#ifndef MUPDF_DRAW_IMP_H #define MUPDF_DRAW_IMP_H #define BBOX_MIN -(1<<20) #define BBOX_MAX (1<<20) /* divide and floor towards -inf */ static inline int fz_idiv(int a, int b) { return a < 0 ? (a - b + 1) / b : a / b; } /* divide and ceil towards inf */ static inline int fz_idiv_up(int a, int b) { return a < 0 ? a / b : (a + b - 1) / b; } #ifdef AA_BITS #define fz_aa_scale 0 #define fz_rasterizer_aa_scale(ras) 0 #if AA_BITS > 6 #define AA_SCALE(s, x) (x) #define fz_aa_hscale 17 #define fz_aa_vscale 15 #define fz_aa_bits 8 #define fz_aa_text_bits 8 #define fz_rasterizer_aa_hscale(ras) 17 #define fz_rasterizer_aa_vscale(ras) 15 #define fz_rasterizer_aa_bits(ras) 8 #define fz_rasterizer_aa_text_bits(ras) 8 #elif AA_BITS > 4 #define AA_SCALE(s, x) ((x * 255) >> 6) #define fz_aa_hscale 8 #define fz_aa_vscale 8 #define fz_aa_bits 6 #define fz_aa_text_bits 6 #define fz_rasterizer_aa_hscale(ras) 8 #define fz_rasterizer_aa_vscale(ras) 8 #define fz_rasterizer_aa_bits(ras) 6 #define fz_rasterizer_aa_text_bits(ras) 6 #elif AA_BITS > 2 #define AA_SCALE(s, x) (x * 17) #define fz_aa_hscale 5 #define fz_aa_vscale 3 #define fz_aa_bits 4 #define fz_aa_text_bits 4 #define fz_rasterizer_aa_hscale(ras) 5 #define fz_rasterizer_aa_vscale(ras) 3 #define fz_rasterizer_aa_bits(ras) 4 #define fz_rasterizer_aa_text_bits(ras) 4 #elif AA_BITS > 0 #define AA_SCALE(s, x) ((x * 255) >> 2) #define fz_aa_hscale 2 #define fz_aa_vscale 2 #define fz_aa_bits 2 #define fz_aa_text_bits 2 #define fz_rasterizer_aa_hscale(ras) 2 #define fz_rasterizer_aa_vscale(ras) 2 #define fz_rasterizer_aa_bits(ras) 2 #define fz_rasterizer_aa_text_bits(ras) 2 #else #define AA_SCALE(s, x) (x * 255) #define fz_aa_hscale 1 #define fz_aa_vscale 1 #define fz_aa_bits 0 #define fz_aa_text_bits 0 #define fz_rasterizer_aa_hscale(ras) 1 #define fz_rasterizer_aa_vscale(ras) 1 #define fz_rasterizer_aa_bits(ras) 0 #define fz_rasterizer_aa_text_bits(ras) 0 #endif #else #define AA_SCALE(scale, x) ((x * scale) >> 8) #define fz_aa_hscale (ctx->aa->hscale) #define fz_aa_vscale (ctx->aa->vscale) #define fz_aa_scale (ctx->aa->scale) #define fz_aa_bits (ctx->aa->bits) #define fz_aa_text_bits (ctx->aa->text_bits) #define fz_rasterizer_aa_hscale(ras) ((ras)->aa.hscale) #define fz_rasterizer_aa_vscale(ras) ((ras)->aa.vscale) #define fz_rasterizer_aa_scale(ras) ((ras)->aa.scale) #define fz_rasterizer_aa_bits(ras) ((ras)->aa.bits) #define fz_rasterizer_aa_text_bits(ras) ((ras)->aa.text_bits) #endif /* If AA_BITS is defined, then we assume constant N bits of antialiasing. We * will attempt to provide at least that number of bits of accuracy in the * antialiasing (to a maximum of 8). If it is defined to be 0 then no * antialiasing is done. If it is undefined to we will leave the antialiasing * accuracy as a run time choice. */ struct fz_aa_context_s { int hscale; int vscale; int scale; int bits; int text_bits; float min_line_width; }; /* Overprint bitmap */ struct fz_overprint_s { /* Bit i set -> never alter this color */ uint32_t mask[(FZ_MAX_COLORS+31)/32]; }; static void inline fz_set_overprint(fz_overprint *op, int i) { op->mask[i>>5] |= 1<<(i&31); } static int inline fz_overprint_component(const fz_overprint *op, int i) { return ((op->mask[i>>5]>>(i & 31)) & 1) == 0; } static int inline fz_overprint_required(const fz_overprint *op) { int i; if (op == NULL) return 0; for (i = 0; i < (FZ_MAX_COLORS+31)/32; i++) if (op->mask[i] != 0) return 1; return 0; } /* * Scan converter */ typedef struct fz_rasterizer_s fz_rasterizer; typedef void (fz_rasterizer_drop_fn)(fz_context *ctx, fz_rasterizer *r); typedef int (fz_rasterizer_reset_fn)(fz_context *ctx, fz_rasterizer *r); typedef void (fz_rasterizer_postindex_fn)(fz_context *ctx, fz_rasterizer *r); typedef void (fz_rasterizer_insert_fn)(fz_context *ctx, fz_rasterizer *r, float