespace Stats;
instQueue.regStats();
ldstQueue.regStats();
iewIdleCycles
.name(name() + ".iewIdleCycles")
.desc("Number of cycles IEW is idle");
iewSquashCycles
.name(name() + ".iewSquashCycles")
.desc("Number of cycles IEW is squashing");
iewBlockCycles
.name(name() + ".iewBlockCycles")
.desc("Number of cycles IEW is blocking");
iewUnblockCycles
.name(name() + ".iewUnblockCycles")
.desc("Number of cycles IEW is unblocking");
iewDispatchedInsts
.name(name() + ".iewDispatchedInsts")
.desc("Number of instructions dispatched to IQ");
iewDispSquashedInsts
.name(name() + ".iewDispSquashedInsts")
.desc("Number of squashed instructions skipped by dispatch");
iewDispLoadInsts
.name(name() + ".iewDispLoadInsts")
.desc("Number of dispatched load instructions");
iewDispStoreInsts
.name(name() + ".iewDispStoreInsts")
.desc("Number of dispatched store instructions");
iewDispNonSpecInsts
.name(name() + ".iewDispNonSpecInsts")
.desc("Number of dispatched non-speculative instructions");
iewIQFullEvents
.name(name() + ".iewIQFullEvents")
.desc("Number of times the IQ has become full, causing a stall");
iewLSQFullEvents
.name(name() + ".iewLSQFullEvents")
.desc("Number of times the LSQ has become full, causing a stall");
memOrderViolationEvents
.name(name() + ".memOrderViolationEvents")
.desc("Number of memory order violations");
predictedTakenIncorrect
.name(name() + ".predictedTakenIncorrect")
.desc("Number of branches that were predicted taken incorrectly");
predictedNotTakenIncorrect
.name(name() + ".predictedNotTakenIncorrect")
.desc("Number of branches that were predicted not taken incorrectly");
branchMispredicts
.name(name() + ".branchMispredicts")
.desc("Number of branch mispredicts detected at execute");
branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
iewExecutedInsts
.name(name() + ".EXEC:insts")
.desc("Number of executed instructions");
iewExecLoadInsts
.init(cpu->number_of_threads)
.name(name() + ".EXEC:loads")
.desc("Number of load instructions executed")
.flags(total);
iewExecSquashedInsts
.name(name() + ".EXEC:squashedInsts")
.desc("Number of squashed instructions skipped in execute");
iewExecutedSwp
.init(cpu->number_of_threads)
.name(name() + ".EXEC:swp")
.desc("number of swp insts executed")
.flags(total);
iewExecutedNop
.init(cpu->number_of_threads)
.name(name() + ".EXEC:nop")
.desc("number of nop insts executed")
.flags(total);
iewExecutedRefs
.init(cpu->number_of_threads)
.name(name() + ".EXEC:refs")
.desc("number of memory reference insts executed")
.flags(total);
iewExecutedBranches
.init(cpu->number_of_threads)
.name(name() + ".EXEC:branches")
.desc("Number of branches executed")
.flags(total);
iewExecStoreInsts
.name(name() + ".EXEC:stores")
.desc("Number of stores executed")
.flags(total);
iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
iewExecRate
.name(name() + ".EXEC:rate")
.desc("Inst execution rate")
.flags(total);
iewExecRate = iewExecutedInsts / cpu->numCycles;
iewInstsToCommit
.init(cpu->number_of_threads)
.name(name() + ".WB:sent")
.desc("cumulative count of insts sent to commit")
.flags(total);
writebackCount
.init(cpu->number_of_threads)
.name(name() + ".WB:count")
.desc("cumulative count of insts written-back")
.flags(total);
producerInst
.init(cpu->number_of_threads)
.name(name() + ".WB:producers")
.desc("num instructions producing a value")
.flags(total);
consumerInst
.init(cpu->number_of_threads)
.name(name() + ".WB:consumers")
.desc("num instructions consuming a value")
.flags(total);
wbPenalized
.init(cpu->number_of_threads)
.name(name() + ".WB:penalized")
.desc("number of instrctions required to write to 'other' IQ")
.flags(total);
wbPenalizedRate
.name(name() + ".WB:penalized_rate")
.desc ("fraction of instructions written-back that wrote to 'other' IQ")
.flags(total);
wbPenalizedRate = wbPenalized / writebackCount;
wbFanout
.name(name() + ".WB:fanout")
.desc("average fanout of values written-back")
.flags(total);
wbFanout = producerInst / consumerInst;
wbRate
.name(name() + ".WB:rate")
.desc("insts written-back per cycle")
.flags(total);
wbRate = writebackCount / cpu->numCycles;
}
template<class Impl>
void
DefaultIEW<Impl>::initStage()
{
for (int tid=0; tid < numThreads; tid++) {
toRename->iewInfo[tid].usedIQ = true;
toRename->iewInfo[tid].freeIQEntries =
instQueue.numFreeEntries(tid);
toRename->iewInfo[tid].usedLSQ = true;
toRename->iewInfo[tid].freeLSQEntries =
ldstQueue.numFreeEntries(tid);
}
}
template<class Impl>
void
DefaultIEW<Impl>::setCPU(O3CPU *cpu_ptr)
{
DPRINTF(IEW, "Setting CPU pointer.\n");
cpu = cpu_ptr;
instQueue.setCPU(cpu_ptr);
ldstQueue.setCPU(cpu_ptr);
cpu->activateStage(O3CPU::IEWIdx);
}
template<class Impl>
void
DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
{
DPRINTF(IEW, "Setting time buffer pointer.\n");
timeBuffer = tb_ptr;
// Setup wire to read information from time buffer, from commit.
