#include "mupdf/fitz.h" #include "xps-imp.h" #include #include #include #include #define MAX_STOPS 256 enum { SPREAD_PAD, SPREAD_REPEAT, SPREAD_REFLECT }; /* * Parse a list of GradientStop elements. * Fill the offset and color arrays, and * return the number of stops parsed. */ struct stop { float offset; float r, g, b, a; int index; }; static int cmp_stop(const void *a, const void *b) { const struct stop *astop = a; const struct stop *bstop = b; float diff = astop->offset - bstop->offset; if (diff < 0) return -1; if (diff > 0) return 1; return astop->index - bstop->index; } static inline float lerp(float a, float b, float x) { return a + (b - a) * x; } static int xps_parse_gradient_stops(fz_context *ctx, xps_document *doc, char *base_uri, fz_xml *node, struct stop *stops, int maxcount) { fz_colorspace *colorspace; float sample[FZ_MAX_COLORS]; float rgb[3]; int before, after; int count; int i; /* We may have to insert 2 extra stops when postprocessing */ maxcount -= 2; count = 0; while (node && count < maxcount) { if (fz_xml_is_tag(node, "GradientStop")) { char *offset = fz_xml_att(node, "Offset"); char *color = fz_xml_att(node, "Color"); if (offset && color) { stops[count].offset = fz_atof(offset); stops[count].index = count; xps_parse_color(ctx, doc, base_uri, color, &colorspace, sample); fz_convert_color(ctx, fz_device_rgb(ctx), rgb, colorspace, sample + 1); stops[count].r = rgb[0]; stops[count].g = rgb[1]; stops[count].b = rgb[2]; stops[count].a = sample[0]; count ++; } } node = fz_xml_next(node); } if (count == 0) { fz_warn(ctx, "gradient brush has no gradient stops"); stops[0].offset = 0; stops[0].r = 0; stops[0].g = 0; stops[0].b = 0; stops[0].a = 1; stops[1].offset = 1; stops[1].r = 1; stops[1].g = 1; stops[1].b = 1; stops[1].a = 1; return 2; } if (count == maxcount) fz_warn(ctx, "gradient brush exceeded maximum number of gradient stops"); /* Postprocess to make sure the range of offsets is 0.0 to 1.0 */ qsort(stops, count, sizeof(struct stop), cmp_stop); before = -1; after = -1; for (i = 0; i < count; i++) { if (stops[i].offset < 0) before = i; if (stops[i].offset > 1) { after = i; break; } } /* Remove all stops < 0 except the largest one */ if (before > 0) { memmove(stops, stops + before, (count - before) * sizeof(struct stop)); count -= before; } /* Remove all stops > 1 except the smallest one */ if (after >= 0) count = after + 1; /* Expand single stop to 0 .. 1 */ if (count == 1) { stops[1] = stops[0]; stops[0].offset = 0; stops[1].offset = 1; return 2; } /* First stop < 0 -- interpolate value to 0 */ if (stops[0].offset < 0) { float d = -stops[0].offset / (stops[1].offset - stops[0].offset); stops[0].offset = 0; stops[0].r = lerp(stops[0].r, stops[1].r, d); stops[0].g = lerp(stops[0].g, stops[1].g, d); stops[0].b = lerp(stops[0].b, stops[1].b, d); stops[0].a = lerp(stops[0].a, stops[1].a, d); } /* Last stop > 1 -- interpolate value to 1 */ if (stops[count-1].offset > 1) { float d = (1 - stops[count-2].offset) / (stops[count-1].offset - stops[count-2].offset); stops[count-1].offset = 1; stops[count-1].r = lerp(stops[count-2].r, stops[count-1].r, d); stops[count-1].g = lerp(stops[count-2].g, stops[count-1].g, d); stops[count-1].b = lerp(stops[count-2].b, stops[count-1].b, d); stops[count-1].a = lerp(stops[count-2].a, stops[count-1].a, d); } /* First stop > 0 -- insert a duplicate