/* This code is based on the code found from 7-Zip, which has a modified version of the SHA-256 found from Crypto++ . The code was modified a little to fit into liblzma and fitz. This file has been put into the public domain. You can do whatever you want with this file. SHA-384 and SHA-512 were also taken from Crypto++ and adapted for fitz. */ #include "fitz-internal.h" static inline int isbigendian(void) { static const int one = 1; return *(char*)&one == 0; } static inline unsigned int bswap32(unsigned int num) { if (!isbigendian()) { return ( (((num) << 24)) | (((num) << 8) & 0x00FF0000) | (((num) >> 8) & 0x0000FF00) | (((num) >> 24)) ); } return num; } static inline uint64_t bswap64(uint64_t num) { if (!isbigendian()) { return ( (((num) << 56)) | (((num) << 40) & 0x00FF000000000000ULL) | (((num) << 24) & 0x0000FF0000000000ULL) | (((num) << 8) & 0x000000FF00000000ULL) | (((num) >> 8) & 0x00000000FF000000ULL) | (((num) >> 24) & 0x0000000000FF0000ULL) | (((num) >> 40) & 0x000000000000FF00ULL) | (((num) >> 56)) ); } return num; } /* At least on x86, GCC is able to optimize this to a rotate instruction. */ #define rotr(num, amount) ((num) >> (amount) | (num) << (8 * sizeof(num) - (amount))) #define blk0(i) (W[i] = data[i]) #define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \ + s0(W[(i - 15) & 15])) #define Ch(x, y, z) (z ^ (x & (y ^ z))) #define Maj(x, y, z) ((x & y) | (z & (x | y))) #define a(i) T[(0 - i) & 7] #define b(i) T[(1 - i) & 7] #define c(i) T[(2 - i) & 7] #define d(i) T[(3 - i) & 7] #define e(i) T[(4 - i) & 7] #define f(i) T[(5 - i) & 7] #define g(i) T[(6 - i) & 7] #define h(i) T[(7 - i) & 7] #define R(i) \ h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + K[i + j] \ + (j ? blk2(i) : blk0(i)); \ d(i) += h(i); \ h(i) += S0(a(i)) + Maj(a(i), b(i), c(i)) /* For SHA256 */ #define S0(x) (rotr(x, 2) ^ rotr(x, 13) ^ rotr(x, 22)) #define S1(x) (rotr(x, 6) ^ rotr(x, 11) ^ rotr(x, 25)) #define s0(x) (rotr(x, 7) ^ rotr(x, 18) ^ (x >> 3)) #define s1(x) (rotr(x, 17) ^ rotr(x, 19) ^ (x >> 10)) static const unsigned int SHA256_K[64] = { 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, }; static void transform256(unsigned int state[8], const unsigned int data_xe[16]) { const unsigned int *K = SHA256_K; unsigned int data[16]; unsigned int W[16]; unsigned int T[8]; unsigned int j; /* ensure big-endian integers */ for (j = 0; j < 16; j++) data[j] = bswap32(data_xe[j]); /* Copy state[] to working vars. */ memcpy(T, state, sizeof(T)); /* 64 operations, partially loop unrolled */ for (j = 0; j < 64; j += 16) { R( 0); R( 1); R( 2); R( 3); R( 4); R( 5); R( 6); R( 7); R( 8); R( 9); R(10); R(11); R(12); R(13); R(14); R(15); } /* Add the working vars back into state[]. */ state[0] += a(0); state[1] += b(0); state[2] += c(0); state[3] += d(0); state[4] += e(0); state[5] += f(0); state[6] += g(0); state[7] += h(0); } #undef S0 #undef S1 #undef s0 #undef s1 void fz_sha256_init(fz_sha256 *context) { context->count[0] = context->count[1] = 0; context->state[0] = 0x6A09E667; context->state[1] = 0xBB67AE85; context->state[2] = 0x3C6EF372; context->state[3] = 0xA54FF53A; context->state[4] = 0x510E527F; context->state[5] = 0x9B05688C; context->state[6] = 0x1F83D9AB; context->state[7] = 0x5BE0CD19; } void fz_sha256_update(fz_sha256 *context, const unsigned char *input, unsigned int inlen) { /* Copy the input data into a properly aligned temporary buffer. * This way we can be called with arbitrarily sized buffers * (no need to be multiple of 