#include "mupdf-internal.h"
typedef struct svg_device_s svg_device;
typedef struct tile_s tile;
struct tile_s
{
int pattern;
fz_matrix ctm;
fz_rect view;
fz_rect area;
fz_point step;
};
struct svg_device_s
{
fz_context *ctx;
fz_output *out;
int id;
int num_tiles;
int max_tiles;
tile *tiles;
};
/* Helper functions */
static void
svg_dev_path(svg_device *sdev, fz_path *path)
{
fz_output *out = sdev->out;
float x, y;
int i = 0;
fz_printf(out, " d=\"");
while (i < path->len)
{
switch (path->items[i++].k)
{
case FZ_MOVETO:
x = path->items[i++].v;
y = path->items[i++].v;
fz_printf(out, "M %g %g ", x, y);
break;
case FZ_LINETO:
x = path->items[i++].v;
y = path->items[i++].v;
fz_printf(out, "L %g %g ", x, y);
break;
case FZ_CURVETO:
x = path->items[i++].v;
y = path->items[i++].v;
fz_printf(out, "C %g %g ", x, y);
x = path->items[i++].v;
y = path->items[i++].v;
fz_printf(out, "%g %g ", x, y);
x = path->items[i++].v;
y = path->items[i++].v;
fz_printf(out, "%g %g ", x, y);
break;
case FZ_CLOSE_PATH:
fz_printf(out, "Z ");
break;
}
}
fz_printf(out, "\"");
}
static void
svg_dev_ctm(svg_device *sdev, const fz_matrix *ctm)
{
fz_output *out = sdev->out;
if (ctm->a != 1.0 || ctm->b != 0 || ctm->c != 0 || ctm->d != 1.0 || ctm->e != 0 || ctm->f != 0)
{
fz_printf(out, " transform=\"matrix(%g,%g,%g,%g,%g,%g)\"",
ctm->a, ctm->b, ctm->c, ctm->d, ctm->e, ctm->f);
}
}
static void
svg_dev_stroke_state(svg_device *sdev, fz_stroke_state *stroke_state)
{
fz_output *out = sdev->out;
fz_printf(out, " stroke-width=\"%g\"", stroke_state->linewidth);
fz_printf(out, " stroke-linecap=\"%s\"",
(stroke_state->start_cap == FZ_LINECAP_SQUARE ? "square" :
(stroke_state->start_cap == FZ_LINECAP_ROUND ? "round" : "butt")));
if (stroke_state->dash_len != 0)
{
int i;
fz_printf(out, " stroke-dasharray=");
for (i = 0; i < stroke_state->dash_len; i++)
fz_printf(out, "%c%g", (i == 0 ? '\"' : ','), stroke_state->dash_list[i]);
fz_printf(out, "\"");
if (stroke_state->dash_phase != 0)
fz_printf(out, " stroke-dashoffset=\"%g\"", stroke_state->dash_phase);
}
if (stroke_state->linejoin == FZ_LINEJOIN_MITER || stroke_state->linejoin == FZ_LINEJOIN_MITER_XPS)
fz_printf(out, " stroke-miterlimit=\"%g\"", stroke_state->miterlimit);
fz_printf(out, " stroke-linejoin=\"%s\"",
(stroke_state->linejoin == FZ_LINEJOIN_BEVEL ? "bevel" :
(stroke_state->linejoin == FZ_LINEJOIN_ROUND ? "round" : "miter")));
}
static void
svg_dev_fill_color(svg_device *sdev, fz_colorspace *colorspace, float *color, float alpha)
{
fz_context *ctx = sdev->ctx;
fz_output *out = sdev->out;
float rgb[FZ_MAX_COLORS];
if (colorspace != fz_device_rgb(ctx))
{
/* If it's not rgb, make it rgb */
colorspace->to_rgb(ctx, colorspace, color, rgb);
color = rgb;
}
if (color[0] == 0 && color[1] == 0 && color[2] == 0)
{
/* don't send a fill, as it will be assumed to be black */
}
else
fz_printf(out, " fill=\"rgb(%d,%d,%d)\"", (int)(255*color[0] + 0.5), (int)(255*color[1] + 0.5), (int)(255*color[2]+0.5));
if (alpha != 1)
fz_printf(out, " fill-opacity=\"%g\"", alpha);
}
static void
svg_dev_stroke_color(svg_device *sdev, fz_colorspace *colorspace, float *color, float alpha)
{
fz_context *ctx = sdev->ctx;
fz_output *out = sdev->out;
float rgb[FZ_MAX_COLORS];
if (colorspace != fz_device_rgb(ctx))
{
/* If it's not rgb, make it rgb */
colorspace->to_rgb(ctx, colorspace, color, rgb);
color = rgb;
}
fz_printf(out, " fill=\"none\" stroke=\"rgb(%d,%d,%d)\"", (int)(255*color[0] + 0.5), (int)(255*color[1] + 0.5), (int)(255*color[2]+0.5));
if (alpha != 1)