at 0 */ if (stops[0].offset > 0) { memmove(stops + 1, stops, count * sizeof(struct stop)); stops[0] = stops[1]; stops[0].offset = 0; count++; } /* Last stop < 1 -- insert a duplicate at 1 */ if (stops[count-1].offset < 1) { stops[count] = stops[count-1]; stops[count].offset = 1; count++; } return count; } static void xps_sample_gradient_stops(fz_context *ctx, xps_document *doc, fz_shade *shade, struct stop *stops, int count) { float offset, d; int i, k; k = 0; for (i = 0; i < 256; i++) { offset = i / 255.0f; while (k + 1 < count && offset > stops[k+1].offset) k++; d = (offset - stops[k].offset) / (stops[k+1].offset - stops[k].offset); shade->function[i][0] = lerp(stops[k].r, stops[k+1].r, d); shade->function[i][1] = lerp(stops[k].g, stops[k+1].g, d); shade->function[i][2] = lerp(stops[k].b, stops[k+1].b, d); shade->function[i][3] = lerp(stops[k].a, stops[k+1].a, d); } } /* * Radial gradients map more or less to Radial shadings. * The inner circle is always a point. * The outer circle is actually an ellipse, * mess with the transform to squash the circle into the right aspect. */ static void xps_draw_one_radial_gradient(fz_context *ctx, xps_document *doc, const fz_matrix *ctm, struct stop *stops, int count, int extend, float x0, float y0, float r0, float x1, float y1, float r1) { fz_device *dev = doc->dev; fz_shade *shade; /* TODO: this (and the stuff in pdf_shade) should move to res_shade.c */ shade = fz_malloc_struct(ctx, fz_shade); FZ_INIT_STORABLE(shade, 1, fz_drop_shade_imp); shade->colorspace = fz_device_rgb(ctx); shade->bbox = fz_infinite_rect; shade->matrix = fz_identity; shade->use_background = 0; shade->use_function = 1; shade->type = FZ_RADIAL; shade->u.l_or_r.extend[0] = extend; shade->u.l_or_r.extend[1] = extend; xps_sample_gradient_stops(ctx, doc, shade, stops, count); shade->u.l_or_r.coords[0][0] = x0; shade->u.l_or_r.coords[0][1] = y0; shade->u.l_or_r.coords[0][2] = r0; shade->u.l_or_r.coords[1][0] = x1; shade->u.l_or_r.coords[1][1] = y1; shade->u.l_or_r.coords[1][2] = r1; fz_fill_shade(ctx, dev, shade, ctm, 1); fz_drop_shade(ctx, shade); } /* * Linear gradients. */ static void xps_draw_one_linear_gradient(fz_context *ctx, xps_document *doc, const fz_matrix *ctm, struct stop *stops, int count, int extend, float x0, float y0, float x1, float y1) { fz_device *dev = doc->dev; fz_shade *shade; /* TODO: this (and the stuff in pdf_shade) should move to res_shade.c */ shade = fz_malloc_struct(ctx, fz_shade); FZ_INIT_STORABLE(shade, 1, fz_drop_shade_imp); shade->colorspace = fz_device_rgb(ctx); shade->bbox = fz_infinite_rect; shade->matrix = fz_identity; shade->use_background = 0; shade->use_function = 1; shade->type = FZ_LINEAR; shade->u.l_or_r.extend[0] = extend; shade->u.l_or_r.extend[1] = extend; xps_sample_gradient_stops(ctx, doc, shade, stops, count); shade->u.l_or_r.coords[0][0] = x0; shade->u.l_or_r.coords[0][1] = y0; shade->u.l_or_r.coords[0][2] = 0; shade->u.l_or_r.coords[1][0] = x1; shade->u.l_or_r.coords[1][1] = y1; shade->u.l_or_r.coords[1][2] = 0; fz_fill_shade(ctx, dev, shade, ctm, doc->opacity[doc->opacity_top]); fz_drop_shade(ctx, shade); } /* * We need to loop and create many shading objects to account * for the Repeat and Reflect SpreadMethods. * I'm not smart enough to calculate this analytically * so we iterate and check each object until we * reach a