Age | Commit message (Collapse) | Author |
|
When we allocate a pixmap > 2G, but < 4G, the index into that
pixmap, when calculated as an int can be negative. Fix this with
various casts to unsigned int.
If we ever move to support >4G images we'll need to rejig the
casting to cast each part of the element to ptrdiff_t first.
|
|
When handling knockout groups, we have to copy the background from the
previous group in so we can 'knockout' properly. If the previous group
is a different colorspace, this gives us problems!
The fix, implemented here, is to update the copy_pixmap_rect function
to know how to copy between pixmaps of different depth.
Gray <-> RGB are the ones we really care about; the generic code will
probably do a horrible job, but shouldn't ever be called at present.
This suffices to stop the crashing - we will probably revisit this
when we revise the blending support.
|
|
|
|
Debug printing functions: debug -> print.
Accessors: get noun attribute -> noun attribute.
Find -> lookup when the returned value is not reference counted.
pixmap_with_rect -> pixmap_with_bbox.
We are reserving the word "find" to mean lookups that give ownership
of objects to the caller. Lookup is used in other places where the
ownership is not transferred, or simple values are returned.
The rename is done by the sed script in scripts/rename3.sed
|
|
|
|
Attempt to separate public API from internal functions.
|
|
Also, the attempts to keep it up to date were causing race
conditions in multithreading cases.
|
|
Introduce a new 'fz_image' type; this type contains rudimentary
information about images (such as native, size, colorspace etc)
and a function to call to get a pixmap of that image (with a
size hint).
Instead of passing pixmaps through the device interface (and
holding pixmaps in the display list) we now pass images instead.
The rendering routines therefore call fz_image_to_pixmap to get
pixmaps to render, and fz_pixmap_drop those afterwards.
The file format handling routines therefore need to produce
images rather than pixmaps; xps and cbz currently just wrap
pixmaps as images. PDF is more involved.
The stream handling routines in PDF have been altered so that
they can recognise when the last stream entry in a filter
dictionary is an image decoding filter. Rather than applying
this filter, they read and store the parameters into a
pdf_image_params structure, and stop decoding at that point.
This allows us to read the compressed data for an image into
memory as a block. We can then restart the image decode process
later.
pdf_images therefore consist of the compressed image data for
images. When a pixmap is requested for such an image, the code
checks to see if we have one (of an appropriate size), and if
not, decodes it.
The size hint is used to determine whether it is possible to
subsample the image; currently this is only supported for
JPEGs, but we could add generic subsampling code later.
In order to handle caching the produced images, various changes
have been made to the store and the underlying hash table.
Previously the store was indexed purely by fz_obj keys; we don't
have an fz_obj key any more, so have extended the store by adding
a concept of a key 'type'. A key type is a pointer to a set of
functions that keep/drop/compare and make a hashable key from
a key pointer.
We make a pdf_store.c file that contains functions to offer the
existing fz_obj based functions, and add a new 'type' for keys
(based on the fz_image handle, and the subsample factor) in the
pdf_image.c file.
While working on this, a problem became apparent in the existing
store codel; fz_obj objects had no protection on their reference
counts, hence an interpreter thread could try to alter a ref count
at the same time as a malloc caused an eviction from the store.
This has been solved by using the alloc lock as protection. This in
turn requires some tweaks to the code to make sure we don't try
and keep/drop fz_obj's from the store code while the alloc lock is
held.
A side effect of this work is that when a hash table is created, we
inform it what lock should be used to protect its innards (if any).
If the alloc lock is used, the insert method knows to drop/retake it
to allow it to safely expand the hash table. Callers to the hash
functions have the responsibility of taking/dropping the appropriate
lock, and ensuring that they cope with the possibility that insert
might drop the alloc lock, causing race conditions.
|
|
|
|
|
|
|
|
When we moved over to a context based system, we laid the foundation
for a thread-safe mupdf. This commit should complete that process.
Firstly, fz_clone_context is properly implemented so that it
makes a new context, but shares certain sections (currently
just the allocator, and the store).
Secondly, we add locking (to parts of the code that have
previously just had placeholder LOCK/UNLOCK comments). Functions
to lock and unlock a mutex are added to the allocator structure;
omit these (as is the case today) and no multithreading is
(safely) possible. The context will refuse to clone if these are
not provided.
Finally we flesh out the LOCK/UNLOCK comments to be real calls of
the functions - unfortunately this requires us to plumb fz_context
into the fz_keep_storable function (and all the fz_keep_xxx
functions that call it). This is the largest section of the patch.