64 bytes), and the code works also * on architectures that don't allow unaligned memory access. */ while (inlen > 0) { const unsigned int copy_start = context->count[0] & 0x3F; unsigned int copy_size = 64 - copy_start; if (copy_size > inlen) copy_size = inlen; memcpy(context->buffer.u8 + copy_start, input, copy_size); input += copy_size; inlen -= copy_size; context->count[0] += copy_size; /* carry overflow from low to high */ if (context->count[0] < copy_size) context->count[1]++; if ((context->count[0] & 0x3F) == 0) transform256(context->state, context->buffer.u32); } } void fz_sha256_final(fz_sha256 *context, unsigned char digest[32]) { /* Add padding as described in RFC 3174 (it describes SHA-1 but * the same padding style is used for SHA-256 too). */ unsigned int j = context->count[0] & 0x3F; context->buffer.u8[j++] = 0x80; while (j != 56) { if (j == 64) { transform256(context->state, context->buffer.u32); j = 0; } context->buffer.u8[j++] = 0x00; } /* Convert the message size from bytes to bits. */ context->count[1] = (context->count[1] << 3) + (context->count[0] >> 29); context->count[0] = context->count[0] << 3; context->buffer.u32[14] = bswap32(context->count[1]); context->buffer.u32[15] = bswap32(context->count[0]); transform256(context->state, context->buffer.u32); for (j = 0; j < 8; j++) ((unsigned int *)digest)[j] = bswap32(context->state[j]); memset(context, 0, sizeof(fz_sha256)); } /* For SHA512 */ #define S0(x) (rotr(x, 28) ^ rotr(x, 34) ^ rotr(x, 39)) #define S1(x) (rotr(x, 14) ^ rotr(x, 18) ^ rotr(x, 41)) #define s0(x) (rotr(x, 1) ^ rotr(x, 8) ^ (x >> 7)) #define s1(x) (rotr(x, 19) ^ rotr(x, 61) ^ (x >> 6)) static const uint64_t SHA512_K[80] = { 0x428A2F98D728AE22ULL, 0x7137449123EF65CDULL, 0xB5C0FBCFEC4D3B2FULL, 0xE9B5DBA58189DBBCULL, 0x3956C25BF348B538ULL, 0x59F111F1B605D019ULL, 0x923F82A4AF194F9BULL, 0xAB1C5ED5DA6D8118ULL, 0xD807AA98A3030242ULL, 0x12835B0145706FBEULL, 0x243185BE4EE4B28CULL, 0x550C7DC3D5FFB4E2ULL, 0x72BE5D74F27B896FULL, 0x80DEB1FE3B1696B1ULL, 0x9BDC06A725C71235ULL, 0xC19BF174CF692694ULL, 0xE49B69C19EF14AD2ULL, 0xEFBE4786384F25E3ULL, 0x0FC19DC68B8CD5B5ULL, 0x240CA1CC77AC9C65ULL, 0x2DE92C6F592B0275ULL, 0x4A7484AA6EA6E483ULL, 0x5CB0A9DCBD41FBD4ULL, 0x76F988DA831153B5ULL, 0x983E5152EE66DFABULL, 0xA831C66D2DB43210ULL, 0xB00327C898FB213FULL, 0xBF597FC7BEEF0EE4ULL, 0xC6E00BF33DA88FC2ULL, 0xD5A79147930AA725ULL, 0x06CA6351E003826FULL, 0x142929670A0E6E70ULL, 0x27B70A8546D22FFCULL, 0x2E1B21385C26C926ULL, 0x4D2C6DFC5AC42AEDULL, 0x53380D139D95B3DFULL, 0x650A73548BAF63DEULL, 0x766A0ABB3C77B2A8ULL, 0x81C2C92E47EDAEE6ULL, 0x92722C851482353BULL, 0xA2BFE8A14CF10364ULL, 0xA81A664BBC423001ULL, 0xC24B8B70D0F89791ULL, 0xC76C51A30654BE30ULL, 0xD192E819D6EF5218ULL, 0xD69906245565A910ULL, 0xF40E35855771202AULL, 0x106AA07032BBD1B8ULL, 0x19A4C116B8D2D0C8ULL, 0x1E376C085141AB53ULL, 0x2748774CDF8EEB99ULL, 0x34B0BCB5E19B48A8ULL, 0x391C0CB3C5C95A63ULL, 0x4ED8AA4AE3418ACBULL, 0x5B9CCA4F7763E373ULL, 0x682E6FF3D6B2B8A3ULL, 0x748F82EE5DEFB2FCULL, 0x78A5636F43172F60ULL, 0x84C87814A1F0AB72ULL, 0x8CC702081A6439ECULL, 0x90BEFFFA23631E28ULL, 0xA4506CEBDE82BDE9ULL, 0xBEF9A3F7B2C67915ULL, 0xC67178F2E372532BULL, 0xCA273ECEEA26619CULL, 0xD186B8C721C0C207ULL, 0xEADA7DD6CDE0EB1EULL, 0xF57D4F7FEE6ED178ULL, 0x06F067AA72176FBAULL, 0x0A637DC5A2C898A6ULL, 0x113F9804BEF90DAEULL, 0x1B710B35131C471BULL, 0x28DB77F523047D84ULL, 0x32CAAB7B40C72493ULL, 0x3C9EBE0A15C9BEBCULL, 0x431D67C49C100D4CULL, 0x4CC5D4BECB3E42B6ULL, 0x597F299CFC657E2AULL, 0x5FCB6FAB3AD6FAECULL, 