1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
#include "fitz-internal.h"
/*
Simple hashtable with open addressing linear probe.
Unlike text book examples, removing entries works
correctly in this implementation, so it wont start
exhibiting bad behaviour if entries are inserted
and removed frequently.
*/
enum { MAX_KEY_LEN = 48 };
typedef struct fz_hash_entry_s fz_hash_entry;
struct fz_hash_entry_s
{
unsigned char key[MAX_KEY_LEN];
void *val;
};
struct fz_hash_table_s
{
int keylen;
int size;
int load;
int lock; /* -1 or the lock used to protect this hash table */
fz_hash_entry *ents;
};
static unsigned hash(unsigned char *s, int len)
{
unsigned val = 0;
int i;
for (i = 0; i < len; i++)
{
val += s[i];
val += (val << 10);
val ^= (val >> 6);
}
val += (val << 3);
val ^= (val >> 11);
val += (val << 15);
return val;
}
fz_hash_table *
fz_new_hash_table(fz_context *ctx, int initialsize, int keylen, int lock)
{
fz_hash_table *table;
assert(keylen <= MAX_KEY_LEN);
table = fz_malloc_struct(ctx, fz_hash_table);
table->keylen = keylen;
table->size = initialsize;
table->load = 0;
table->lock = lock;
fz_try(ctx)
{
table->ents = fz_malloc_array(ctx, table->size, sizeof(fz_hash_entry));
memset(table->ents, 0, sizeof(fz_hash_entry) * table->size);
}
fz_catch(ctx)
{
fz_free(ctx, table);
fz_rethrow(ctx);
}
return table;
}
void
fz_empty_hash(fz_context *ctx, fz_hash_table *table)
{
table->load = 0;
memset(table->ents, 0, sizeof(fz_hash_entry) * table->size);
}
int
fz_hash_len(fz_context *ctx, fz_hash_table *table)
{
return table->size;
}
void *
fz_hash_get_key(fz_context *ctx, fz_hash_table *table, int idx)
{
return table->ents[idx].key;
}
void *
fz_hash_get_val(fz_context *ctx, fz_hash_table *table, int idx)
{
return table->ents[idx].val;
}
void
fz_free_hash(fz_context *ctx, fz_hash_table *table)
{
fz_free(ctx, table->ents);
fz_free(ctx, table);
}
static void *
do_hash_insert(fz_context *ctx, fz_hash_table *table, void *key, void *val)
{
fz_hash_entry *ents;
unsigned size;
unsigned pos;
ents = table->ents;
size = table->size;
pos = hash(key, table->keylen) % size;
if (table->lock >= 0)
fz_assert_lock_held(ctx, table->lock);
while (1)
{
if (!ents[pos].val)
{
memcpy(ents[pos].key, key, table->keylen);
ents[pos].val = val;
table->load ++;
return NULL;
}
if (memcmp(key, ents[pos].key, table->keylen) == 0)
{
fz_warn(ctx, "assert: overwrite hash slot");
return ents[pos].val;
}
pos = (pos + 1) % size;
}
}
static void
fz_resize_hash(fz_context *ctx, fz_hash_table *table, int newsize)
{
fz_hash_entry *oldents = table->ents;
fz_hash_entry *newents = table->ents;
int oldsize = table->size;
int oldload = table->load;
int i;
if (newsize < oldload * 8 / 10)
{
fz_warn(ctx, "assert: resize hash too small");
return;
}
if (table->lock == FZ_LOCK_ALLOC)
fz_unlock(ctx, FZ_LOCK_ALLOC);
newents = fz_malloc_array(ctx, newsize, sizeof(fz_hash_entry));
if (table->lock == FZ_LOCK_ALLOC)
fz_lock(ctx, FZ_LOCK_ALLOC);
if (table->lock >= 0)
{
if (table->size >= newsize)
{
/* Someone else fixed it before we could lock! */
fz_unlock(ctx, table->lock);
fz_free(ctx, newents);
return;
}
}
table->ents = newents;
memset(table->ents, 0, sizeof(fz_hash_entry) * newsize);
table->size = newsize;
table->load = 0;
for (i = 0; i < oldsize; i++)
{
if (oldents[i].val)
{
do_hash_insert(ctx, table, oldents[i].key, oldents[i].val);
}
}
if (table->lock == FZ_LOCK_ALLOC)
fz_unlock(ctx, FZ_LOCK_ALLOC);
fz_free(ctx, oldents);
if (table->lock == FZ_LOCK_ALLOC)
fz_lock(ctx, FZ_LOCK_ALLOC);
}
void *
fz_hash_find(fz_context *ctx, fz_hash_table *table, void *key)
{
fz_hash_entry *ents = table->ents;
unsigned size = table->size;
unsigned pos = hash(key, table->keylen) % size;
if (table->lock >= 0)
fz_assert_lock_held(ctx, table->lock);
while (1)
{
if (!ents[pos].val)
return NULL;
if (memcmp(key, ents[pos].key, table->keylen) == 0)
return ents[pos].val;
pos = (pos + 1) % size;
}
}
void *
fz_hash_insert(fz_context *ctx, fz_hash_table *table, void *key, void *val)
{
if (table->load > table->size * 8 / 10)
{
fz_resize_hash(ctx, table, table->size * 2);
}
return do_hash_insert(ctx, table, key, val);
}
void
fz_hash_remove(fz_context *ctx, fz_hash_table *table, void *key)
{
fz_hash_entry *ents = table->ents;
unsigned size = table->size;
unsigned pos = hash(key, table->keylen) % size;
unsigned hole, look, code;
if (table->lock >= 0)
fz_assert_lock_held(ctx, table->lock);
while (1)
{
if (!ents[pos].val)
{
fz_warn(ctx, "assert: remove non-existent hash entry");
return;
}
if (memcmp(key, ents[pos].key, table->keylen) == 0)
{
ents[pos].val = NULL;
hole = pos;
look = (hole + 1) % size;
while (ents[look].val)
{
code = hash(ents[look].key, table->keylen) % size;
if ((code <= hole && hole < look) ||
(look < code && code <= hole) ||
(hole < look && look < code))
{
ents[hole] = ents[look];
ents[look].val = NULL;
hole = look;
}
look = (look + 1) % size;
}
table->load --;
return;
}
pos = (pos + 1) % size;
}
}
void
fz_print_hash(fz_context *ctx, FILE *out, fz_hash_table *table)
{
int i, k;
fprintf(out, "cache load %d / %d\n", table->load, table->size);
for (i = 0; i < table->size; i++)
{
if (!table->ents[i].val)
fprintf(out, "table % 4d: empty\n", i);
else
{
fprintf(out, "table % 4d: key=", i);
for (k = 0; k < MAX_KEY_LEN; k++)
fprintf(out, "%02x", ((char*)table->ents[i].key)[k]);
fprintf(out, " val=$%p\n", table->ents[i].val);
}
}
}
|