#include "mupdf-internal.h" typedef struct svg_device_s svg_device; typedef struct tile_s tile; struct tile_s { int pattern; fz_matrix ctm; fz_rect view; fz_rect area; fz_point step; }; struct svg_device_s { fz_context *ctx; fz_output *out; int id; int num_tiles; int max_tiles; tile *tiles; }; /* Helper functions */ static void svg_dev_path(svg_device *sdev, fz_path *path) { fz_output *out = sdev->out; float x, y; int i = 0; fz_printf(out, " d=\""); while (i < path->len) { switch (path->items[i++].k) { case FZ_MOVETO: x = path->items[i++].v; y = path->items[i++].v; fz_printf(out, "M %g %g ", x, y); break; case FZ_LINETO: x = path->items[i++].v; y = path->items[i++].v; fz_printf(out, "L %g %g ", x, y); break; case FZ_CURVETO: x = path->items[i++].v; y = path->items[i++].v; fz_printf(out, "C %g %g ", x, y); x = path->items[i++].v; y = path->items[i++].v; fz_printf(out, "%g %g ", x, y); x = path->items[i++].v; y = path->items[i++].v; fz_printf(out, "%g %g ", x, y); break; case FZ_CLOSE_PATH: fz_printf(out, "Z "); break; } } fz_printf(out, "\""); } static void svg_dev_ctm(svg_device *sdev, const fz_matrix *ctm) { fz_output *out = sdev->out; if (ctm->a != 1.0 || ctm->b != 0 || ctm->c != 0 || ctm->d != 1.0 || ctm->e != 0 || ctm->f != 0) { fz_printf(out, " transform=\"matrix(%g,%g,%g,%g,%g,%g)\"", ctm->a, ctm->b, ctm->c, ctm->d, ctm->e, ctm->f); } } static void svg_dev_stroke_state(svg_device *sdev, fz_stroke_state *stroke_state) { fz_output *out = sdev->out; fz_printf(out, " stroke-width=\"%g\"", stroke_state->linewidth); fz_printf(out, " stroke-linecap=\"%s\"", (stroke_state->start_cap == FZ_LINECAP_SQUARE ? "square" : (stroke_state->start_cap == FZ_LINECAP_ROUND ? "round" : "butt"))); if (stroke_state->dash_len != 0) { int i; fz_printf(out, " stroke-dasharray="); for (i = 0; i < stroke_state->dash_len; i++) fz_printf(out, "%c%g", (i == 0 ? '\"' : ','), stroke_state->dash_list[i]); fz_printf(out, "\""); if (stroke_state->dash_phase != 0) fz_printf(out, " stroke-dashoffset=\"%g\"", stroke_state->dash_phase); } if (stroke_state->linejoin == FZ_LINEJOIN_MITER || stroke_state->linejoin == FZ_LINEJOIN_MITER_XPS) fz_printf(out, " stroke-miterlimit=\"%g\"", stroke_state->miterlimit); fz_printf(out, " stroke-linejoin=\"%s\"", (stroke_state->linejoin == FZ_LINEJOIN_BEVEL ? "bevel" : (stroke_state->linejoin == FZ_LINEJOIN_ROUND ? "round" : "miter"))); } static void svg_dev_fill_color(svg_device *sdev, fz_colorspace *colorspace, float *color, float alpha) { fz_context *ctx = sdev->ctx; fz_output *out = sdev->out; float rgb[FZ_MAX_COLORS]; if (colorspace != fz_device_rgb(ctx)) { /* If it's not rgb, make it rgb */ colorspace->to_rgb(ctx, colorspace, color, rgb); color = rgb; } if (color[0] == 0 && color[1] == 0 && color[2] == 0) { /* don't send a fill, as it will be assumed to be black */ } else fz_printf(out, " fill=\"rgb(%d,%d,%d)\"", (int)(255*color[0] + 0.5), (int)(255*color[1] + 0.5), (int)(255*color[2]+0.5)); if (alpha != 1) fz_printf(out, " fill-opacity=\"%g\"", alpha); } static void svg_dev_stroke_color(svg_device *sdev, fz_colorspace *colorspace, float *color, float alpha) { fz_context *ctx = sdev->ctx; fz_output *out = sdev->out; float rgb[FZ_MAX_COLORS]; if (colorspace != fz_device_rgb(ctx)) { /* If it's not rgb, make it rgb */ colorspace->to_rgb(ctx, colorspace, color, rgb); color = rgb; } fz_printf(out, " fill=\"none\" stroke=\"rgb(%d,%d,%d)\"", (int)(255*color[0] + 0.5), (int)(255*color[1] + 0.5), (int)(255*color[2]+0.5)); if (alpha != 1) fz_printf(out, " stroke-opacity=\"%g\"", alpha); } static void svg_dev_text(svg_device *sdev, const fz_matrix *ctm, fz_text *text) { fz_output *out = sdev->out; int i; fz_matrix inverse; fz_matrix local_trm; float size; /* Rely on the fact that trm.