fromCommit = timeBuffer->getWire(-commitToIEWDelay);
// Setup wire to write information back to previous stages.
toRename = timeBuffer->getWire(0);
toFetch = timeBuffer->getWire(0);
// Instruction queue also needs main time buffer.
instQueue.setTimeBuffer(tb_ptr);
}
template<class Impl>
void
DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
{
DPRINTF(IEW, "Setting rename queue pointer.\n");
renameQueue = rq_ptr;
// Setup wire to read information from rename queue.
fromRename = renameQueue->getWire(-renameToIEWDelay);
}
template<class Impl>
void
DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
{
DPRINTF(IEW, "Setting IEW queue pointer.\n");
iewQueue = iq_ptr;
// Setup wire to write instructions to commit.
toCommit = iewQueue->getWire(0);
}
template<class Impl>
void
DefaultIEW<Impl>::setActiveThreads(list<unsigned> *at_ptr)
{
DPRINTF(IEW, "Setting active threads list pointer.\n");
activeThreads = at_ptr;
ldstQueue.setActiveThreads(at_ptr);
instQueue.setActiveThreads(at_ptr);
}
template<class Impl>
void
DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
{
DPRINTF(IEW, "Setting scoreboard pointer.\n");
scoreboard = sb_ptr;
}
template <class Impl>
bool
DefaultIEW<Impl>::drain()
{
// IEW is ready to drain at any time.
cpu->signalDrained();
return true;
}
template <class Impl>
void
DefaultIEW<Impl>::resume()
{
}
template <class Impl>
void
DefaultIEW<Impl>::switchOut()
{
// Clear any state.
switchedOut = true;
instQueue.switchOut();
ldstQueue.switchOut();
fuPool->switchOut();
for (int i = 0; i < numThreads; i++) {
while (!insts[i].empty())
insts[i].pop();
while (!skidBuffer[i].empty())
skidBuffer[i].pop();
}
}
template <class Impl>
void
DefaultIEW<Impl>::takeOverFrom()
{
// Reset all state.
_status = Active;
exeStatus = Running;
wbStatus = Idle;
switchedOut = false;
instQueue.takeOverFrom();
ldstQueue.takeOverFrom();
fuPool->takeOverFrom();
initStage();
cpu->activityThisCycle();
for (int i=0; i < numThreads; i++) {
dispatchStatus[i] = Running;
stalls[i].commit = false;
fetchRedirect[i] = false;
}
updateLSQNextCycle = false;
// @todo: Fix hardcoded number
for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
issueToExecQueue.advance();
}
}
template<class Impl>
void
DefaultIEW<Impl>::squash(unsigned tid)
{
DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
tid);
// Tell the IQ to start squashing.
instQueue.squash(tid);
// Tell the LDSTQ to start squashing.
#if THE_ISA == ALPHA_ISA
ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
#else
ldstQueue.squash(fromCommit->commitInfo[tid].bdelayDoneSeqNum, tid);
#endif
updatedQueues = true;
// Clear the skid buffer in case it has any data in it.
DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
tid, fromCommit->commitInfo[tid].bdelayDoneSeqNum);
while (!skidBuffer[tid].empty()) {
#if THE_ISA != ALPHA_ISA
if (skidBuffer[tid].front()->seqNum <=
fromCommit->commitInfo[tid].bdelayDoneSeqNum) {
DPRINTF(IEW, "[tid:%i]: Cannot remove skidbuffer instructions "
"that occur before delay slot [sn:%i].\n",
fromCommit->commitInfo[tid].bdelayDoneSeqNum,
tid);
break;
} else {
DPRINTF(IEW, "[tid:%i]: Removing instruction [sn:%i] from "
"skidBuffer.\n", tid, skidBuffer[tid].front()->seqNum);
}
#endif
if (skidBuffer[tid].front()->isLoad() ||
skidBuffer[tid].front()->isStore() ) {
toRename->iewInfo[tid].dispatchedToLSQ++;
}
toRename->iewInfo[tid].dispatched++;
skidBuffer[tid].pop();
}
bdelayDoneSeqNum[tid] = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
emptyRenameInsts(tid);
}
template<class Impl>
void
DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
{
DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
"[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
toCommit->squash[tid] = true;
toCommit->squashedSeqNum[tid] = inst->seqNum;
toCommit->mispredPC[tid] = inst->readPC();
toCommit->branchMispredict[tid] = true;
#if THE_ISA == ALPHA_ISA
toCommit->branchTaken[tid] = inst->readNextPC() !=
(inst->readPC() + sizeof(TheISA::MachInst));
toCommit->nextPC[tid] = inst->readNextPC();
#else
bool branch_taken = inst->readNextNPC() !=
(inst->readNextPC() + sizeof(TheISA::MachInst));
toCommit->branchTaken[tid] = branch_taken;
toCommit->condDelaySlotBranch[tid] = inst->isCondDelaySlot();
if (inst->isCondDelaySlot() && branch_taken) {
toCommit->nextPC[tid] = inst->readNextPC();
} else {
toCommit->nextPC[tid] = inst->readNextNPC();
}
#endif
toCommit->includeSquashInst[tid] = false;
wroteToTimeBuffer = true;
}
template<class Impl>
void
DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
{
DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
"PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
toCommit->squash[tid] = true;
toCommit->squashedSeqNum[tid] = inst->seqNum;
toCommit->nextPC[tid] = inst->readNextPC();
toCommit->includeSquashInst[tid] = false;
wroteToTimeBuffer = true;
}
template<class Impl>
void
DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
{
DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
"PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
toCommit->squash[tid] = true;
toCommit->squashedSeqNum[tid] = inst->seqNum;
toCommit->nextPC[tid] = inst->readPC();
// Must include the broadcasted SN in the squash.
toCommit->includeSquashInst[tid] = true;
ldstQueue.setLoadBlockedHandled(tid);
wroteToTimeBuffer = true;
}
template<class Impl>
void
DefaultIEW<Impl>::block(unsigned tid)
{
DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
if (dispatchStatus[tid] != Blocked &&
dispatchStatus[tid] != Unblocking) {
toRename->iewBlock[tid] = true;
wroteToTimeBuffer = true;
}
// Add the current inputs to the skid buffer so they can be
// reprocessed when this stage unblocks.
skidInsert(tid);
dispatchStatus[tid] = Blocked;
}
template<class Impl>
void
DefaultIEW<Impl>::unblock(unsigned tid)
{
DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
"buffer %u.\n",tid, tid);
// If the skid bufffer is empty, signal back to previous stages to unblock.
// Also switch status to running.
if (skidBuffer[tid].empty()) {
toRename->iewUnblock[tid] = true;
wroteToTimeBuffer = true;
DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
dispatchStatus[tid] = Running;
}
}
template<class Impl>
void
DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
{
instQueue.wakeDependents(inst);
}
template<class Impl>
void
DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
{
instQueue.rescheduleMemInst(inst);
}
template<class Impl>
void
DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
{
instQueue.replayMemInst(inst);
}
template<class Impl>
void
DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
{
// First check the time slot that this instruction will write
// to. If there are free write ports at the time, then go ahead
// and write the instruction to that time. If there are not,
// keep looking back to see where's the first time there's a
// free slot.
while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
++wbNumInst;
if (wbNumInst == wbWidth) {
++wbCycle;
wbNumInst = 0;
}
assert((wbCycle * wbWidth + wbNumInst) < wbMax);
}
// Add finished instruction to queue to commit.
