#include "mupdf/fitz.h" #include #include enum { PAM_UNKNOWN = 0, PAM_BW, PAM_BWA, PAM_GRAY, PAM_GRAYA, PAM_RGB, PAM_RGBA, PAM_CMYK, PAM_CMYKA, }; enum { TOKEN_UNKNOWN = 0, TOKEN_WIDTH, TOKEN_HEIGHT, TOKEN_DEPTH, TOKEN_MAXVAL, TOKEN_TUPLTYPE, TOKEN_ENDHDR, }; struct info { int subimages; fz_colorspace *cs; int width, height; int maxval, bitdepth; int depth, alpha; int tupletype; }; static inline int iswhiteeol(int a) { switch (a) { case ' ': case '\t': case '\r': case '\n': return 1; } return 0; } static inline int iswhite(int a) { switch (a) { case ' ': case '\t': return 1; } return 0; } static inline int iseol(int a) { switch (a) { case '\r': case '\n': return 1; } return 0; } static inline int bitdepth_from_maxval(int maxval) { int depth = 0; while (maxval) { maxval >>= 1; depth++; } return depth; } static const unsigned char * pnm_read_white(fz_context *ctx, const unsigned char *p, const unsigned char *e, int single_line) { if (e - p < 1) fz_throw(ctx, FZ_ERROR_GENERIC, "cannot parse whitespace in pnm image"); if (single_line) { if (!iswhiteeol(*p) && *p != '#') fz_throw(ctx, FZ_ERROR_GENERIC, "expected whitespace/comment in pnm image"); while (p < e && iswhite(*p)) p++; if (p < e && *p == '#') while (p < e && !iseol(*p)) p++; if (p < e && iseol(*p)) p++; } else { if (!iswhiteeol(*p) && *p != '#') fz_throw(ctx, FZ_ERROR_GENERIC, "expected whitespace in pnm image"); while (p < e && iswhiteeol(*p)) p++; while (p < e && *p == '#') { while (p < e && !iseol(*p)) p++; if (p < e && iseol(*p)) p++; while (p < e && iswhiteeol(*p)) p++; if (p < e && iseol(*p)) p++; } } return p; } static const unsigned char * pnm_read_signature(fz_context *ctx, const unsigned char *p, const unsigned char *e, char *signature) { if (e - p < 2) fz_throw(ctx, FZ_ERROR_GENERIC, "cannot parse magic number in pnm image"); if (p[0] != 'P' || p[1] < '1' || p[1] > '7') fz_throw(ctx, FZ_ERROR_GENERIC, "expected signature in pnm image"); signature[0] = *p++; signature[1] = *p++; return p; } static const unsigned char * pnm_read_number(fz_context *ctx, const unsigned char *p, const unsigned char *e, int *number) { if (e - p < 1) fz_throw(ctx, FZ_ERROR_GENERIC, "cannot parse number in pnm image"); if (*p < '0' || *p > '9') fz_throw(ctx, FZ_ERROR_GENERIC, "expected numeric field in pnm image"); while (p < e && *p >= '0' && *p <= '9') { if (number) *number = *number * 10 + *p - '0'; p++; } return p; } static const unsigned char * pnm_read_tupletype(fz_context *ctx, const unsigned char *p, const unsigned char *e, int *tupletype) { const struct { int len; char *str; int type; } tupletypes[] = { {13, "BLACKANDWHITE", PAM_BW}, {19, "BLACKANDWHITE_ALPHA", PAM_BWA}, {9, "GRAYSCALE", PAM_GRAY}, {15, "GRAYSCALE_ALPHA", PAM_GRAYA}, {3, "RGB", PAM_RGB}, {9, "RGB_ALPHA", PAM_RGBA}, {4, "CMYK", PAM_CMYK}, {10, "CMYK_ALPHA", PAM_CMYKA}, }; const unsigned char *s; int i, len; if (e - p < 1) fz_throw(ctx, FZ_ERROR_GENERIC, "cannot parse tuple type in pnm image"); s = p; while (!iswhiteeol(*p)) p++; len = p - s; for (i = 0; i < nelem(tupletypes); i++) if (len == tupletypes[i].len && !strncmp((char *) s, tupletypes[i].str, len)) { *tupletype = tupletypes[i].type; return p; } fz_throw(ctx, FZ_ERROR_GENERIC, "unknown tuple type in pnm image"); } static const unsigned char * pnm_read_token(fz_context *ctx, const unsigned char *p, const unsigned char *e, int *token) { const struct { int len; char *str; int type; } tokens[] = { {5, "WIDTH", TOKEN_WIDTH}, {6, "HEIGHT", TOKEN_HEIGHT}, {5, "DEPTH", TOKEN_DEPTH}, {6, "MAXVAL", TOKEN_MAXVAL}, {8, "TUPLTYPE", TOKEN_TUPLTYPE}, {6, "ENDHDR", TOKEN_ENDHDR}, }; const unsigned char *s; int i, len; if (e - p < 1) fz_throw(ctx, FZ_ERROR_GENERIC, "cannot parse header token in pnm image"); s = p; while (!iswhiteeol(*p)) p++; len = p - s; for (i = 0; i < nelem(tokens); i++) if (len == tokens[i].len && !strncmp((char *) s, tokens[i].str, len)) { *token = tokens[i].type; return p; } fz_throw(ctx, FZ_ERROR_GENERIC, "unknown header token in pnm image"); } static int map_color(fz_context *ctx, int color, int inmax, int outmax) { float f = (float) color / inmax; return f * outmax; } static fz_pixmap * pnm_ascii_read_image(fz_context *ctx, struct info *pnm, const unsigned char *p, const unsigned char *e, int onlymeta, int bitmap, const unsigned char **out) { fz_pixmap *img = NULL; p = pnm_read_number(ctx, p, e, &pnm->width); p = pnm_read_white(ctx, p, e, 0); if (bitmap) { p = pnm_read_number(ctx, p, e, &pnm->height); p = pnm_read_white(ctx, p, e, 1); pnm->maxval = 1; } else { p = pnm_read_number(ctx, p, e, &pnm->height); p = pnm_read_white(ctx, p, e, 0); p = pnm_read_number(ctx, p, e, &pnm->maxval); p = pnm_read_white(ctx, p, e, 0); } if (pnm->maxval <= 0 || pnm->maxval >= 65536) fz_throw(ctx, FZ_ERROR_GENERIC, "maximum sample value of out range in pnm image: %d", pnm->maxval); pnm->bitdepth = bitdepth_from_maxval(pnm->maxval); if (pnm->height <= 0) fz_throw(ctx, FZ_ERROR_GENERIC, "image height must be > 0"); if (pnm->width <= 0) fz_throw(ctx, FZ_ERROR_GENERIC, "image width must be > 0"); if ((unsigned int)pnm->height > UINT_MAX / pnm->width / fz_colorspace_n(ctx, pnm->cs) / (pnm->bitdepth / 8 + 1)) fz_throw(ctx, FZ_ERROR_GENERIC, "image too large"); if (onlymeta) { int x, y, k; int w, h, n; w = pnm->width; h = pnm->height; n = fz_colorspace_n(ctx, pnm->cs); if (bitmap) { for (y = 0; y < h; y++) for (x = -1; x < w; x++) { p = pnm_read_number(ctx, p, e, NULL); p = pnm_read_white(ctx, p, e, 0); } } else { for (y = 0; y < h; y++) for (x = 0; x < w; x++) for (k = 0; k < n; k++) { p = pnm_read_number(ctx, p, e, NULL); p = pnm_read_white(ctx, p, e, 0); } } } else { unsigned char *dp; int x, y, k; int w, h, n; img = fz_new_pixmap(ctx, pnm->cs, pnm->width, pnm->height, NULL, 0); dp = img->samples; w = img->w; h = img->h; n = img->n; if (bitmap) { for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { int v = 0; p = pnm_read_number(ctx, p, e, &v); p = pnm_read_white(ctx, p, e, 0); *dp++ = v ? 0x00 : 0xff; } } } else { for (y = 0; y < h; y++) for (x = 0; x < w; x++) for (k = 0; k < n; k++) { int v = 0; p = pnm_read_number(ctx, p, e, &v); p = pnm_read_white(ctx, p, e, 0); v = fz_clampi(v, 0, pnm->maxval); *dp++ = map_color(ctx, v, pnm->maxval, 255); } } } if (out) *out = p; return img; } static fz_pixmap * pnm_binary_read_image(fz_context *ctx, struct info *pnm, const unsigned char *p, const unsigned char *e, int onlymeta, int bitmap, const unsigned char **out) { fz_pixmap *img = NULL; pnm->width = 0; p = pnm_read_number(ctx, p, e, &pnm->width); p = pnm_read_white(ctx, p, e, 0); if (bitmap) { pnm->height = 0; p = pnm_read_number(ctx, p, e, &pnm->height); p = pnm_read_white(ctx, p, e, 1); pnm->maxval = 1; } else { pnm->height = 0; p = pnm_read_number(ctx, p, e, &pnm->height); p = pnm_read_white(ctx, p, e, 0); pnm->maxval = 0; p = pnm_read_number(ctx, p, e, &pnm->maxval); p = pnm_read_white(ctx, p, e, 1); } if (pnm->maxval <= 0 || pnm->maxval >= 65536) fz_throw(ctx, FZ_ERROR_GENERIC, "maximum sample value of out range in pnm image: %d", pnm->maxval); pnm->bitdepth = bitdepth_from_maxval(pnm->maxval); if (pnm->height <= 0) fz_throw(ctx, FZ_ERROR_GENERIC, "image height must be > 0"); if (pnm->width <= 0) fz_throw(ctx, FZ_ERROR_GENERIC, "image width must be > 0"); if ((unsigned int)pnm->height > UINT_MAX / pnm->width / fz_colorspace_n(ctx, pnm->cs) / (pnm->bitdepth / 8 + 1)) fz_throw(ctx, FZ_ERROR_GENERIC, "image too large"); if (onlymeta) { int w = pnm->width; int h = pnm->height; int n = fz_colorspace_n(ctx, pnm->cs); if (pnm->maxval == 255) p += n * w * h; else if (bitmap) p += ((w + 7) / 8) * h; else if (pnm->maxval < 255) p += n * w * h; else p += 2 * n * w * h; } else { unsigned char *dp; int x, y, k; int w, h, n; img = fz_new_pixmap(ctx, pnm->cs, pnm->width, pnm->height, NULL, 0); dp = img->samples; w = img->w; h = img->h; n = img->n; if (pnm->maxval == 255) { memcpy(dp, p, w * h * n); p += n * w * h; } else if (bitmap) { for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { *dp++ = (*p & (1 << (7 - (x & 0x7)))) ? 0x00 : 0xff; if ((x & 0x7) == 7) p++; } if (w & 0x7) p++; } } else if (pnm->maxval < 255) { for (y = 0; y < h; y++) for (x = 0; x < w; x++) for (k = 0; k < n; k++) *dp++ = map_color(ctx, *p++, pnm->maxval, 255); } else { for (y = 0; y < h; y++) for (x = 0; x < w; x++) for (k = 0; k < n; k++) { *dp++ = map_color(ctx, (p[0] << 8) | p[1], pnm->maxval, 255); p += 2; } } } if (out) *out = p; return img; } static const unsigned char * pam_binary_read_header(fz_context *ctx, struct info *pnm, const unsigned char *p, const unsigned char *e) { int token = TOKEN_UNKNOWN; pnm->width = 0; pnm->height = 0; pnm->depth = 0; pnm->maxval = 0; pnm->tupletype = 0; while (p < e && token != TOKEN_ENDHDR) { p = pnm_read_token(ctx, p, e, &token); p = pnm_read_white(ctx, p, e, 0); switch (token) { case TOKEN_WIDTH: p = pnm_read_number(ctx, p, e, &pnm->width); break; case TOKEN_HEIGHT: p = pnm_read_number(ctx, p, e, &pnm->height); break; case TOKEN_DEPTH: p = pnm_read_number(ctx, p, e, &pnm->depth); break; case TOKEN_MAXVAL: p = pnm_read_number(ctx, p, e, &pnm->maxval); break; case TOKEN_TUPLTYPE: p = pnm_read_tupletype(ctx, p, e, &pnm->tupletype); break; case TOKEN_ENDHDR: break; default: fz_throw(ctx, FZ_ERROR_GENERIC, "unknown header token in pnm image"); } if (token != TOKEN_ENDHDR) p = pnm_read_white(ctx, p, e, 0); } return p; } static fz_pixmap * pam_binary_read_image(fz_context *ctx, struct info *pnm, const unsigned char *p, const unsigned char *e, int onlymeta, const unsigned char **out) { fz_pixmap *img = NULL; int bitmap = 0; int minval = 1; int maxval = 65535; fz_var(img); p = pam_binary_read_header(ctx, pnm, p, e); if (pnm->tupletype == PAM_UNKNOWN) switch (pnm->depth) { case 1: pnm->tupletype = pnm->maxval == 1 ? PAM_BW : PAM_GRAY; break; case 2: pnm->tupletype = pnm->maxval == 1 ? PAM_BWA : PAM_GRAYA; break; case 3: pnm->tupletype = PAM_RGB; break; case 4: pnm->tupletype = PAM_CMYK; break; case 5: pnm->tupletype = PAM_CMYKA; break; default: fz_throw(ctx, FZ_ERROR_GENERIC, "cannot guess tuple type based on depth in pnm image"); } if (pnm->tupletype == PAM_BW && pnm->maxval > 1) pnm->tupletype = PAM_GRAY; else if (pnm->tupletype == PAM_GRAY && pnm->maxval == 1) pnm->tupletype = PAM_BW; else if (pnm->tupletype == PAM_BWA && pnm->maxval > 1) pnm->tupletype = PAM_GRAYA; else if (pnm->tupletype == PAM_GRAYA && pnm->maxval == 1) pnm->tupletype = PAM_BWA; switch (pnm->tupletype) { case PAM_BWA: pnm->alpha = 1; /* fallthrough */ case PAM_BW: pnm->cs = fz_device_gray(ctx); maxval = 1; bitmap = 1; break; case PAM_GRAYA: pnm->alpha = 1; /* fallthrough */ case PAM_GRAY: pnm->cs = fz_device_gray(ctx); minval = 2; break; case PAM_RGBA: pnm->alpha = 1; /* fallthrough */ case PAM_RGB: pnm->cs = fz_device_rgb(ctx); break; case PAM_CMYKA: pnm->alpha = 1; /* fallthrough */ case PAM_CMYK: pnm->cs = fz_device_cmyk(ctx); break; default: fz_throw(ctx, FZ_ERROR_GENERIC, "unsupported tuple type"); } if (pnm->depth != fz_colorspace_n(ctx, pnm->cs) + pnm->alpha) fz_throw(ctx, FZ_ERROR_GENERIC, "depth out of tuple type range"); if (pnm->maxval < minval || pnm->maxval > maxval) fz_throw(ctx, FZ_ERROR_GENERIC, "maxval out of range"); pnm->bitdepth = bitdepth_from_maxval(pnm->maxval); if (pnm->height <= 0) fz_throw(ctx, FZ_ERROR_GENERIC, "image height must be > 0"); if (pnm->width <= 0) fz_throw(ctx, FZ_ERROR_GENERIC, "image width must be > 0"); if ((unsigned int)pnm->height > UINT_MAX / pnm->width / fz_colorspace_n(ctx, pnm->cs) / (pnm->bitdepth / 8 + 1)) fz_throw(ctx, FZ_ERROR_GENERIC, "image too large"); if (onlymeta) { int packed; int w, h, n; w = pnm->width; h = pnm->height; n = fz_colorspace_n(ctx, pnm->cs) + pnm->alpha; /* some encoders incorrectly pack bits into bytes and invert the image */ packed = 0; if (pnm->maxval == 1) { const unsigned char *e_packed = p + w * h * n / 8; if (e_packed < e - 1 && e_packed[0] == 'P' && e_packed[1] >= '0' && e_packed[1] <= '7') e = e_packed; if (e - p < w * h * n) packed = 1; } if (packed && e - p < w * h * n / 8) fz_throw(ctx, FZ_ERROR_GENERIC, "truncated packed image"); if (!packed && e - p < w * h * n * (pnm->maxval < 256 ? 1 : 2)) fz_throw(ctx, FZ_ERROR_GENERIC, "truncated image"); if (pnm->maxval == 255) p += n * w * h; else if (bitmap && packed) p += ((w + 7) / 8) * h; else if (bitmap) p += n * w * h; else if (pnm->maxval < 255) p += n * w * h; else p += 2 * n * w * h; } if (!onlymeta) { unsigned char *dp; int x, y, k, packed; int w, h, n; img = fz_new_pixmap(ctx, pnm->cs, pnm->width, pnm->height, NULL, pnm->alpha); fz_try(ctx) { dp = img->samples; w = img->w; h = img->h; n = img->n; /* some encoders incorrectly pack bits into bytes and invert the image */ packed = 0; if (pnm->maxval == 1) { const unsigned char *e_packed = p + w * h * n / 8; if (e_packed < e - 1 && e_packed[0] == 'P' && e_packed[1] >= '0' && e_packed[1] <= '7') e = e_packed; if (e - p < w * h * n) packed = 1; } if (packed && e - p < w * h * n / 8) fz_throw(ctx, FZ_ERROR_GENERIC, "truncated packed image"); if (!packed && e - p < w * h * n * (pnm->maxval < 256 ? 