#include "fitz-base.h" #include "fitz-world.h" #include "fitz-draw.h" enum { BUTT = 0, ROUND = 1, SQUARE = 2, MITER = 0, BEVEL = 2 }; struct sctx { fz_gel *gel; fz_matrix *ctm; float flatness; int linecap; int linejoin; float linewidth; float miterlimit; fz_point beg[2]; fz_point seg[2]; int sn, bn; int dot; fz_dash *dash; int toggle; int offset; float phase; fz_point cur; }; static fz_error * line(struct sctx *s, float x0, float y0, float x1, float y1) { float tx0 = s->ctm->a * x0 + s->ctm->c * y0 + s->ctm->e; float ty0 = s->ctm->b * x0 + s->ctm->d * y0 + s->ctm->f; float tx1 = s->ctm->a * x1 + s->ctm->c * y1 + s->ctm->e; float ty1 = s->ctm->b * x1 + s->ctm->d * y1 + s->ctm->f; return fz_insertgel(s->gel, tx0, ty0, tx1, ty1); } static fz_error * arc(struct sctx *s, float xc, float yc, float x0, float y0, float x1, float y1) { fz_error *error; float th0, th1, r; float theta; float ox, oy, nx, ny; int n, i; r = fabs(s->linewidth); theta = 2 * M_SQRT2 * sqrt(s->flatness / r); th0 = atan2(y0, x0); th1 = atan2(y1, x1); if (r > 0) { if (th0 < th1) th0 += M_PI * 2; n = ceil((th0 - th1) / theta); } else { if (th1 < th0) th1 += M_PI * 2; n = ceil((th1 - th0) / theta); } ox = x0; oy = y0; for (i = 1; i < n; i++) { theta = th0 + (th1 - th0) * i / n; nx = cos(theta) * r; ny = sin(theta) * r; error = line(s, xc + ox, yc + oy, xc + nx, yc + ny); if (error) return error; ox = nx; oy = ny; } error = line(s, xc + ox, yc + oy, xc + x1, yc + y1); if (error) return error; return fz_okay; } static fz_error * linestroke(struct sctx *s, fz_point a, fz_point b) { fz_error *error; float dx = b.x - a.x; float dy = b.y - a.y; float scale = s->linewidth / sqrt(dx * dx + dy * dy); float dlx = dy * scale; float dly = -dx * scale; error = line(s, a.x - dlx, a.y - dly, b.x - dlx, b.y - dly); if (error) return error; error = line(s, b.x + dlx, b.y + dly, a.x + dlx, a.y + dly); if (error) return error; return fz_okay; } static fz_error * linejoin(struct sctx *s, fz_point a, fz_point b, fz_point c) { fz_error *error; float miterlimit = s->miterlimit; float linewidth = s->linewidth; int linejoin = s->linejoin; float dx0, dy0; float dx1, dy1; float dlx0, dly0; float dlx1, dly1; float dmx, dmy; float dmr2; float scale; float cross; dx0 = b.x - a.x; dy0 = b.y - a.y; dx1 = c.x - b.x; dy1 = c.y - b.y; if (dx0 * dx0 + dy0 * dy0 < FLT_EPSILON) return fz_okay; if (dx1 * dx1 + dy1 * dy1 < FLT_EPSILON) return fz_okay; scale = linewidth / sqrt(dx0 * dx0 + dy0 * dy0); dlx0 = dy0 * scale; dly0 = -dx0 * scale; scale = linewidth / sqrt(dx1 * dx1 + dy1 * dy1); dlx1 = dy1 * scale; dly1 = -dx1 * scale; cross = dx1 * dy0 - dx0 * dy1; dmx = (dlx0 + dlx1) * 0.5; dmy = (dly0 + dly1) * 0.5; dmr2 = dmx * dmx + dmy * dmy; if (cross * cross < FLT_EPSILON && dx0 * dx1 + dy0 * dy1 >= 0) linejoin = BEVEL; if (linejoin == MITER) if (dmr2 * miterlimit * miterlimit < linewidth * linewidth) linejoin = BEVEL; if (linejoin == BEVEL) { error = line(s, b.x - dlx0, b.y - dly0, b.x - dlx1, b.y - dly1); if (error) return error; error = line(s, b.x + dlx1, b.y + dly1, b.x + dlx0, b.y + dly0); if (error) return error; } if (linejoin == MITER) { scale = linewidth * linewidth / dmr2; dmx *= scale; dmy *= scale; if (cross < 0) { error = line(s, b.x - dlx0, b.y - dly0, b.x - dlx1, b.y - dly1); if (error) return error; error = line(s, b.x + dlx1, b.y + dly1, b.x + dmx, b.y + dmy); if (error) return error; error = line(s, b.x + dmx, b.y + dmy, b.x + dlx0, b.y + dly0); if (error) return error; } else { error = line(s, b.x + dlx1, b.y + dly1, b.x + dlx0, b.y + dly0); if (error) return error; error = line(s, b.x - dlx0, b.y - dly0, b.x - dmx, b.y - dmy); if (error) return error; error = line(s, b.x - dmx, b.y - dmy, b.x - dlx1, b.y - dly1); if (error) return error; } } if (linejoin == ROUND) { if (cross < 0) { error = line(s, b.x - dlx0, b.y - dly0, b.x - dlx1, b.y - dly1); if (error) return error; error = arc(s, b.x, b.y, dlx1, dly1, dlx0, dly0); if (error) return error; } else { error = line(s, b.x + dlx1, b.y + dly1, b.x + dlx0, b.y + dly0); if (error) return error; error = arc(s, b.x, b.y, -dlx0, -dly0, -dlx1, -dly1); if (error) return error; } } return fz_okay; } static fz_error * linecap(struct sctx *s, fz_point a, fz_point b) { fz_error *error; float flatness = s->flatness; float linewidth = s->linewidth; int linecap = s->linecap; float dx = b.x - a.x; float dy = b.y - a.y; float scale = linewidth / sqrt(dx * dx + dy * dy); float dlx = dy * scale; float dly = -dx * scale; if (linecap == BUTT) return line(s, b.x - dlx, b.y - dly, b.x + dlx, b.y + dly); if (linecap == ROUND) { int i; int n = ceil(M_PI / (2.0 * M_SQRT2 * sqrt(flatness / linewidth))); float ox = b.x - dlx; float oy = b.y - dly; for (i = 1; i < n; i++) { float theta = M_PI * i / n; float cth = cos(theta); float sth = sin(theta); float nx = b.x - dlx * cth - dly * sth; float ny = b.y - dly * cth + dlx * sth; error = line(s, ox, oy, nx, ny); if (error) return error; ox = nx; oy = ny; } error = line(s, ox, oy, b.x + dlx, b.y + dly); if (error) return error; } if (linecap == SQUARE) { error = line(s, b.x - dlx, b.y - dly, b.x - dlx - dly, b.y - dly + dlx); if (error) return error; error = line(s, b.x - dlx - dly, b.y - dly + dlx, b.x + dlx - dly, b.y + dly + dlx); if (error) return error; error = line(s, b.x + dlx - dly, b.y + dly + dlx, b.x + dlx, b.y + dly); if (error) return error; } return fz_okay; } static fz_error * linedot(struct sctx *s, fz_point a) { fz_error *error; float flatness = s->flatness; float linewidth = s->linewidth; int n = ceil(M_PI / (M_SQRT2 * sqrt(flatness / linewidth))); float ox = a.x - linewidth; float oy = a.y; int i; for (i = 1; i < n; i++) { float theta = M_PI * 2 * i / n; float cth = cos(theta); float sth = sin(theta); float nx = a.x - cth * linewidth; float ny = a.y + sth * linewidth; error = line(s, ox, oy, nx, ny); if (error) return error; ox = nx; oy = ny; } error = line(s, ox, oy, a.x - linewidth, a.y); if (error) return error; return fz_okay; } static fz_error * strokeflush(struct sctx *s) { fz_error *error; if (s->sn == 2) { error = linecap(s, s->beg[1], s->beg[0]); if (error) return error; error = linecap(s, s->seg[0], s->seg[1]); if (error) return error; } else if (s->dot) { error = linedot(s, s->beg[0]); if (error) return error; } s->dot = 0; return fz_okay; } static fz_error * strokemoveto(struct sctx *s, fz_point cur) { fz_error *error; error = strokeflush(s); if (error) return error; s->seg[0] = cur; s->beg[0] = cur; s->sn = 1; s->bn = 1; return fz_okay; } static fz_error * strokelineto(struct sctx *s, fz_point cur) { fz_error *error; float dx = cur.x - s->seg[s->sn-1].x; float dy = cur.y - s->seg[s->sn-1].y; if (dx * dx + dy * dy < s->flatness * s->flatness * 0.25) { s->dot = 1; return fz_okay; } error = linestroke(s, s->seg[s->sn-1], cur); if (error) return error; if (s->sn == 2) { error = linejoin(s, s->seg[0], s->seg[1], cur); if (error) return error; s->seg[0] = s->seg[1]; s->seg[1] = cur; } if (s->sn == 1) s->seg[s->sn++] = cur; if (s->bn == 1) s->beg[s->bn++] = cur; return fz_okay; } static fz_error * strokeclosepath(struct sctx *s) { fz_error *error; if (s->sn == 2) { error = strokelineto(s, s->beg[0]); if (error) return error; if (s->seg[1].x == s->beg[0].x && s->seg[1].y == s->beg[0].y) error = linejoin(s, s->seg[0], s->beg[0], s->beg[1]); else error = linejoin(s, s->seg[1], s->beg[0], s->beg[1]); if (error) return error; } else if (s->dot) { error = linedot(s, s->beg[0]); if (error) return error; } s->bn = 0; s->sn = 0; s->dot = 0; return fz_okay; } static fz_error * strokebezier(struct sctx *s, float xa, float ya, float xb, float yb, float xc, float yc, float xd, float yd) { fz_error *error; float dmax; float xab, yab; float xbc, ybc; float xcd, ycd; float xabc, yabc; float xbcd, ybcd; float xabcd, yabcd; /* termination check */ dmax = ABS(xa - xb); dmax = MAX(dmax, ABS(ya - yb)); dmax = MAX(dmax, ABS(xd - xc)); dmax = MAX(dmax, ABS(yd - yc)); if (dmax < s->flatness) { fz_point p; p.x = xd; p.y = yd; return strokelineto(s, p); } xab = xa + xb; yab = ya + yb; xbc = xb + xc; ybc = yb + yc; xcd = xc + xd; ycd = yc + yd; xabc = xab + xbc; yabc = yab + ybc; xbcd = xbc + xcd; ybcd = ybc + ycd; xabcd = xabc + xbcd; yabcd = yabc + ybcd; xab *= 0.5f; yab *= 0.5f; xbc *= 0.5f; ybc *= 0.5f; xcd *= 0.5f; ycd *= 0.5f; xabc *= 0.25f; yabc *= 0.25f; xbcd *= 0.25f; ybcd *= 0.25f; xabcd *= 0.125f; yabcd *= 0.125f; error = strokebezier(s, xa, ya, xab, yab, xabc, yabc, xabcd, yabcd); if (error) return error; return strokebezier(s, xabcd, yabcd, xbcd, ybcd, xcd, ycd, xd, yd); } fz_error * fz_strokepath(fz_gel *gel, fz_pathnode *path, fz_matrix ctm, float flatness, float linewidth) { fz_error *error; struct sctx s; fz_point p0, p1, p2, p3; int i; s.gel = gel; s.ctm = &ctm; s.flatness = flatness; s.linecap = path->linecap; s.linejoin = path->linejoin; s.linewidth = linewidth * 0.5; /* hairlines use a different value from the path value */ s.miterlimit = path->miterlimit; s.sn = 0; s.bn = 0; s.dot = 0; i = 0; if (path->len > 0 && path->els[0].k != FZ_MOVETO) return fz_throw("path must begin with moveto"); p0.x = p0.y = 0; /* FZ_MOVETO guarantees p0 to be set, silence compiler */ while (i < path->len) { switch (path->els[i++].k) { case FZ_MOVETO: p1.x = path->els[i++].v; p1.y = path->els[i++].v; error = strokemoveto(&s, p1); if (error) return error; p0 = p1; break; case FZ_LINETO: p1.x = path->els[i++].v; p1.y = path->els[i++].v; error = strokelineto(&s, p1); if (error) return error; p0 = p1; break; case FZ_CURVETO: p1.x = path->els[i++].v; p1.y = path->els[i++].v; p2.x = path->els[i++].v; p2.y = path->els[i++].v; p3.x = path->els[i++].v; p3.y = path->els[i++].v; error = strokebezier(&s, p0.x, p0.y, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y); if (error) return error; p0 = p3; break; case FZ_CLOSEPATH: error = strokeclosepath(&s); if (error) return error; break; } } return strokeflush(&s); } static fz_error * dashmoveto(struct sctx *s, fz_point a) { s->toggle = 1; s->offset = 0; s->phase = s->dash->phase; while (s->phase >= s->dash->array[s->offset]) { s->toggle = !s->toggle; s->phase -= s->dash->array[s->offset]; s->offset ++; if (s->offset == s->dash->len) s->offset = 0; } s->cur = a; if (s->toggle) return strokemoveto(s, a); return fz_okay; } static fz_error * dashlineto(struct sctx *s, fz_point b) { fz_error *error; float dx, dy; float total, used, ratio; fz_point a; fz_point m; a = s->cur; dx = b.x - a.x; dy = b.y - a.y; total = sqrt(dx * dx + dy * dy); used = 0; while (total - used > s->dash->array[s->offset] - s->phase) { used += s->dash->array[s->offset] - s->phase; ratio = used / total; m.x = a.x + ratio * dx; m.y = a.y + ratio * dy; if (s->toggle) error = strokelineto(s, m); else error = strokemoveto(s, m); if (error) return error; s->toggle = !s->toggle; s->phase = 0; s->offset ++; if (s->offset == s->dash->len) s->offset = 0; } s->phase += total - used; s->cur = b; if (s->toggle) return strokelineto(s, b); return fz_okay; } static fz_error * dashbezier(struct sctx *s, float xa, float ya, float xb, float yb, float xc, float yc, float xd, float yd) { fz_error *error; float dmax; float xab, yab; float xbc, ybc; float xcd, ycd; float xabc, yabc; float xbcd, ybcd; float xabcd, yabcd; /* termination check */ dmax = ABS(xa - xb); dmax = MAX(dmax, ABS(ya - yb)); dmax = MAX(dmax, ABS(xd - xc)); dmax = MAX(dmax, ABS(yd - yc)); if (dmax < s->flatness) { fz_point p; p.x = xd; p.y = yd; return dashlineto(s, p); } xab = xa + xb; yab = ya + yb; xbc = xb + xc; ybc = yb + yc; xcd = xc + xd; ycd = yc + yd; xabc = xab + xbc; yabc = yab + ybc; xbcd = xbc + xcd; ybcd = ybc + ycd; xabcd = xabc + xbcd; yabcd = yabc + ybcd; xab *= 0.5f; yab *= 0.5f; xbc *= 0.5f; ybc *= 0.5f; xcd *= 0.5f; ycd *= 0.5f; xabc *= 0.25f; yabc *= 0.25f; xbcd *= 0.25f; ybcd *= 0.25f; xabcd *= 0.125f; yabcd *= 0.125f; error = dashbezier(s, xa, ya, xab, yab, xabc, yabc, xabcd, yabcd); if (error) return error; return dashbezier(s, xabcd, yabcd, xbcd, ybcd, xcd, ycd, xd, yd); } fz_error * fz_dashpath(fz_gel *gel, fz_pathnode *path, fz_matrix ctm, float flatness, float linewidth) { fz_error *error; struct sctx s; fz_point p0, p1, p2, p3, beg; int i; s.gel = gel; s.ctm = &ctm; s.flatness = flatness; s.linecap = path->linecap; s.linejoin = path->linejoin; s.linewidth = linewidth * 0.5; s.miterlimit = path->miterlimit; s.sn = 0; s.bn = 0; s.dot = 0; s.dash = path->dash; s.toggle = 0; s.offset = 0; s.phase = 0; i = 0; if (path->len > 0 && path->els[0].k != FZ_MOVETO) return fz_throw("path must begin with moveto"); p0.x = p0.y = 0; /* FZ_MOVETO guarantees p0 to be set, silence compiler */ while (i < path->len) { switch (path->els[i++].k) { case FZ_MOVETO: p1.x = path->els[i++].v; p1.y = path->els[i++].v; error = dashmoveto(&s, p1); if (error) return error; beg = p0 = p1; break; case FZ_LINETO: p1.x = path->els[i++].v; p1.y = path->els[i++].v; error = dashlineto(&s, p1); if (error) return error; p0 = p1; break; case FZ_CURVETO: p1.x = path->els[i++].v; p1.y = path->els[i++].v; p2.x = path->els[i++].v; p2.y = path->els[i++].v; p3.x = path->els[i++].v; p3.y = path->els[i++].v; error = dashbezier(&s, p0.x, p0.y, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y); if (error) return error; p0 = p3; break; case FZ_CLOSEPATH: error = dashlineto(&s, beg); if (error) return error; break; } } return strokeflush(&s); }