(*iewQueue)[wbCycle].insts[wbNumInst] = inst;
(*iewQueue)[wbCycle].size++;
}
template <class Impl>
unsigned
DefaultIEW<Impl>::validInstsFromRename()
{
unsigned inst_count = 0;
for (int i=0; i<fromRename->size; i++) {
if (!fromRename->insts[i]->isSquashed())
inst_count++;
}
return inst_count;
}
template<class Impl>
void
DefaultIEW<Impl>::skidInsert(unsigned tid)
{
DynInstPtr inst = NULL;
while (!insts[tid].empty()) {
inst = insts[tid].front();
insts[tid].pop();
DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
"dispatch skidBuffer %i\n",tid, inst->seqNum,
inst->readPC(),tid);
skidBuffer[tid].push(inst);
}
assert(skidBuffer[tid].size() <= skidBufferMax &&
"Skidbuffer Exceeded Max Size");
}
template<class Impl>
int
DefaultIEW<Impl>::skidCount()
{
int max=0;
list<unsigned>::iterator threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned thread_count = skidBuffer[*threads++].size();
if (max < thread_count)
max = thread_count;
}
return max;
}
template<class Impl>
bool
DefaultIEW<Impl>::skidsEmpty()
{
list<unsigned>::iterator threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
if (!skidBuffer[*threads++].empty())
return false;
}
return true;
}
template <class Impl>
void
DefaultIEW<Impl>::updateStatus()
{
bool any_unblocking = false;
list<unsigned>::iterator threads = (*activeThreads).begin();
threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
if (dispatchStatus[tid] == Unblocking) {
any_unblocking = true;
break;
}
}
// If there are no ready instructions waiting to be scheduled by the IQ,
// and there's no stores waiting to write back, and dispatch is not
// unblocking, then there is no internal activity for the IEW stage.
if (_status == Active && !instQueue.hasReadyInsts() &&
!ldstQueue.willWB() && !any_unblocking) {
DPRINTF(IEW, "IEW switching to idle\n");
deactivateStage();
_status = Inactive;
} else if (_status == Inactive && (instQueue.hasReadyInsts() ||
ldstQueue.willWB() ||
any_unblocking)) {
// Otherwise there is internal activity. Set to active.
DPRINTF(IEW, "IEW switching to active\n");
activateStage();
_status = Active;
}
}
template <class Impl>
void
DefaultIEW<Impl>::resetEntries()
{
instQueue.resetEntries();
ldstQueue.resetEntries();
}
template <class Impl>
void
DefaultIEW<Impl>::readStallSignals(unsigned tid)
{
if (fromCommit->commitBlock[tid]) {
stalls[tid].commit = true;
}
if (fromCommit->commitUnblock[tid]) {
assert(stalls[tid].commit);
stalls[tid].commit = false;
}
}
template <class Impl>
bool
DefaultIEW<Impl>::checkStall(unsigned tid)
{
bool ret_val(false);
if (stalls[tid].commit) {
DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
ret_val = true;
} else if (instQueue.isFull(tid)) {
DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid);
ret_val = true;
} else if (ldstQueue.isFull(tid)) {
DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
if (ldstQueue.numLoads(tid) > 0 ) {
DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
tid,ldstQueue.getLoadHeadSeqNum(tid));
}
if (ldstQueue.numStores(tid) > 0) {
DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
tid,ldstQueue.getStoreHeadSeqNum(tid));
}
ret_val = true;
} else if (ldstQueue.isStalled(tid)) {
DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
ret_val = true;
}
return ret_val;
}
template <class Impl>
void
DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
{
// Check if there's a squash signal, squash if there is
// Check stall signals, block if there is.
// If status was Blocked
// if so then go to unblocking
// If status was Squashing
// check if squashing is not high. Switch to running this cycle.
readStallSignals(tid);
if (fromCommit->commitInfo[tid].squash) {
squash(tid);
if (dispatchStatus[tid] == Blocked ||
dispatchStatus[tid] == Unblocking) {
toRename->iewUnblock[tid] = true;
wroteToTimeBuffer = true;
}
dispatchStatus[tid] = Squashing;
fetchRedirect[tid] = false;
return;
}
if (fromCommit->commitInfo[tid].robSquashing) {
DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
dispatchStatus[tid] = Squashing;
emptyRenameInsts(tid);
wroteToTimeBuffer = true;
return;
}
if (checkStall(tid)) {
block(tid);
dispatchStatus[tid] = Blocked;
return;
}
if (dispatchStatus[tid] == Blocked) {
// Status from previous cycle was blocked, but there are no more stall
// conditions. Switch over to unblocking.
DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
tid);
dispatchStatus[tid] = Unblocking;
unblock(tid);
return;
}
if (dispatchStatus[tid] == Squashing) {
// Switch status to running if rename isn't being told to block or
// squash this cycle.
DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
tid);
dispatchStatus[tid] = Running;
return;
}
}
template <class Impl>
void
DefaultIEW<Impl>::sortInsts()
{
int insts_from_rename = fromRename->size;
#ifdef DEBUG
#if THE_ISA == ALPHA_ISA
for (int i = 0; i < numThreads; i++)
assert(insts[i].empty());
#endif
#endif
for (int i = 0; i < insts_from_rename; ++i) {
insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
}
}
template <class Impl>
void
DefaultIEW<Impl>::emptyRenameInsts(unsigned tid)
{
DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions until "
"[sn:%i].\n", tid, bdelayDoneSeqNum[tid]);
while (!insts[tid].empty()) {
#if THE_ISA != ALPHA_ISA
if (insts[tid].front()->seqNum <= bdelayDoneSeqNum[tid]) {
DPRINTF(IEW, "[tid:%i]: Done removing, cannot remove instruction"
" that occurs at or before delay slot [sn:%i].\n",
tid, bdelayDoneSeqNum[tid]);
break;
} else {
DPRINTF(IEW, "[tid:%i]: Removing incoming rename instruction "
"[sn:%i].\n", tid, insts[tid].front()->seqNum);
}
#endif
if (insts[tid].front()->isLoad() ||
insts[tid].front()->isStore() ) {
toRename->iewInfo[tid].dispatchedToLSQ++;
}
toRename->iewInfo[tid].dispatched++;
insts[tid].pop();
}
}
template <class Impl>
void
DefaultIEW<Impl>::wakeCPU()
{
cpu->wakeCPU();
}
template <class Impl>
void
DefaultIEW<Impl>::activityThisCycle()
{
DPRINTF(Activity, "Activity this cycle.\n");
cpu->activityThisCycle();
}
template <class Impl>
inline void
DefaultIEW<Impl>::activateStage()
{
DPRINTF(Activity, "Activating stage.\n");
cpu->activateStage(O3CPU::IEWIdx);
}
template <class Impl>
inline void
DefaultIEW<Impl>::deactivateStage()
{
DPRINTF(Activity, "Deactivating stage.\n");
cpu->deactivateStage(O3CPU::IEWIdx);
}
template<class Impl>
void
DefaultIEW<Impl>::dispatch(unsigned tid)
{
// If status is Running or idle,
// call dispatchInsts()
// If status is Unblocking,
// buffer any instructions coming from rename
// continue trying to empty skid buffer
// check if stall conditions have passed
if (dispatchStatus[tid] == Blocked) {
++iewBlockCycles;
} else if (dispatchStatus[tid] == Squashing) {
++iewSquashCycles;
}
// Dispatch should try to dispatch as many instructions as its bandwidth
// will allow, as long as it is not currently blocked.
if (dispatchStatus[tid] == Running ||
dispatchStatus[tid] == Idle) {
DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
"dispatch.\n", tid);
dispatchInsts(tid);
} else if (dispatchStatus[tid] == Unblocking) {
// Make sure that the skid buffer has something in it if the
// status is unblocking.
assert(!skidsEmpty());
// If the status was unblocking, then instructions from the skid
// buffer were used. Remove those instructions and handle
// the rest of unblocking.
dispatchInsts(tid);
++iewUnblockCycles;
if (validInstsFromRename() && dispatchedAllInsts) {
// Add the current inputs to the skid buffer so they can be
// reprocessed when this stage unblocks.
skidInsert(tid);
}
unblock(tid);
}
}
template <class Impl>
void
DefaultIEW<Impl>::dispatchInsts(unsigned tid)
{
dispatchedAllInsts = true;
// Obtain instructions from skid buffer if unblocking, or queue from rename
// otherwise.
std::queue<DynInstPtr> &insts_to_dispatch =
dispatchStatus[tid] == Unblocking ?
skidBuffer[tid] : insts[tid];
int insts_to_add = insts_to_dispatch.size();
DynInstPtr inst;
bool add_to_iq = false;
int dis_num_inst = 0;
// Loop through the instructions, putting them in the instruction
// queue.
for ( ; dis_num_inst < insts_to_add &&
dis_num_inst < dispatchWidth;
++dis_num_inst)
{
inst = insts_to_dispatch.front();
if (dispatchStatus[tid] == Unblocking) {
DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
"buffer\n", tid);
}
// Make sure there's a valid instruction there.
assert(inst);
DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
"IQ.\n",
tid, inst->readPC(), inst->seqNum, inst->threadNumber);
// Be sure to mark these instructions as ready so that the
// commit stage can go ahead and execute them, and mark
// them as issued so the IQ doesn't reprocess them.