reasonable limit for infinite cases. */ static void xps_draw_radial_gradient(fz_context *ctx, xps_document *doc, const fz_matrix *ctm, const fz_rect *area, struct stop *stops, int count, fz_xml *root, int spread) { float x0, y0, r0; float x1, y1, r1; float xrad = 1; float yrad = 1; float invscale; int i, ma = 1; fz_matrix local_ctm = *ctm; fz_matrix inv; fz_rect local_area = *area; char *center_att = fz_xml_att(root, "Center"); char *origin_att = fz_xml_att(root, "GradientOrigin"); char *radius_x_att = fz_xml_att(root, "RadiusX"); char *radius_y_att = fz_xml_att(root, "RadiusY"); x0 = y0 = 0.0; x1 = y1 = 1.0; xrad = 1.0; yrad = 1.0; if (origin_att) xps_parse_point(ctx, doc, origin_att, &x0, &y0); if (center_att) xps_parse_point(ctx, doc, center_att, &x1, &y1); if (radius_x_att) xrad = fz_atof(radius_x_att); if (radius_y_att) yrad = fz_atof(radius_y_att); xrad = fz_max(0.01f, xrad); yrad = fz_max(0.01f, yrad); /* scale the ctm to make ellipses */ if (fz_abs(xrad) > FLT_EPSILON) { fz_pre_scale(&local_ctm, 1, yrad/xrad); } if (yrad != 0.0) { invscale = xrad / yrad; y0 = y0 * invscale; y1 = y1 * invscale; } r0 = 0; r1 = xrad; fz_transform_rect(&local_area, fz_invert_matrix(&inv, &local_ctm)); ma = fz_maxi(ma, ceilf(hypotf(local_area.x0 - x0, local_area.y0 - y0) / xrad)); ma = fz_maxi(ma, ceilf(hypotf(local_area.x1 - x0, local_area.y0 - y0) / xrad)); ma = fz_maxi(ma, ceilf(hypotf(local_area.x0 - x0, local_area.y1 - y0) / xrad)); ma = fz_maxi(ma, ceilf(hypotf(local_area.x1 - x0, local_area.y1 - y0) / xrad)); if (spread == SPREAD_REPEAT) { for (i = ma - 1; i >= 0; i--) xps_draw_one_radial_gradient(ctx, doc, &local_ctm, stops, count, 0, x0, y0, r0 + i * xrad, x1, y1, r1 + i * xrad); } else if (spread == SPREAD_REFLECT) { if ((ma % 2) != 0) ma++; for (i = ma - 2; i >= 0; i -= 2) { xps_draw_one_radial_gradient(ctx, doc, &local_ctm, stops, count, 0, x0, y0, r0 + i * xrad, x1, y1, r1 + i * xrad); xps_draw_one_radial_gradient(ctx, doc, &local_ctm, stops, count, 0, x0, y0, r0 + (i + 2) * xrad, x1, y1, r1 + i * xrad); } } else { xps_draw_one_radial_gradient(ctx, doc, &local_ctm, stops, count, 1, x0, y0, r0, x1, y1, r1); } } /* * Calculate how many iterations are needed to cover * the bounding box. */ static void xps_draw_linear_gradient(fz_context *ctx, xps_document *doc, const fz_matrix *ctm, const fz_rect *area, struct stop *stops, int count, fz_xml *root, int spread) { float x0, y0, x1, y1; int i, mi, ma; float dx, dy, x, y, k; fz_point p1, p2; fz_matrix inv; fz_rect local_area = *area; char *start_point_att = fz_xml_att(root, "StartPoint"); char *end_point_att = fz_xml_att(root, "EndPoint"); x0 = y0 = 0; x1 = y1 = 1; if (start_point_att) xps_parse_point(ctx, doc, start_point_att, &x0, &y0); if (end_point_att) xps_parse_point(ctx, doc, end_point_att, &x1, &y1); p1.x = x0; p1.y = y0; p2.x = x1; p2.y = y1; fz_transform_rect(&local_area, fz_invert_matrix(&inv, ctm)); x = p2.x - p1.x; y = p2.y - p1.y; k = ((local_area.x0 - p1.x) * x + (local_area.y0 - p1.y) * y) / (x * x + y * y); mi = floorf(k); ma = ceilf(k); k = ((local_area.x1 - p1.x) * x + (local_area.y0 - p1.y) * y) / (x * x + y * y); mi = fz_mini(mi, floorf(k)); ma = fz_maxi(ma, ceilf(k)); k = ((local_area.x0 - p1.x) * x + (local_area.y1 - p1.y) * y) / (x * x + y * y); mi = fz_mini(mi, floorf(k)); ma = fz_maxi(ma, ceilf(k)); k = ((local_area.x1 - p1.x) * x + (local_area.y1 - p1.y) * y) / (x * x + y * y); mi = fz_mini(mi, floorf(k)); ma = fz_maxi(ma, ceilf(k)); dx = x1 - x0; dy = y1 - y0; if (spread == SPREAD_REPEAT) { for (i = mi; i < ma; i++) xps_draw_one_linear_gradient(ctx, doc, ctm, stops, count, 0, x0 + i * dx, y0 + i * dy, x1 + i * dx, y1 + i * dy); } else if (spread == SPREAD_REFLECT) { if ((mi % 2) != 0) mi--; for (i = mi; i < ma; i += 2) { xps_draw_one_linear_gradient(ctx, doc, ctm, stops, count, 0, x0 + i * dx, y0 + i * dy, x1 + i * dx, y1 + i * dy); xps_draw_one_linear_gradient(ctx, doc, ctm, stops, count, 0, x0 + (i + 2) * dx, y0 + (i + 2) * dy, x1 + i * dx, y1 + i * dy); } } else { xps_draw_one_linear_gradient(ctx, doc, ctm, stops, count, 1, x0, y0, x1, y1); } } /* * Parse XML tag and attributes for a gradient brush, create color/opacity * function objects and call gradient drawing primitives. */ static void xps_parse_gradient_brush(fz_context *ctx, xps_document *doc, const fz_matrix *ctm, const fz_rect *area, char *base_uri, xps_resource *dict, fz_xml *root, void (*draw)(fz_context *ctx, xps_document *, const fz_matrix*, const fz_rect *, struct stop *, int, fz_xml *, int)) { fz_xml *node; char *opacity_att; char *spread_att; char *transform_att; fz_xml *transform_tag = NULL; fz_xml *stop_tag = NULL; struct stop stop_list[MAX_STOPS]; int stop_count; fz_matrix local_ctm; int spread_method; opacity_att = fz_xml_att(root, "Opacity"); spread_att = fz_xml_att(root, "SpreadMethod"); transform_att = fz_xml_att(root, "Transform"); for (node = fz_xml_down(root); node; node = fz_xml_next(node)) { if (fz_xml_is_tag(node, "LinearGradientBrush.Transform")) transform_tag = fz_xml_down(node); if (fz_xml_is_tag(node, "RadialGradientBrush.Transform")) transform_tag = fz_xml_down(node); if (fz_xml_is_tag(node, "LinearGradientBrush.GradientStops")) stop_tag = fz_xml_down(node); if (fz_xml_is_tag(node, "RadialGradientBrush.GradientStops")) stop_tag = fz_xml_down(node); } xps_resolve_resource_reference(ctx, doc, dict, &transform_att, &transform_tag, NULL); spread_method = SPREAD_PAD; if (spread_att) { if (!strcmp(spread_att, "Pad")) spread_method = SPREAD_PAD; if (!strcmp(spread_att, "Reflect")) spread_method = SPREAD_REFLECT; if (!strcmp(spread_att, "Repeat")) spread_method = SPREAD_REPEAT; } xps_parse_transform(ctx, doc, transform_att, transform_tag, &local_ctm, ctm); if (!stop_tag) { fz_warn(ctx, "missing gradient stops tag"); return; } stop_count = xps_parse_gradient_stops(ctx, doc, base_uri, stop_tag, stop_list, MAX_STOPS); if (stop_count == 0) { fz_warn(ctx, "no gradient stops found"); return; } xps_begin_opacity(ctx, doc, &local_ctm, area, base_uri, dict, opacity_att, NULL); draw(ctx, doc, &local_ctm, area, stop_list, stop_count, root, spread_method); xps_end_opacity(ctx, doc, base_uri, dict, opacity_att, NULL); } void xps_parse_linear_gradient_brush(fz_context *ctx, xps_document *doc, const fz_matrix *ctm, const fz_rect *area, char *base_uri, xps_resource *dict, fz_xml *root) { xps_parse_gradient_brush(ctx, doc, ctm, area, base_uri, dict, root, xps_draw_linear_gradient); } void xps_parse_radial_gradient_brush(fz_context *ctx, xps_document *doc, const fz_matrix *ctm, const fz_rect *area, char *base_uri, xps_resource *dict, fz_xml *root) { xps_parse_gradient_brush(ctx, doc, ctm, area, base_uri, dict, root, xps_draw_radial_gradient); }