Age | Commit message (Collapse) | Author |
|
Pass stroke state into fz_bound_text to allow for stroked text.
Simplifies some calling code.
Add consts to clarify the meanings of the calls.
|
|
This is faster on ARM in particular. The primary changes involve
fz_matrix, fz_rect and fz_bbox.
Rather than passing 'fz_rect r' into a function, we now consistently
pass 'const fz_rect *r'. Where a rect is passed in and modified, we
miss the 'const' off. Where possible, we return the pointer to the
modified structure to allow 'chaining' of expressions.
The basic upshot of this work is that we do far fewer copies of
rectangle/matrix structures, and all the copies we do are explicit.
This has opened the way to other optimisations, also performed in
this commit.
Rather than using expressions like:
fz_concat(fz_scale(sx, sy), fz_translate(tx, ty))
we now have fz_pre_{scale,translate,rotate} functions. These
can be implemented much more efficiently than doing the fully
fledged matrix multiplication that fz_concat requires.
We add fz_rect_{min,max} functions to return pointers to the
min/max points of a rect. These can be used to in transformations
to directly manipulate values.
With a little casting in the path transformation code we can avoid
more needless copying.
We rename fz_widget_bbox to the more consistent fz_bound_widget.
|
|
|
|
Currently all conversions from rect to bbox are done using a single
function, fz_round_rect. This causes problems, as sometimes we want
'round, allowing for slight calculation errors' and sometimes we
want 'round slavishly to ensure we have a bbox that covers the rect'.
We therefore split these 2 cases into 2 separate functions;
fz_round_rect is kept, meaning "round outwards allowing for slight
errors", and fz_bbox_covering_rect is added to mean "give us the
smallest bbox that is guaranteed to cover rect".
No regressions seen.
|
|
Attempt to separate public API from internal functions.
|
|
Introduce a new 'fz_image' type; this type contains rudimentary
information about images (such as native, size, colorspace etc)
and a function to call to get a pixmap of that image (with a
size hint).
Instead of passing pixmaps through the device interface (and
holding pixmaps in the display list) we now pass images instead.
The rendering routines therefore call fz_image_to_pixmap to get
pixmaps to render, and fz_pixmap_drop those afterwards.
The file format handling routines therefore need to produce
images rather than pixmaps; xps and cbz currently just wrap
pixmaps as images. PDF is more involved.
The stream handling routines in PDF have been altered so that
they can recognise when the last stream entry in a filter
dictionary is an image decoding filter. Rather than applying
this filter, they read and store the parameters into a
pdf_image_params structure, and stop decoding at that point.
This allows us to read the compressed data for an image into
memory as a block. We can then restart the image decode process
later.
pdf_images therefore consist of the compressed image data for
images. When a pixmap is requested for such an image, the code
checks to see if we have one (of an appropriate size), and if
not, decodes it.
The size hint is used to determine whether it is possible to
subsample the image; currently this is only supported for
JPEGs, but we could add generic subsampling code later.
In order to handle caching the produced images, various changes
have been made to the store and the underlying hash table.
Previously the store was indexed purely by fz_obj keys; we don't
have an fz_obj key any more, so have extended the store by adding
a concept of a key 'type'. A key type is a pointer to a set of
functions that keep/drop/compare and make a hashable key from
a key pointer.
We make a pdf_store.c file that contains functions to offer the
existing fz_obj based functions, and add a new 'type' for keys
(based on the fz_image handle, and the subsample factor) in the
pdf_image.c file.
While working on this, a problem became apparent in the existing
store codel; fz_obj objects had no protection on their reference
counts, hence an interpreter thread could try to alter a ref count
at the same time as a malloc caused an eviction from the store.
This has been solved by using the alloc lock as protection. This in
turn requires some tweaks to the code to make sure we don't try
and keep/drop fz_obj's from the store code while the alloc lock is
held.
A side effect of this work is that when a hash table is created, we
inform it what lock should be used to protect its innards (if any).
If the alloc lock is used, the insert method knows to drop/retake it
to allow it to safely expand the hash table. Callers to the hash
functions have the responsibility of taking/dropping the appropriate
lock, and ensuring that they cope with the possibility that insert
might drop the alloc lock, causing race conditions.
|
|
|
|
|
|
|
|
Huge pervasive change to lots of files, adding a context for exception
handling and allocation.
In time we'll move more statics into there.
Also fix some for(i = 0; i < function(...); i++) calls.
|
|
|
|
The run-together words are dead! Long live the underscores!
The postscript inspired naming convention of using all run-together
words has served us well, but it is now time for more readable code.
In this commit I have also added the sed script, rename.sed, that I used
to convert the source. Use it on your patches and application code.
|
|
|
|
|
|
the start of the block.
|
|
|