// Check for squashed instructions.
if (inst->isSquashed()) {
DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
"not adding to IQ.\n", tid);
++iewDispSquashedInsts;
insts_to_dispatch.pop();
//Tell Rename That An Instruction has been processed
if (inst->isLoad() || inst->isStore()) {
toRename->iewInfo[tid].dispatchedToLSQ++;
}
toRename->iewInfo[tid].dispatched++;
continue;
}
// Check for full conditions.
if (instQueue.isFull(tid)) {
DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
// Call function to start blocking.
block(tid);
// Set unblock to false. Special case where we are using
// skidbuffer (unblocking) instructions but then we still
// get full in the IQ.
toRename->iewUnblock[tid] = false;
dispatchedAllInsts = false;
++iewIQFullEvents;
break;
} else if (ldstQueue.isFull(tid)) {
DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
// Call function to start blocking.
block(tid);
// Set unblock to false. Special case where we are using
// skidbuffer (unblocking) instructions but then we still
// get full in the IQ.
toRename->iewUnblock[tid] = false;
dispatchedAllInsts = false;
++iewLSQFullEvents;
break;
}
// Otherwise issue the instruction just fine.
if (inst->isLoad()) {
DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
"encountered, adding to LSQ.\n", tid);
// Reserve a spot in the load store queue for this
// memory access.
ldstQueue.insertLoad(inst);
++iewDispLoadInsts;
add_to_iq = true;
toRename->iewInfo[tid].dispatchedToLSQ++;
} else if (inst->isStore()) {
DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
"encountered, adding to LSQ.\n", tid);
ldstQueue.insertStore(inst);
++iewDispStoreInsts;
if (inst->isStoreConditional()) {
// Store conditionals need to be set as "canCommit()"
// so that commit can process them when they reach the
// head of commit.
// @todo: This is somewhat specific to Alpha.
inst->setCanCommit();
instQueue.insertNonSpec(inst);
add_to_iq = false;
++iewDispNonSpecInsts;
} else {
add_to_iq = true;
}
toRename->iewInfo[tid].dispatchedToLSQ++;
#if FULL_SYSTEM
} else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
// Same as non-speculative stores.
inst->setCanCommit();
instQueue.insertBarrier(inst);
add_to_iq = false;
#endif
} else if (inst->isNonSpeculative()) {
DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
"encountered, skipping.\n", tid);
// Same as non-speculative stores.
inst->setCanCommit();
// Specifically insert it as nonspeculative.
instQueue.insertNonSpec(inst);
++iewDispNonSpecInsts;
add_to_iq = false;
} else if (inst->isNop()) {
DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
"skipping.\n", tid);
inst->setIssued();
inst->setExecuted();
inst->setCanCommit();
instQueue.recordProducer(inst);
iewExecutedNop[tid]++;
add_to_iq = false;
} else if (inst->isExecuted()) {
assert(0 && "Instruction shouldn't be executed.\n");
DPRINTF(IEW, "Issue: Executed branch encountered, "
"skipping.\n");
inst->setIssued();
inst->setCanCommit();
instQueue.recordProducer(inst);
add_to_iq = false;
} else {
add_to_iq = true;
}
// If the instruction queue is not full, then add the
// instruction.
if (add_to_iq) {
instQueue.insert(inst);
}
insts_to_dispatch.pop();
toRename->iewInfo[tid].dispatched++;
++iewDispatchedInsts;
}
if (!insts_to_dispatch.empty()) {
DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
block(tid);
toRename->iewUnblock[tid] = false;
}
if (dispatchStatus[tid] == Idle && dis_num_inst) {
dispatchStatus[tid] = Running;
updatedQueues = true;
}
dis_num_inst = 0;
}
template <class Impl>
void
DefaultIEW<Impl>::printAvailableInsts()
{
int inst = 0;
cout << "Available Instructions: ";
while (fromIssue->insts[inst]) {
if (inst%3==0) cout << "\n\t";
cout << "PC: " << fromIssue->insts[inst]->readPC()
<< " TN: " << fromIssue->insts[inst]->threadNumber
<< " SN: " << fromIssue->insts[inst]->seqNum << " | ";
inst++;
}
cout << "\n";
}
template <class Impl>
void
DefaultIEW<Impl>::executeInsts()
{
wbNumInst = 0;
wbCycle = 0;
list<unsigned>::iterator threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
fetchRedirect[tid] = false;
}
// Uncomment this if you want to see all available instructions.