fz_printf(out, " stroke-opacity=\"%g\"", alpha);
}
static void
svg_dev_text(svg_device *sdev, const fz_matrix *ctm, fz_text *text)
{
fz_output *out = sdev->out;
int i;
fz_matrix inverse;
fz_matrix local_trm;
float size;
/* Rely on the fact that trm.{e,f} == 0 */
size = fz_matrix_expansion(&text->trm);
local_trm.a = text->trm.a / size;
local_trm.b = text->trm.b / size;
local_trm.c = -text->trm.c / size;
local_trm.d = -text->trm.d / size;
local_trm.e = 0;
local_trm.f = 0;
fz_invert_matrix(&inverse, &local_trm);
fz_concat(&local_trm, &local_trm, ctm);
fz_printf(out, " transform=\"matrix(%g,%g,%g,%g,%g,%g)\"",
local_trm.a, local_trm.b, local_trm.c, local_trm.d, local_trm.e, local_trm.f);
fz_printf(out, " font-size=\"%g\"", size);
fz_printf(out, " font-family=\"%s\"", text->font->name);
fz_printf(out, " x=");
for (i=0; i < text->len; i++)
{
fz_text_item *it = &text->items[i];
fz_point p;
p.x = it->x;
p.y = it->y;
fz_transform_point(&p, &inverse);
fz_printf(out, "%c%g", i == 0 ? '\"' : ' ', p.x);
}
fz_printf(out, "\" y=");
for (i=0; i < text->len; i++)
{
fz_text_item *it = &text->items[i];
fz_point p;
p.x = it->x;
p.y = it->y;
fz_transform_point(&p, &inverse);
fz_printf(out, "%c%g", i == 0 ? '\"' : ' ', p.y);
}
fz_printf(out, "\">\n");
for (i=0; i < text->len; i++)
{
fz_text_item *it = &text->items[i];
int c = it->ucs;
if (c >= 32 && c <= 127 && c != '<' && c != '&')
fz_printf(out, "%c", c);
else
fz_printf(out, "%04x;", c);
}
fz_printf(out, "\n\n");
}
/* Entry points */
static void
svg_dev_fill_path(fz_device *dev, fz_path *path, int even_odd, const fz_matrix *ctm,
fz_colorspace *colorspace, float *color, float alpha)
{
svg_device *sdev = dev->user;
fz_output *out = sdev->out;
fz_printf(out, "\n");
}
static void
svg_dev_stroke_path(fz_device *dev, fz_path *path, fz_stroke_state *stroke, const fz_matrix *ctm,
fz_colorspace *colorspace, float *color, float alpha)
{
svg_device *sdev = dev->user;
fz_output *out = sdev->out;
fz_printf(out, "\n");
}
static void
svg_dev_clip_path(fz_device *dev, fz_path *path, const fz_rect *rect, int even_odd, const fz_matrix *ctm)
{
svg_device *sdev = dev->user;
fz_output *out = sdev->out;
int num = sdev->id++;
fz_printf(out, "\n", num);
fz_printf(out, "\n\n\n", num);
}
static void
svg_dev_clip_stroke_path(fz_device *dev, fz_path *path, const fz_rect *rect, fz_stroke_state *stroke, const fz_matrix *ctm)
{
svg_device *sdev = dev->user;
fz_output *out = sdev->out;
fz_context *ctx = dev->ctx;
fz_rect bounds;
int num = sdev->id++;
float white[3] = { 255, 255, 255 };
fz_bound_path(ctx, path, stroke, ctm, &bounds);
fz_printf(out, "\n",
num, bounds.x0, bounds.y0, bounds.x1 - bounds.x0, bounds.y1 - bounds.y0);
fz_printf(out, "\n\n\n", num);
}
static void
svg_dev_fill_text(fz_device *dev, fz_text *text, const fz_matrix *ctm,
fz_colorspace *colorspace, float *color, float alpha)
{
svg_device *sdev = dev->user;
fz_output *out = sdev->out;
fz_printf(out, "user;
fz_output *out = sdev->out;
fz_printf(out, "user;
fz_output *out = sdev->out;
fz_context *ctx = dev->ctx;
fz_rect bounds;
int num = sdev->id++;
float white[3] = { 255, 255, 255 };
fz_bound_text(ctx, text, NULL, ctm, &bounds);
fz_printf(out, "\n",
num, bounds.x0, bounds.y0, bounds.x1 - bounds.x0, bounds.y1 - bounds.y0);
fz_printf(out, "\n\n", num);
}
static void
svg_dev_clip_stroke_text(fz_device *dev, fz_text *text, fz_stroke_state *stroke, const fz_matrix *ctm)
{
svg_device *sdev = dev->user;
fz_output *out = sdev->out;
fz_context *ctx = dev->ctx;
fz_rect bounds;
int num = sdev->id++;
float white[3] = { 255, 255, 255 };