0x6C44198C4A475817ULL, }; static void transform512(uint64_t state[8], const uint64_t data_xe[16]) { const uint64_t *K = SHA512_K; uint64_t data[16]; uint64_t W[16]; uint64_t T[8]; unsigned int j; /* ensure big-endian integers */ for (j = 0; j < 16; j++) data[j] = bswap64(data_xe[j]); /* Copy state[] to working vars. */ memcpy(T, state, sizeof(T)); /* 80 operations, partially loop unrolled */ for (j = 0; j < 80; j+= 16) { R( 0); R( 1); R( 2); R( 3); R( 4); R( 5); R( 6); R( 7); R( 8); R( 9); R(10); R(11); R(12); R(13); R(14); R(15); } /* Add the working vars back into state[]. */ state[0] += a(0); state[1] += b(0); state[2] += c(0); state[3] += d(0); state[4] += e(0); state[5] += f(0); state[6] += g(0); state[7] += h(0); } #undef S0 #undef S1 #undef s0 #undef s1 void fz_sha512_init(fz_sha512 *context) { context->count[0] = context->count[1] = 0; context->state[0] = 0x6A09E667F3BCC908; context->state[1] = 0xBB67AE8584CAA73B; context->state[2] = 0x3C6EF372FE94F82B; context->state[3] = 0xA54FF53A5F1D36F1; context->state[4] = 0x510E527FADE682D1; context->state[5] = 0x9B05688C2B3E6C1F; context->state[6] = 0x1F83D9ABFB41BD6B; context->state[7] = 0x5BE0CD19137E2179; } void fz_sha512_update(fz_sha512 *context, const unsigned char *input, unsigned int inlen) { /* Copy the input data into a properly aligned temporary buffer. * This way we can be called with arbitrarily sized buffers * (no need to be multiple of 128 bytes), and the code works also * on architectures that don't allow unaligned memory access. */ while (inlen > 0) { const unsigned int copy_start = context->count[0] & 0x7F; unsigned int copy_size = 128 - copy_start; if (copy_size > inlen) copy_size = inlen; memcpy(context->buffer.u8 + copy_start, input, copy_size); input += copy_size; inlen -= copy_size; context->count[0] += copy_size; /* carry overflow from low to high */ if (context->count[0] < copy_size) context->count[1]++; if ((context->count[0] & 0x7F) == 0) transform512(context->state, context->buffer.u64); } } void fz_sha512_final(fz_sha512 *context, unsigned char digest[128]) { /* Add padding as described in RFC 3174 (it describes SHA-1 but * the same padding style is used for SHA-512 too). */ unsigned int j = context->count[0] & 0x7F; context->buffer.u8[j++] = 0x80; while (j != 120) { if (j == 128) { transform512(context->state, context->buffer.u64); j = 0; } context->buffer.u8[j++] = 0x00; } /* Convert the message size from bytes to bits. */ context->count[1] = (context->count[1] << 3) + (context->count[0] >> 29); context->count[0] = context->count[0] << 3; context->buffer.u64[14] = bswap64(context->count[1]); context->buffer.u64[15] = bswap64(context->count[0]); transform512(context->state, context->buffer.u64); for (j = 0; j < 16; j++) ((uint64_t *)digest)[j] = bswap64(context->state[j]); memset(context, 0, sizeof(fz_sha512)); } void fz_sha384_init(fz_sha384 *context) { context->count[0] = context->count[1] = 0; context->state[0] = 0xCBBB9D5DC1059ED8; context->state[1] = 0x629A292A367CD507; context->state[2] = 0x9159015A3070DD17; context->state[3] = 0x152FECD8F70E5939; context->state[4] = 0x67332667FFC00B31; context->state[5] = 0x8EB44A8768581511; context->state[6] = 0xDB0C2E0D64F98FA7; context->state[7] = 0x47B5481DBEFA4FA4; } void fz_sha384_update(fz_sha384 *context, const unsigned char *input, unsigned int inlen) { fz_sha512_update(context, input, inlen); } void fz_sha384_final(fz_sha384 *context, unsigned char digest[48]) { fz_sha512_final(context, digest); }