// printAvailableInsts();
// Execute/writeback any instructions that are available.
int insts_to_execute = fromIssue->size;
int inst_num = 0;
for (; inst_num < insts_to_execute;
++inst_num) {
DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
DynInstPtr inst = instQueue.getInstToExecute();
DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
inst->readPC(), inst->threadNumber,inst->seqNum);
// Check if the instruction is squashed; if so then skip it
if (inst->isSquashed()) {
DPRINTF(IEW, "Execute: Instruction was squashed.\n");
// Consider this instruction executed so that commit can go
// ahead and retire the instruction.
inst->setExecuted();
// Not sure if I should set this here or just let commit try to
// commit any squashed instructions. I like the latter a bit more.
inst->setCanCommit();
++iewExecSquashedInsts;
decrWb(inst->seqNum);
continue;
}
Fault fault = NoFault;
// Execute instruction.
// Note that if the instruction faults, it will be handled
// at the commit stage.
if (inst->isMemRef() &&
(!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
DPRINTF(IEW, "Execute: Calculating address for memory "
"reference.\n");
// Tell the LDSTQ to execute this instruction (if it is a load).
if (inst->isLoad()) {
// Loads will mark themselves as executed, and their writeback
// event adds the instruction to the queue to commit
fault = ldstQueue.executeLoad(inst);
} else if (inst->isStore()) {
ldstQueue.executeStore(inst);
// If the store had a fault then it may not have a mem req
if (inst->req && !(inst->req->getFlags() & LOCKED)) {
inst->setExecuted();
instToCommit(inst);
}
// Store conditionals will mark themselves as
// executed, and their writeback event will add the
// instruction to the queue to commit.
} else {
panic("Unexpected memory type!\n");
}
} else {
inst->execute();
inst->setExecuted();
instToCommit(inst);
}
updateExeInstStats(inst);
// Check if branch prediction was correct, if not then we need
// to tell commit to squash in flight instructions. Only
// handle this if there hasn't already been something that
// redirects fetch in this group of instructions.
// This probably needs to prioritize the redirects if a different
// scheduler is used. Currently the scheduler schedules the oldest
// instruction first, so the branch resolution order will be correct.
unsigned tid = inst->threadNumber;
if (!fetchRedirect[tid]) {
if (inst->mispredicted()) {
fetchRedirect[tid] = true;
DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
#if THE_ISA == ALPHA_ISA
DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
inst->nextPC);
#else
DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
inst->nextNPC);
#endif
// If incorrect, then signal the ROB that it must be squashed.
squashDueToBranch(inst, tid);
if (inst->predTaken()) {
predictedTakenIncorrect++;
} else {
predictedNotTakenIncorrect++;
}
} else if (ldstQueue.violation(tid)) {
fetchRedirect[tid] = true;
// If there was an ordering violation, then get the
// DynInst that caused the violation. Note that this
// clears the violation signal.
DynInstPtr violator;
violator = ldstQueue.getMemDepViolator(tid);
DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
"%#x, inst PC: %#x. Addr is: %#x.\n",
violator->readPC(), inst->readPC(), inst->physEffAddr);
// Tell the instruction queue that a violation has occured.
instQueue.violation(inst, violator);
// Squash.
squashDueToMemOrder(inst,tid);
++memOrderViolationEvents;
} else if (ldstQueue.loadBlocked(tid) &&
!ldstQueue.isLoadBlockedHandled(tid)) {
fetchRedirect[tid] = true;
DPRINTF(IEW, "Load operation couldn't execute because the "
"memory system is blocked. PC: %#x [sn:%lli]\n",
inst->readPC(), inst->seqNum);
squashDueToMemBlocked(inst, tid);
}
}
}
// Update and record activity if we processed any instructions.
if (inst_num) {
if (exeStatus == Idle) {
exeStatus = Running;
}
updatedQueues = true;
cpu->activityThisCycle();
}
// Need to reset this in case a writeback event needs to write into the
// iew queue. That way the writeback event will write into the correct
// spot in the queue.
wbNumInst = 0;
}
template <class Impl>
void
DefaultIEW<Impl>::writebackInsts()
{
// Loop through the head of the time buffer and wake any
// dependents. These instructions are about to write back. Also
// mark scoreboard that this instruction is finally complete.