{e,f} == 0 */ size = fz_matrix_expansion(&text->trm); local_trm.a = text->trm.a / size; local_trm.b = text->trm.b / size; local_trm.c = -text->trm.c / size; local_trm.d = -text->trm.d / size; local_trm.e = 0; local_trm.f = 0; fz_invert_matrix(&inverse, &local_trm); fz_concat(&local_trm, &local_trm, ctm); fz_printf(out, " transform=\"matrix(%g,%g,%g,%g,%g,%g)\"", local_trm.a, local_trm.b, local_trm.c, local_trm.d, local_trm.e, local_trm.f); fz_printf(out, " font-size=\"%g\"", size); fz_printf(out, " font-family=\"%s\"", text->font->name); fz_printf(out, " x="); for (i=0; i < text->len; i++) { fz_text_item *it = &text->items[i]; fz_point p; p.x = it->x; p.y = it->y; fz_transform_point(&p, &inverse); fz_printf(out, "%c%g", i == 0 ? '\"' : ' ', p.x); } fz_printf(out, "\" y="); for (i=0; i < text->len; i++) { fz_text_item *it = &text->items[i]; fz_point p; p.x = it->x; p.y = it->y; fz_transform_point(&p, &inverse); fz_printf(out, "%c%g", i == 0 ? '\"' : ' ', p.y); } fz_printf(out, "\">\n"); for (i=0; i < text->len; i++) { fz_text_item *it = &text->items[i]; int c = it->ucs; if (c >= 32 && c <= 127 && c != '<' && c != '&') fz_printf(out, "%c", c); else fz_printf(out, "&#x%04x;", c); } fz_printf(out, "\n\n"); } /* Entry points */ static void svg_dev_fill_path(fz_device *dev, fz_path *path, int even_odd, const fz_matrix *ctm, fz_colorspace *colorspace, float *color, float alpha) { svg_device *sdev = dev->user; fz_output *out = sdev->out; fz_printf(out, "\n"); } static void svg_dev_stroke_path(fz_device *dev, fz_path *path, fz_stroke_state *stroke, const fz_matrix *ctm, fz_colorspace *colorspace, float *color, float alpha) { svg_device *sdev = dev->user; fz_output *out = sdev->out; fz_printf(out, "\n"); } static void svg_dev_clip_path(fz_device *dev, fz_path *path, const fz_rect *rect, int even_odd, const fz_matrix *ctm) { svg_device *sdev = dev->user; fz_output *out = sdev->out; int num = sdev->id++; fz_printf(out, "\n", num); fz_printf(out, "\n\n\n", num); } static void svg_dev_clip_stroke_path(fz_device *dev, fz_path *path, const fz_rect *rect, fz_stroke_state *stroke, const fz_matrix *ctm) { svg_device *sdev = dev->user; fz_output *out = sdev->out; fz_context *ctx = dev->ctx; fz_rect bounds; int num = sdev->id++; float white[3] = { 255, 255, 255 }; fz_bound_path(ctx, path, stroke, ctm, &bounds); fz_printf(out, "\n", num, bounds.x0, bounds.y0, bounds.x1 - bounds.x0, bounds.y1 - bounds.y0); fz_printf(out, "\n\n\n", num); } static void svg_dev_fill_text(fz_device *dev, fz_text *text, const fz_matrix *ctm, fz_colorspace *colorspace, float *color, float alpha) { svg_device *sdev = dev->user; fz_output *out = sdev->out; fz_printf(out, "user; fz_output *out = sdev->out; fz_printf(out, "user; fz_output *out = sdev->out; fz_context *ctx = dev->ctx; fz_rect bounds; int num = sdev->id++; float white[3] = { 255, 255, 255 }; fz_bound_text(ctx, text, NULL, ctm, &bounds); fz_printf(out, "\n", num, bounds.x0, bounds.y0, bounds.x1 - bounds.x0, bounds.y1 - bounds.y0); fz_printf(out, "\n\n", num); } static void svg_dev_clip_stroke_text(fz_device *dev, fz_text *text, fz_stroke_state *stroke, const fz_matrix *ctm) { svg_device *sdev = dev->user; fz_output *out = sdev->out; fz_context *ctx = dev->ctx; fz_rect bounds; int num = sdev->id++; float white[3] = { 255, 255, 255 }; fz_bound_text(ctx, text, NULL, ctm, &bounds); fz_printf(out, "\n", num, bounds.x0, bounds.y0, bounds.x1 - bounds.x0, bounds.y1 - bounds.y0); fz_printf(out, "\n\n", num); } static void svg_dev_ignore_text(fz_device *dev, fz_text *text, const fz_matrix *ctm) { } static void send_data_base64(fz_output *out, fz_buffer *buffer) { int i, len; static const char set[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; len = buffer->len/3; for (i = 0; i < len; i++) { int c = buffer->data[3*i]; int d = buffer->data[3*i+1]; int e = buffer->data[3*i+2]; if ((i & 15) == 0) fz_printf(out, "\n"); fz_printf(out, "%c%c%c%c", set[c>>2], set[((c&3)<<4)|(d>>4)], set[((d&15)<<2)|(e>>6)], set[e & 63]); } i *= 3; switch (buffer->len-i) { case 2: { int c = buffer->data[i]; int d = buffer->data[i+1]; fz_printf(out, "%c%c%c=", set[c>>2], set[((c&3)<<4)|(d>>4)], set[((d&15)<<2)]); break; } case 1: { int c = buffer->data[i]; fz_printf(out, "%c%c==", set[c>>2], set[(c&3)<<4]); break; } default: case 0: break; } } static void svg_dev_fill_image(fz_device *dev, fz_image *image, const fz_matrix *ctm, float alpha) { svg_device *sdev = (svg_device *)dev->user; fz_context *ctx = dev->ctx; fz_output *out = sdev->out; fz_matrix local_ctm = *ctm; fz_matrix scale = { 1.0f/image->w, 0, 0, 1.0f/image->h, 0, 0}; fz_concat(&local_ctm, &scale, ctm); fz_printf(out, "w, image->h); switch (image->buffer == NULL ? FZ_IMAGE_JPX : image->buffer->params.type) { case FZ_IMAGE_JPEG: fz_printf(out, "image/jpeg;base64,"); send_data_base64(out, image->buffer->buffer); break; case FZ_IMAGE_PNG: fz_printf(out, "image/png;base64,"); send_data_base64(out, image->buffer->buffer); break; default: { fz_buffer *buf = fz_image_as_png(ctx, image, image->w, image->h); fz_printf(out, "image/png;base64,"); send_data_base64(out, buf); fz_drop_buffer(ctx, buf); break; } } fz_printf(out, "\"/>\n"); } static void svg_dev_fill_shade(fz_device *dev, fz_shade *shade, const fz_matrix *ctm, float alpha) { } static void svg_dev_fill_image_mask(fz_device *dev, fz_image *image, const fz_matrix *ctm, fz_colorspace *colorspace, float *color, float alpha) { } static void svg_dev_clip_image_mask(fz_device *dev, fz_image *image, const fz_rect *rect, const fz_matrix *ctm) { svg_device *sdev = dev->user; fz_output *out = sdev->out; fz_printf(out, "\n"); } static void svg_dev_pop_clip(fz_device *dev) { svg_device *sdev = (svg_device *)dev->user; fz_output *out = sdev->out; /* FIXME */ fz_printf(out, "\n"); } static void svg_dev_begin_mask(fz_device *dev, const fz_rect *bbox, int luminosity, fz_colorspace *colorspace, float *color) { } static void svg_dev_end_mask(fz_device *dev) { } static void svg_dev_begin_group(fz_device *dev, const fz_rect *bbox, int isolated, int knockout, int blendmode, float alpha) { } static void svg_dev_end_group(fz_device *dev) { } static int svg_dev_begin_tile(fz_device *dev, const fz_rect *area, const fz_rect *view, float xstep, float ystep, const fz_matrix *ctm, int id) { svg_device *sdev = (svg_device *)dev->user; fz_output *out = sdev->out; fz_context *ctx = dev->ctx; fz_matrix inverse; int num; tile *t; if (sdev->num_tiles == sdev->max_tiles) { int n = (sdev->num_tiles == 0 ? 