x0, float y0, float x1, float y1, int rev); typedef void (fz_rasterizer_insert_rect_fn)(fz_context *ctx, fz_rasterizer *r, float fx0, float fy0, float fx1, float fy1); typedef void (fz_rasterizer_gap_fn)(fz_context *ctx, fz_rasterizer *r); typedef fz_irect *(fz_rasterizer_bound_fn)(fz_context *ctx, const fz_rasterizer *r, fz_irect *bbox); typedef void (fz_rasterizer_fn)(fz_context *ctx, fz_rasterizer *r, int eofill, const fz_irect *clip, fz_pixmap *pix, unsigned char *colorbv, fz_overprint *eop); typedef int (fz_rasterizer_is_rect_fn)(fz_context *ctx, fz_rasterizer *r); typedef struct { fz_rasterizer_drop_fn *drop; fz_rasterizer_reset_fn *reset; fz_rasterizer_postindex_fn *postindex; fz_rasterizer_insert_fn *insert; fz_rasterizer_insert_rect_fn *rect; fz_rasterizer_gap_fn *gap; fz_rasterizer_fn *convert; fz_rasterizer_is_rect_fn *is_rect; int reusable; } fz_rasterizer_fns; struct fz_rasterizer_s { fz_rasterizer_fns fns; fz_aa_context aa; fz_irect clip; /* Specified clip rectangle */ fz_irect bbox; /* Measured bbox of path while stroking/filling */ }; /* When rasterizing a shape, we first create a rasterizer then run through the edges of the shape, feeding them in. For a fill, this is easy as we just run along the path, feeding edges as we go. For a stroke, this is trickier, as we feed in edges from alternate sides of the stroke as we proceed along it. It is only when we reach the end of a subpath that we know whether we need an initial cap, or whether the list of edges match up. To identify whether a given edge fed in is forward or reverse, we tag it with a 'rev' value. Consider the following simplified example: Consider a simple path A, B, C, D, close. +------->-------+ The outside edge of this shape is the | A B | forward edge. This is fed into the rasterizer | +---<---+ | in order, with rev=0. | | | | ^ v ^ v The inside edge of this shape is the reverse | | | | edge. These edges are generated as we step | +--->---+ | through the path in clockwise order, but | D C | conceptually the path runs the other way. +-------<-------+ These are fed into the rasterizer in clockwise order, with rev=1. Consider another path, this time an open one: A,B,C,D +--->-------+ The outside edge of this shape is again the * A B | forward edge. This is fed into the rasterizer +---<---+ | in order, with rev=0. | | ^ v The inside edge of this shape is the reverse | | edge. These edges are generated as we step +--->---+ | through the path in clockwise order, but ^ D C | conceptually the path runs the other way. +---<-------+ These are fed into the rasterizer in clockwise order, with rev=1. At the end of the path, we realise that this is an open path, and we therefore have to put caps on. The cap at 'D' is easy, because it's a simple continuation of the rev=0 edge list that joins to the end of the rev=1 edge list. The cap at 'A' is trickier; it either needs to be (an) edge(s) prepended to the rev=0 list or the rev=1 list. We signal this special case by sending them with the special value rev=2. The "edge" rasterizer ignores these values. The "edgebuffer" rasterizer needs to use them to ensure that edges are correctly joined together to allow for any part of a pixel operation. */ /* fz_new_rasterizer: Create a new rasterizer instance. This encapsulates a scan converter. A single rasterizer instance can be used to scan convert many things. aa: The antialiasing settings to use (or NULL). */ fz_rasterizer *fz_new_rasterizer(fz_context *ctx, const fz_aa_context *aa); /* fz_drop_rasterizer: Dispose of a rasterizer once finished with. */ static inline void fz_drop_rasterizer(fz_context *ctx, fz_rasterizer *r) { if (r) r->fns.drop(ctx, r); } /* fz_reset_rasterizer: Reset a rasterizer, ready to scan convert a new shape. clip: A pointer to a (device space) clipping rectangle. Returns 