fz_bound_text(ctx, text, NULL, ctm, &bounds);
fz_printf(out, "\n",
num, bounds.x0, bounds.y0, bounds.x1 - bounds.x0, bounds.y1 - bounds.y0);
fz_printf(out, "\n\n", num);
}
static void
svg_dev_ignore_text(fz_device *dev, fz_text *text, const fz_matrix *ctm)
{
}
static void
send_data_base64(fz_output *out, fz_buffer *buffer)
{
int i, len;
static const char set[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
len = buffer->len/3;
for (i = 0; i < len; i++)
{
int c = buffer->data[3*i];
int d = buffer->data[3*i+1];
int e = buffer->data[3*i+2];
if ((i & 15) == 0)
fz_printf(out, "\n");
fz_printf(out, "%c%c%c%c", set[c>>2], set[((c&3)<<4)|(d>>4)], set[((d&15)<<2)|(e>>6)], set[e & 63]);
}
i *= 3;
switch (buffer->len-i)
{
case 2:
{
int c = buffer->data[i];
int d = buffer->data[i+1];
fz_printf(out, "%c%c%c=", set[c>>2], set[((c&3)<<4)|(d>>4)], set[((d&15)<<2)]);
break;
}
case 1:
{
int c = buffer->data[i];
fz_printf(out, "%c%c==", set[c>>2], set[(c&3)<<4]);
break;
}
default:
case 0:
break;
}
}
static void
svg_dev_fill_image(fz_device *dev, fz_image *image, const fz_matrix *ctm, float alpha)
{
svg_device *sdev = (svg_device *)dev->user;
fz_context *ctx = dev->ctx;
fz_output *out = sdev->out;
fz_matrix local_ctm = *ctm;
fz_matrix scale = { 1.0f/image->w, 0, 0, 1.0f/image->h, 0, 0};
fz_concat(&local_ctm, &scale, ctm);
fz_printf(out, "w, image->h);
switch (image->buffer == NULL ? FZ_IMAGE_JPX : image->buffer->params.type)
{
case FZ_IMAGE_JPEG:
fz_printf(out, "image/jpeg;base64,");
send_data_base64(out, image->buffer->buffer);
break;
case FZ_IMAGE_PNG:
fz_printf(out, "image/png;base64,");
send_data_base64(out, image->buffer->buffer);
break;
default:
{
fz_buffer *buf = fz_image_as_png(ctx, image, image->w, image->h);
fz_printf(out, "image/png;base64,");
send_data_base64(out, buf);
fz_drop_buffer(ctx, buf);
break;
}
}
fz_printf(out, "\"/>\n");
}
static void
svg_dev_fill_shade(fz_device *dev, fz_shade *shade, const fz_matrix *ctm, float alpha)
{
}
static void
svg_dev_fill_image_mask(fz_device *dev, fz_image *image, const fz_matrix *ctm,
fz_colorspace *colorspace, float *color, float alpha)
{
}
static void
svg_dev_clip_image_mask(fz_device *dev, fz_image *image, const fz_rect *rect, const fz_matrix *ctm)
{
svg_device *sdev = dev->user;
fz_output *out = sdev->out;
fz_printf(out, "\n");
}
static void
svg_dev_pop_clip(fz_device *dev)
{
svg_device *sdev = (svg_device *)dev->user;
fz_output *out = sdev->out;
/* FIXME */
fz_printf(out, "\n");
}
static void
svg_dev_begin_mask(fz_device *dev, const fz_rect *bbox, int luminosity, fz_colorspace *colorspace, float *color)
{
}
static void
svg_dev_end_mask(fz_device *dev)
{
}
static void
svg_dev_begin_group(fz_device *dev, const fz_rect *bbox, int isolated, int knockout, int blendmode, float alpha)
{
}
static void
svg_dev_end_group(fz_device *dev)
{
}
static int
svg_dev_begin_tile(fz_device *dev, const fz_rect *area, const fz_rect *view, float xstep, float ystep, const fz_matrix *ctm, int id)
{
svg_device *sdev = (svg_device *)dev->user;
fz_output *out = sdev->out;
fz_context *ctx = dev->ctx;
fz_matrix inverse;
int num;
tile *t;
if (sdev->num_tiles == sdev->max_tiles)
{
int n = (sdev->num_tiles == 0 ? 4 : sdev->num_tiles * 2);
sdev->tiles = fz_resize_array(ctx, sdev->tiles, n, sizeof(tile));
sdev->max_tiles = n;
}
num = sdev->num_tiles++;
t = &sdev->tiles[num];
t->area = *area;
t->view = *view;
t->ctm = *ctm;
t->pattern = sdev->id++;
t->step.x = xstep;
t->step.y = ystep;
/* view = area of our reference tile in pattern space.