4 : sdev->num_tiles * 2); sdev->tiles = fz_resize_array(ctx, sdev->tiles, n, sizeof(tile)); sdev->max_tiles = n; } num = sdev->num_tiles++; t = &sdev->tiles[num]; t->area = *area; t->view = *view; t->ctm = *ctm; t->pattern = sdev->id++; t->step.x = xstep; t->step.y = ystep; /* view = area of our reference tile in pattern space. * area = area to tile into in pattern space. * xstep/ystep = pattern repeat step in pattern space. * All of these need to be transformed by ctm to get to device space. * SVG only allows us to specify pattern tiles as axis aligned * rectangles, so we send these through as is, and ensure that the * correct matrix is used on the fill. */ /* In svg, the reference tile is taken from (x,y) to (x+width,y+height) * and is repeated at (x+n*width,y+m*height) for all integer n and m. * This means that width and height correspond to xstep and ystep. */ fz_printf(out, "pattern); fz_printf(out, " x=\"%g\" y=\"%g\" width=\"%g\" height=\"%g\">\n", view->x0, view->y0, xstep, ystep); /* All the pattern contents will have their own ctm applied. Let's * undo the current one to allow for this */ fz_invert_matrix(&inverse, ctm); fz_printf(out, "\n"); return 0; } static void svg_dev_end_tile(fz_device *dev) { svg_device *sdev = (svg_device *)dev->user; fz_output *out = sdev->out; int num; tile *t; if (sdev->num_tiles == 0) return; num = --sdev->num_tiles; t = &sdev->tiles[num]; fz_printf(out, "\n\n"); fz_printf(out, "ctm); fz_printf(out, " fill=\"url(#pa%d)\" x=\"%g\" y=\"%g\" width=\"%g\" height=\"%g\"/>\n", t->pattern, t->area.x0, t->area.y0, t->area.x1 - t->area.x0, t->area.y1 - t->area.y0); } static void svg_dev_free_user(fz_device *dev) { svg_device *sdev = dev->user; fz_context *ctx = sdev->ctx; fz_output *out = sdev->out; fz_free(ctx, sdev->tiles); fz_printf(out, "\n"); fz_free(ctx, sdev); } fz_device *fz_new_svg_device(fz_context *ctx, fz_output *out, float page_width, float page_height) { svg_device *sdev = fz_malloc_struct(ctx, svg_device); fz_device *dev; fz_try(ctx) { sdev->ctx = ctx; sdev->out = out; sdev->id = 0; dev = fz_new_device(ctx, sdev); } fz_catch(ctx) { fz_free(ctx, sdev); fz_rethrow(ctx); } dev->free_user = svg_dev_free_user; dev->fill_path = svg_dev_fill_path; dev->stroke_path = svg_dev_stroke_path; dev->clip_path = svg_dev_clip_path; dev->clip_stroke_path = svg_dev_clip_stroke_path; dev->fill_text = svg_dev_fill_text; dev->stroke_text = svg_dev_stroke_text; dev->clip_text = svg_dev_clip_text; dev->clip_stroke_text = svg_dev_clip_stroke_text; dev->ignore_text = svg_dev_ignore_text; dev->fill_shade = svg_dev_fill_shade; dev->fill_image = svg_dev_fill_image; dev->fill_image_mask = svg_dev_fill_image_mask; dev->clip_image_mask = svg_dev_clip_image_mask; dev->pop_clip = svg_dev_pop_clip; dev->begin_mask = svg_dev_begin_mask; dev->end_mask = svg_dev_end_mask; dev->begin_group = svg_dev_begin_group; dev->end_group = svg_dev_end_group; dev->begin_tile = svg_dev_begin_tile; dev->end_tile = svg_dev_end_tile; fz_printf(out, "\n"); fz_printf(out, "\n"); fz_printf(out, "\n", page_width*2.54/72, page_height*2.54/72, page_width, page_height); return dev; }