1 : 2)) fz_throw(ctx, FZ_ERROR_GENERIC, "truncated image"); if (pnm->maxval == 255) memcpy(dp, p, w * h * n); else if (bitmap && packed) { for (y = 0; y < h; y++) for (x = 0; x < w; x++) { for (k = 0; k < n; k++) { *dp++ = (*p & (1 << (7 - (x & 0x7)))) ? 0x00 : 0xff; if ((x & 0x7) == 7) p++; } if (w & 0x7) p++; } } else if (bitmap) { for (y = 0; y < h; y++) for (x = 0; x < w; x++) for (k = 0; k < n; k++) *dp++ = *p++ ? 0xff : 0x00; } else if (pnm->maxval < 255) { for (y = 0; y < h; y++) for (x = 0; x < w; x++) for (k = 0; k < n; k++) *dp++ = map_color(ctx, *p++, pnm->maxval, 255); } else { for (y = 0; y < h; y++) for (x = 0; x < w; x++) for (k = 0; k < n; k++) { *dp++ = map_color(ctx, (p[0] << 8) | p[1], pnm->maxval, 255); p += 2; } } if (pnm->alpha) fz_premultiply_pixmap(ctx, img); } fz_catch(ctx) { fz_drop_pixmap(ctx, img); fz_rethrow(ctx); } } if (out) *out = p; return img; } static fz_pixmap * pnm_read_image(fz_context *ctx, struct info *pnm, const unsigned char *p, size_t total, int onlymeta, int subimage) { const unsigned char *e = p + total; char signature[3] = { 0 }; fz_pixmap *pix = NULL; while (p < e && ((!onlymeta && subimage >= 0) || onlymeta)) { int subonlymeta = onlymeta || (subimage > 0); p = pnm_read_signature(ctx, p, e, signature); p = pnm_read_white(ctx, p, e, 0); if (!strcmp(signature, "P1")) { pnm->cs = fz_device_gray(ctx); pix = pnm_ascii_read_image(ctx, pnm, p, e, subonlymeta, 1, &p); } else if (!strcmp(signature, "P2")) { pnm->cs = fz_device_gray(ctx); pix = pnm_ascii_read_image(ctx, pnm, p, e, subonlymeta, 0, &p); } else if (!strcmp(signature, "P3")) { pnm->cs = fz_device_rgb(ctx); pix = pnm_ascii_read_image(ctx, pnm, p, e, subonlymeta, 0, &p); } else if (!strcmp(signature, "P4")) { pnm->cs = fz_device_gray(ctx); pix = pnm_binary_read_image(ctx, pnm, p, e, subonlymeta, 1, &p); } else if (!strcmp(signature, "P5")) { pnm->cs = fz_device_gray(ctx); pix = pnm_binary_read_image(ctx, pnm, p, e, subonlymeta, 0, &p); } else if (!strcmp(signature, "P6")) { pnm->cs = fz_device_rgb(ctx); pix = pnm_binary_read_image(ctx, pnm, p, e, subonlymeta, 0, &p); } else if (!strcmp(signature, "P7")) pix = pam_binary_read_image(ctx, pnm, p, e, subonlymeta, &p); else fz_throw(ctx, FZ_ERROR_GENERIC, "unsupported portable anymap signature (0x%02x, 0x%02x)", signature[0], signature[1]); if (onlymeta) pnm->subimages++; if (subimage >= 0) subimage--; } if (p >= e && subimage >= 0) fz_throw(ctx, FZ_ERROR_GENERIC, "subimage count out of range"); return pix; } fz_pixmap * fz_load_pnm(fz_context *ctx, const unsigned char *p, size_t total) { struct info pnm = { 0 }; return pnm_read_image(ctx, &pnm, p, total, 0, 0); } void fz_load_pnm_info(fz_context *ctx, const unsigned char *p, size_t total, int *wp, int *hp, int *xresp, int *yresp, fz_colorspace **cspacep) { struct info pnm = { 0 }; (void) pnm_read_image(ctx, &pnm, p, total, 1, 0); *cspacep = fz_keep_colorspace(ctx, pnm.cs); /* pnm.cs is a borrowed device colorspace */ *wp = pnm.width; *hp = pnm.height; *xresp = 72; *yresp = 72; } fz_pixmap * fz_load_pnm_subimage(fz_context *ctx, const unsigned char *p, size_t total, int subimage) { struct info pnm = { 0 }; return pnm_read_image(ctx, &pnm, p, total, 0, subimage); } int fz_load_pnm_subimage_count(fz_context *ctx, const unsigned char *p, size_t total) { struct info pnm = { 0 }; (void) pnm_read_image(ctx, &pnm, p, total, 1, -1); return pnm.subimages; }