* area = area to tile into in pattern space.
* xstep/ystep = pattern repeat step in pattern space.
* All of these need to be transformed by ctm to get to device space.
* SVG only allows us to specify pattern tiles as axis aligned
* rectangles, so we send these through as is, and ensure that the
* correct matrix is used on the fill.
*/
/* In svg, the reference tile is taken from (x,y) to (x+width,y+height)
* and is repeated at (x+n*width,y+m*height) for all integer n and m.
* This means that width and height correspond to xstep and ystep. */
fz_printf(out, "pattern);
fz_printf(out, " x=\"%g\" y=\"%g\" width=\"%g\" height=\"%g\">\n",
view->x0, view->y0, xstep, ystep);
/* All the pattern contents will have their own ctm applied. Let's
* undo the current one to allow for this */
fz_invert_matrix(&inverse, ctm);
fz_printf(out, "\n");
return 0;
}
static void
svg_dev_end_tile(fz_device *dev)
{
svg_device *sdev = (svg_device *)dev->user;
fz_output *out = sdev->out;
int num;
tile *t;
if (sdev->num_tiles == 0)
return;
num = --sdev->num_tiles;
t = &sdev->tiles[num];
fz_printf(out, "\n\n");
fz_printf(out, "ctm);
fz_printf(out, " fill=\"url(#pa%d)\" x=\"%g\" y=\"%g\" width=\"%g\" height=\"%g\"/>\n",
t->pattern, t->area.x0, t->area.y0, t->area.x1 - t->area.x0, t->area.y1 - t->area.y0);
}
static void
svg_dev_free_user(fz_device *dev)
{
svg_device *sdev = dev->user;
fz_context *ctx = sdev->ctx;
fz_output *out = sdev->out;
fz_free(ctx, sdev->tiles);
fz_printf(out, "\n");
fz_free(ctx, sdev);
}
fz_device *fz_new_svg_device(fz_context *ctx, fz_output *out, float page_width, float page_height)
{
svg_device *sdev = fz_malloc_struct(ctx, svg_device);
fz_device *dev;
fz_try(ctx)
{
sdev->ctx = ctx;
sdev->out = out;
sdev->id = 0;
dev = fz_new_device(ctx, sdev);
}
fz_catch(ctx)
{
fz_free(ctx, sdev);
fz_rethrow(ctx);
}
dev->free_user = svg_dev_free_user;
dev->fill_path = svg_dev_fill_path;
dev->stroke_path = svg_dev_stroke_path;
dev->clip_path = svg_dev_clip_path;
dev->clip_stroke_path = svg_dev_clip_stroke_path;
dev->fill_text = svg_dev_fill_text;
dev->stroke_text = svg_dev_stroke_text;
dev->clip_text = svg_dev_clip_text;
dev->clip_stroke_text = svg_dev_clip_stroke_text;
dev->ignore_text = svg_dev_ignore_text;
dev->fill_shade = svg_dev_fill_shade;
dev->fill_image = svg_dev_fill_image;
dev->fill_image_mask = svg_dev_fill_image_mask;
dev->clip_image_mask = svg_dev_clip_image_mask;
dev->pop_clip = svg_dev_pop_clip;
dev->begin_mask = svg_dev_begin_mask;
dev->end_mask = svg_dev_end_mask;
dev->begin_group = svg_dev_begin_group;
dev->end_group = svg_dev_end_group;
dev->begin_tile = svg_dev_begin_tile;
dev->end_tile = svg_dev_end_tile;
fz_printf(out, "\n");
fz_printf(out, "\n");
fz_printf(out, "