// Either have IEW have direct access to scoreboard, or have this
// as part of backwards communication.
for (int inst_num = 0; inst_num < issueWidth &&
toCommit->insts[inst_num]; inst_num++) {
DynInstPtr inst = toCommit->insts[inst_num];
int tid = inst->threadNumber;
DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
inst->seqNum, inst->readPC());
iewInstsToCommit[tid]++;
// Some instructions will be sent to commit without having
// executed because they need commit to handle them.
// E.g. Uncached loads have not actually executed when they
// are first sent to commit. Instead commit must tell the LSQ
// when it's ready to execute the uncached load.
if (!inst->isSquashed() && inst->isExecuted()) {
int dependents = instQueue.wakeDependents(inst);
for (int i = 0; i < inst->numDestRegs(); i++) {
//mark as Ready
DPRINTF(IEW,"Setting Destination Register %i\n",
inst->renamedDestRegIdx(i));
scoreboard->setReg(inst->renamedDestRegIdx(i));
}
if (dependents) {
producerInst[tid]++;
consumerInst[tid]+= dependents;
}
writebackCount[tid]++;
}
decrWb(inst->seqNum);
}
}
template<class Impl>
void
DefaultIEW<Impl>::tick()
{
wbNumInst = 0;
wbCycle = 0;
wroteToTimeBuffer = false;
updatedQueues = false;
sortInsts();
// Free function units marked as being freed this cycle.
fuPool->processFreeUnits();
list<unsigned>::iterator threads = (*activeThreads).begin();
// Check stall and squash signals, dispatch any instructions.
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
checkSignalsAndUpdate(tid);
dispatch(tid);
}
if (exeStatus != Squashing) {
executeInsts();
writebackInsts();
// Have the instruction queue try to schedule any ready instructions.
// (In actuality, this scheduling is for instructions that will
// be executed next cycle.)
instQueue.scheduleReadyInsts();
// Also should advance its own time buffers if the stage ran.
// Not the best place for it, but this works (hopefully).
issueToExecQueue.advance();
}
bool broadcast_free_entries = false;
if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
exeStatus = Idle;
updateLSQNextCycle = false;
broadcast_free_entries = true;
}
// Writeback any stores using any leftover bandwidth.
ldstQueue.writebackStores();
// Check the committed load/store signals to see if there's a load
// or store to commit. Also check if it's being told to execute a
// nonspeculative instruction.
// This is pretty inefficient...
threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned tid = (*threads++);
DPRINTF(IEW,"Processing [tid:%i]\n",tid);
// Update structures based on instructions committed.
if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
!fromCommit->commitInfo[tid].squash &&
!fromCommit->commitInfo[tid].robSquashing) {
ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
updateLSQNextCycle = true;
instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
}
if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
//DPRINTF(IEW,"NonspecInst from thread %i",tid);
if (fromCommit->commitInfo[tid].uncached) {
instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
} else {
instQueue.scheduleNonSpec(
fromCommit->commitInfo[tid].nonSpecSeqNum);
}
}
if (broadcast_free_entries) {
toFetch->iewInfo[tid].iqCount =
instQueue.getCount(tid);
toFetch->iewInfo[tid].ldstqCount =
ldstQueue.getCount(tid);
toRename->iewInfo[tid].usedIQ = true;
toRename->iewInfo[tid].freeIQEntries =
instQueue.numFreeEntries();
toRename->iewInfo[tid].usedLSQ = true;
toRename->iewInfo[tid].freeLSQEntries =
ldstQueue.numFreeEntries(tid);
wroteToTimeBuffer = true;
}
DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
tid, toRename->iewInfo[tid].dispatched);
}
DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
"LSQ has %i free entries.\n",
instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
ldstQueue.numFreeEntries());
updateStatus();
if (wroteToTimeBuffer) {
DPRINTF(Activity, "Activity this cycle.\n");
cpu->activityThisCycle();
}
}
template <class Impl>
void
DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
{
int thread_number = inst->threadNumber;
//
// Pick off the software prefetches
//
#ifdef TARGET_ALPHA
if (inst->isDataPrefetch())
iewExecutedSwp[thread_number]++;
else
iewIewExecutedcutedInsts++;
#else
iewExecutedInsts++;
#endif
//
// Control operations
//
if (inst->isControl())
iewExecutedBranches[thread_number]++;
//
// Memory operations
//
if (inst->isMemRef()) {
iewExecutedRefs[thread_number]++;
if (inst->isLoad()) {
iewExecLoadInsts[thread_number]++;
}
}
}
|