1 if a indexing pass is required, or 0 if not. After this, the edges should be 'inserted' into the rasterizer. */ int fz_reset_rasterizer(fz_context *ctx, fz_rasterizer *r, fz_irect clip); /* fz_insert_rasterizer: Insert an edge into a rasterizer. x0, y0: Initial point x1, y1: Final point rev: 'reverse' value, 0, 1 or 2. See above. */ static inline void fz_insert_rasterizer(fz_context *ctx, fz_rasterizer *r, float x0, float y0, float x1, float y1, int rev) { r->fns.insert(ctx, r, x0, y0, x1, y1, rev); } /* fz_insert_rasterizer: Insert a rectangle into a rasterizer. x0, y0: One corner of the rectangle. x1, y1: The opposite corner of the rectangle. The rectangle inserted is conceptually: (x0,y0)->(x1,y0)->(x1,y1)->(x0,y1)->(x0,y0). This method is only used for axis aligned rectangles, and enables rasterizers to perform special 'anti-dropout' processing to ensure that horizontal artifacts aren't lost. */ static inline void fz_insert_rasterizer_rect(fz_context *ctx, fz_rasterizer *r, float x0, float y0, float x1, float y1) { r->fns.rect(ctx, r, x0, y0, x1, y1); } /* fz_gap_rasterizer: Called to indicate that there is a gap in the lists of edges fed into the rasterizer (i.e. when a path hits a move). */ static inline void fz_gap_rasterizer(fz_context *ctx, fz_rasterizer *r) { if (r->fns.gap) r->fns.gap(ctx, r); } /* fz_antidropout_rasterizer: Detect whether antidropout behaviour is required with this rasterizer. Returns 1 if required, 0 otherwise. */ static inline int fz_antidropout_rasterizer(fz_context *ctx, fz_rasterizer *r) { return r->fns.rect != NULL; } /* fz_postindex_rasterizer: Called to signify the end of the indexing phase. After this has been called, the edges should be inserted again. */ static inline void fz_postindex_rasterizer(fz_context *ctx, fz_rasterizer *r) { if (r->fns.postindex) r->fns.postindex(ctx, r); } /* fz_bound_rasterizer: Once a set of edges has been fed into a rasterizer, the (device space) bounding box can be retrieved. */ fz_irect fz_bound_rasterizer(fz_context *ctx, const fz_rasterizer *rast); /* fz_scissor_rasterizer: Retrieve the clipping box with which the rasterizer was reset. */ fz_rect fz_scissor_rasterizer(fz_context *ctx, const fz_rasterizer *rast); /* fz_convert_rasterizer: Convert the set of edges that have been fed in, into pixels within the pixmap. eofill: Fill rule; True for even odd, false for non zero. pix: The pixmap to fill into. colorbv: The color components corresponding to the pixmap. eop: effective overprint. */ void fz_convert_rasterizer(fz_context *ctx, fz_rasterizer *r, int eofill, fz_pixmap *pix, unsigned char *colorbv, fz_overprint *eop); /* fz_is_rect_rasterizer: Detect if the edges fed into a rasterizer make up a simple rectangle. */ static inline int fz_is_rect_rasterizer(fz_context *ctx, fz_rasterizer *r) { return r->fns.is_rect(ctx, r); } void *fz_new_rasterizer_of_size(fz_context *ctx, int size, const fz_rasterizer_fns *fns); #define fz_new_derived_rasterizer(C,M,F) \ ((M*)Memento_label(fz_new_rasterizer_of_size(C, sizeof(M), F), #M)) /* fz_rasterizer_text_aa_level: Get the number of bits of antialiasing we are using for text in a given rasterizer. Between 0 and 8. */ int fz_rasterizer_text_aa_level(fz_rasterizer *ras); /* fz_set_rasterizer_text_aa_level: Set the number of bits of antialiasing we should use for text in a given configuration. bits: The number of bits of antialiasing to use (values are clamped to within the 0 to 8 range). */ void fz_set_rasterizer_text_aa_level(fz_context *ctx, fz_aa_context *aa, int bits); /* fz_rasterizer_graphics_aa_level: Get the number of bits of antialiasing we are using for graphics in a given rasterizer. Between 0 and 8. */ int fz_rasterizer_graphics_aa_level(fz_rasterizer *ras); /* fz_set_rasterizer_graphics_aa_level: Set the number of bits