summaryrefslogtreecommitdiff
path: root/fitz/crypt_sha2.c
blob: f17146c6fcd07bbeefe828b2f676e2f3eea49196 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*
This code is based on the code found from 7-Zip, which has a modified
version of the SHA-256 found from Crypto++ <http://www.cryptopp.com/>.
The code was modified a little to fit into liblzma and fitz.

This file has been put into the public domain.
You can do whatever you want with this file.
*/

#include "fitz.h"

static inline int isbigendian(void)
{
	static const int one = 1;
	return *(char*)&one == 0;
}

static inline unsigned int bswap32(unsigned int num)
{
	if (!isbigendian())
	{
		return	( (((num) << 24))
			| (((num) << 8) & 0x00FF0000)
			| (((num) >> 8) & 0x0000FF00)
			| (((num) >> 24)) );
	}
	return num;
}

/* At least on x86, GCC is able to optimize this to a rotate instruction. */
#define rotr_32(num, amount) ((num) >> (amount) | (num) << (32 - (amount)))

#define blk0(i) (W[i] = data[i])
#define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \
		+ s0(W[(i - 15) & 15]))

#define Ch(x, y, z) (z ^ (x & (y ^ z)))
#define Maj(x, y, z) ((x & y) | (z & (x | y)))

#define a(i) T[(0 - i) & 7]
#define b(i) T[(1 - i) & 7]
#define c(i) T[(2 - i) & 7]
#define d(i) T[(3 - i) & 7]
#define e(i) T[(4 - i) & 7]
#define f(i) T[(5 - i) & 7]
#define g(i) T[(6 - i) & 7]
#define h(i) T[(7 - i) & 7]

#define R(i) \
	h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + SHA256_K[i + j] \
		+ (j ? blk2(i) : blk0(i)); \
	d(i) += h(i); \
	h(i) += S0(a(i)) + Maj(a(i), b(i), c(i))

#define S0(x) (rotr_32(x, 2) ^ rotr_32(x, 13) ^ rotr_32(x, 22))
#define S1(x) (rotr_32(x, 6) ^ rotr_32(x, 11) ^ rotr_32(x, 25))
#define s0(x) (rotr_32(x, 7) ^ rotr_32(x, 18) ^ (x >> 3))
#define s1(x) (rotr_32(x, 17) ^ rotr_32(x, 19) ^ (x >> 10))

static const unsigned int SHA256_K[64] = {
	0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
	0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
	0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
	0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
	0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
	0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
	0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
	0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
	0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
	0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
	0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
	0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
	0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
	0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
	0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
	0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
};

static void
transform(unsigned int state[8], const unsigned int data_xe[16])
{
	unsigned int data[16];
	unsigned int W[16];
	unsigned int T[8];
	unsigned int j;

	/* ensure big-endian integers */
	for (j = 0; j < 16; j++)
		data[j] = bswap32(data_xe[j]);

	/* Copy state[] to working vars. */
	memcpy(T, state, sizeof(T));

	/* 64 operations, partially loop unrolled */
	for (j = 0; j < 64; j += 16) {
		R( 0); R( 1); R( 2); R( 3);
		R( 4); R( 5); R( 6); R( 7);
		R( 8); R( 9); R(10); R(11);
		R(12); R(13); R(14); R(15);
	}

	/* Add the working vars back into state[]. */
	state[0] += a(0);
	state[1] += b(0);
	state[2] += c(0);
	state[3] += d(0);
	state[4] += e(0);
	state[5] += f(0);
	state[6] += g(0);
	state[7] += h(0);
}

void fz_sha256_init(fz_sha256 *context)
{
	context->count[0] = context->count[1] = 0;

	context->state[0] = 0x6A09E667;
	context->state[1] = 0xBB67AE85;
	context->state[2] = 0x3C6EF372;
	context->state[3] = 0xA54FF53A;
	context->state[4] = 0x510E527F;
	context->state[5] = 0x9B05688C;
	context->state[6] = 0x1F83D9AB;
	context->state[7] = 0x5BE0CD19;
}

void fz_sha256_update(fz_sha256 *context, const unsigned char *input, unsigned int inlen)
{
	/* Copy the input data into a properly aligned temporary buffer.
	 * This way we can be called with arbitrarily sized buffers
	 * (no need to be multiple of 64 bytes), and the code works also
	 * on architectures that don't allow unaligned memory access. */
	while (inlen > 0)
	{
		const unsigned int copy_start = context->count[0] & 0x3F;
		unsigned int copy_size = 64 - copy_start;
		if (copy_size > inlen)
			copy_size = inlen;

		memcpy(context->buffer.u8 + copy_start, input, copy_size);

		input += copy_size;
		inlen -= copy_size;
		context->count[0] += copy_size;
		/* carry overflow from low to high */
		if (context->count[0] < copy_size)
			context->count[1]++;

		if ((context->count[0] & 0x3F) == 0)
			transform(context->state, context->buffer.u32);
	}
}

void fz_sha256_final(fz_sha256 *context, unsigned char digest[32])
{
	/* Add padding as described in RFC 3174 (it describes SHA-1 but
	 * the same padding style is used for SHA-256 too). */
	unsigned int j = context->count[0] & 0x3F;
	context->buffer.u8[j++] = 0x80;

	while (j != 56)
	{
		if (j == 64)
		{
			transform(context->state, context->buffer.u32);
			j = 0;
		}
		context->buffer.u8[j++] = 0x00;
	}

	/* Convert the message size from bytes to bits. */
	context->count[1] = (context->count[1] << 3) + (context->count[0] >> 29);
	context->count[0] = context->count[0] << 3;

	context->buffer.u32[14] = bswap32(context->count[1]);
	context->buffer.u32[15] = bswap32(context->count[0]);
	transform(context->state, context->buffer.u32);

	for (j = 0; j < 8; j++)
		((unsigned int *)digest)[j] = bswap32(context->state[j]);
	memset(context, 0, sizeof(fz_sha256));
}