No changes expected to any test files.
|
|
Thanks to Zeniko for pointing this out.
|
|
|
|
|
|
|
|
The new fz_malloc_struct(A,B) macro allocates sizeof(B) bytes using
fz_malloc, and then passes the resultant pointer to Memento_label
to label it with "B".
This costs nothing in non-memento builds, but gives much nicer
listings of leaked blocks when memento is enabled.
|
|
Fix warnings/errors thrown up by the last few commits (which were
only tested on windows).
|
|
Change the fz_store to be limited to 256 Megs. Remove the soft limit
for pixmaps; the store will automatically throw old resources away
to stay below the limit.
|
|
Firstly, we rename pdf_store to fz_store, reflecting the fact that
there are no pdf specific dependencies on it.
Next, we rework it so that all the objects that can be stored in
the store start with an fz_storable structure. This consists of
a reference count, and a function used to free the object when
the reference count reaches zero.
All the keep/drop functions are then reimplemented by calling
fz_keep_sharable/fz_drop_sharable. The 'drop' functions as supplied
by the callers are thus now 'free' functions, only called if
the reference count drops to 0.
The store changes to keep all the items in the store in the linked
list (which becomes a doubly linked one). We still make use of
the hashtable to index into this list quickly, but we now have
the objects in an LRU ordering within the list.
Every object is put into the store, with a size record; this is
an estimate of how much memory would be freed by freeing that
object.
The store is moved into the context and given a maximum size;
when new things are inserted into the store, care is taken to
ensure that we do not expand beyond this size. We evict any
stored items (that are not in use) starting from the least
recently used.
Finding an object in the store now takes a reference to it already.
LOCK and UNLOCK comments are used to indicate where locks need to
be taken and released to ensure thread safety.
|
|
|
|
|
|
This frees us from passing errors back everywhere, and hence enables us
to pass results back as return values.
Rather than having to explicitly check for errors everywhere and bubble
them, we now allow exception handling to do the work for us; the
downside to this is that we no longer emit as much debugging information
as we did before (though this could be put back in). For now, the
debugging information we have lost has been retained in comments
with 'RJW:' at the start.
This code needs fuller testing, but is being committed as a work in
progress.
|
|
|
|
|
|
Huge pervasive change to lots of files, adding a context for exception
handling and allocation.
In time we'll move more statics into there.
Also fix some for(i = 0; i < function(...); i++) calls.
|
|
Import exception handling code from WSS, modified to fit into the
fitz world.
With this code we have 'real' fz_try/fz_catch/fz_rethrow functions,
handling a fz_except type. We therefore rename the existing fz_throw/
fz_catch/fz_rethrow to be fz_error_make/fz_error_handle/fz_error_note.
We don't actually use fz_try/fz_catch/fz_rethrow yet...
|
|
|
|
|
|
unsigned char * is not the same as char *.
|
|
Firstly, this takes on some of Zenikos patch to correct the clip
stack handling that was broken by the fix to bug 692287 (in commit
2c3bbbf). This bug should now be solved.
We add a new 'shape' field to the draw device structure (and clip
stack). When we are inside non-isolated groups, this is set to be
a pixmap where we accumulate the 'shape' of the objects drawn.
When we come to blend back, if we are blending a non-isolated group
back, we have to use a different blending function that takes account
of the shape.
Various internal groups (the page group, and groups used to force
blending) are set to be isolated to avoid carrying shape planes
around when this is not required.
All our rendering code now has to know how to maintain the shape
plane as well as doing the basic rendering.
|
|
Bring the MuPDF android build up to date with the latest source changes.
Many thanks to Dominic Battre for his helpful report in bug 692222.
|
|
All image loading functions call the new fz_new_pixmap_with_limit
allocation function, which will return NULL if the total amount of
pixmap memory would exceed a set limit. Other vital pixmap allocations
which are not as easily recoverable (such as font rendering, and the
various buffers in the draw device) ignore the limit.
|
|
|
|
The run-together words are dead! Long live the underscores!
The postscript inspired naming convention of using all run-together
words has served us well, but it is now time for more readable code.
In this commit I have also added the sed script, rename.sed, that I used
to convert the source. Use it on your patches and application code.
|
|
|
|
|
|
WhiteIsBlack was flipped for fax images. re-multiplying alpha
with CMYK images needs special care because of subtractive colors.
|
|
|
|
image dictionary.
|
|
|
|
|
|
|
|
|
|
custom backing store.
|
|
|
|
|
|
|
|
to be more illustrative.
|
|
|