of antialiasing we should use for graphics in a given rasterizer. bits: The number of bits of antialiasing to use (values are clamped to within the 0 to 8 range). */ void fz_set_rasterizer_graphics_aa_level(fz_context *ctx, fz_aa_context *aa, int bits); /* fz_rasterizer_graphics_min_line_width: Get the minimum line width to be used for stroked lines in a given rasterizer. min_line_width: The minimum line width to use (in pixels). */ float fz_rasterizer_graphics_min_line_width(fz_rasterizer *ras); /* fz_set_rasterizer_graphics_min_line_width: Set the minimum line width to be used for stroked lines in a given configuration. min_line_width: The minimum line width to use (in pixels). */ void fz_set_rasterizer_graphics_min_line_width(fz_context *ctx, fz_aa_context *aa, float min_line_width); fz_rasterizer *fz_new_gel(fz_context *ctx); typedef enum { FZ_EDGEBUFFER_ANY_PART_OF_PIXEL, FZ_EDGEBUFFER_CENTER_OF_PIXEL } fz_edgebuffer_rule; fz_rasterizer *fz_new_edgebuffer(fz_context *ctx, fz_edgebuffer_rule rule); int fz_flatten_fill_path(fz_context *ctx, fz_rasterizer *rast, const fz_path *path, fz_matrix ctm, float flatness, const fz_irect *irect, fz_irect *bounds); int fz_flatten_stroke_path(fz_context *ctx, fz_rasterizer *rast, const fz_path *path, const fz_stroke_state *stroke, fz_matrix ctm, float flatness, float linewidth, const fz_irect *irect, fz_irect *bounds); fz_irect *fz_bound_path_accurate(fz_context *ctx, fz_irect *bbox, const fz_irect *scissor, const fz_path *path, const fz_stroke_state *stroke, fz_matrix ctm, float flatness, float linewidth); /* * Plotting functions. */ typedef void (fz_solid_color_painter_t)(unsigned char * FZ_RESTRICT dp, int n, int w, const unsigned char * FZ_RESTRICT color, int da, const fz_overprint *eop); typedef void (fz_span_painter_t)(unsigned char * FZ_RESTRICT dp, int da, const unsigned char * FZ_RESTRICT sp, int sa, int n, int w, int alpha, const fz_overprint *eop); typedef void (fz_span_color_painter_t)(unsigned char * FZ_RESTRICT dp, const unsigned char * FZ_RESTRICT mp, int n, int w, const unsigned char * FZ_RESTRICT color, int da, const fz_overprint *eop); fz_solid_color_painter_t *fz_get_solid_color_painter(int n, const unsigned char *color, int da, const fz_overprint *eop); fz_span_painter_t *fz_get_span_painter(int da, int sa, int n, int alpha, const fz_overprint *eop); fz_span_color_painter_t *fz_get_span_color_painter(int n, int da, const unsigned char *color, const fz_overprint *eop); void fz_paint_image(fz_context *ctx, fz_pixmap *dst, const fz_irect *scissor, fz_pixmap *shape, fz_pixmap *group_alpha, fz_pixmap *img, fz_matrix ctm, int alpha, int lerp_allowed, int gridfit_as_tiled, const fz_overprint *eop); void fz_paint_image_with_color(fz_context *ctx, fz_pixmap *dst, const fz_irect *scissor, fz_pixmap *shape, fz_pixmap *group_alpha, fz_pixmap *img, fz_matrix ctm, const unsigned char *colorbv, int lerp_allowed, int gridfit_as_tiled, const fz_overprint *eop); void fz_paint_pixmap(fz_pixmap *dst, const fz_pixmap *src, int alpha); void fz_paint_pixmap_alpha(fz_pixmap *dst, const fz_pixmap *src, int alpha); void fz_paint_pixmap_with_mask(fz_pixmap *dst, const fz_pixmap *src, const fz_pixmap *msk); void fz_paint_pixmap_with_bbox(fz_pixmap *dst, const fz_pixmap *src, int alpha, fz_irect bbox); void fz_paint_pixmap_with_overprint(fz_pixmap *dst, const fz_pixmap *src, const fz_overprint *eop); void fz_blend_pixmap(fz_context *ctx, fz_pixmap *dst, fz_pixmap *src, int alpha, int blendmode, int isolated, const fz_pixmap *shape); void fz_blend_pixmap_knockout(fz_context *ctx, fz_pixmap *dst, fz_pixmap *src, const fz_pixmap *shape); void fz_paint_glyph(const unsigned char *colorbv, fz_pixmap *dst, unsigned char *dp, const fz_glyph *glyph, int w, int h, int skip_x, int skip_y, const fz_overprint *eop); #endif