summaryrefslogtreecommitdiff
path: root/source/fitz/memory.c
blob: d5ea7750d676eac9f7f3bea60b147d22665d9367 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#include "mupdf/fitz.h"

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

/* Enable FITZ_DEBUG_LOCKING_TIMES below if you want to check the times
 * for which locks are held too. */
#ifdef FITZ_DEBUG_LOCKING
#undef FITZ_DEBUG_LOCKING_TIMES
#endif

static void *
do_scavenging_malloc(fz_context *ctx, size_t size)
{
	void *p;
	int phase = 0;

	fz_lock(ctx, FZ_LOCK_ALLOC);
	do {
		p = ctx->alloc->malloc(ctx->alloc->user, size);
		if (p != NULL)
		{
			fz_unlock(ctx, FZ_LOCK_ALLOC);
			return p;
		}
	} while (fz_store_scavenge(ctx, size, &phase));
	fz_unlock(ctx, FZ_LOCK_ALLOC);

	return NULL;
}

static void *
do_scavenging_realloc(fz_context *ctx, void *p, size_t size)
{
	void *q;
	int phase = 0;

	fz_lock(ctx, FZ_LOCK_ALLOC);
	do {
		q = ctx->alloc->realloc(ctx->alloc->user, p, size);
		if (q != NULL)
		{
			fz_unlock(ctx, FZ_LOCK_ALLOC);
			return q;
		}
	} while (fz_store_scavenge(ctx, size, &phase));
	fz_unlock(ctx, FZ_LOCK_ALLOC);

	return NULL;
}

void *
fz_malloc(fz_context *ctx, size_t size)
{
	void *p;

	if (size == 0)
		return NULL;

	p = do_scavenging_malloc(ctx, size);
	if (!p)
		fz_throw(ctx, FZ_ERROR_MEMORY, "malloc of %zu bytes failed", size);
	return p;
}

void *
fz_malloc_no_throw(fz_context *ctx, size_t size)
{
	return do_scavenging_malloc(ctx, size);
}

void *
fz_malloc_array(fz_context *ctx, size_t count, size_t size)
{
	void *p;

	if (count == 0 || size == 0)
		return 0;

	if (count > SIZE_MAX / size)
		fz_throw(ctx, FZ_ERROR_MEMORY, "malloc of array (%zu x %zu bytes) failed (size_t overflow)", count, size);

	p = do_scavenging_malloc(ctx, count * size);
	if (!p)
		fz_throw(ctx, FZ_ERROR_MEMORY, "malloc of array (%zu x %zu bytes) failed", count, size);
	return p;
}

void *
fz_malloc_array_no_throw(fz_context *ctx, size_t count, size_t size)
{
	if (count == 0 || size == 0)
		return 0;

	if (count > SIZE_MAX / size)
	{
		fprintf(stderr, "error: malloc of array (" FZ_FMT_zu " x " FZ_FMT_zu " bytes) failed (size_t overflow)", count, size);
		return NULL;
	}

	return do_scavenging_malloc(ctx, count * size);
}

void *
fz_calloc(fz_context *ctx, size_t count, size_t size)
{
	void *p;

	if (count == 0 || size == 0)
		return 0;

	if (count > SIZE_MAX / size)
	{
		fz_throw(ctx, FZ_ERROR_MEMORY, "calloc (%zu x %zu bytes) failed (size_t overflow)", count, size);
	}

	p = do_scavenging_malloc(ctx, count * size);
	if (!p)
	{
		fz_throw(ctx, FZ_ERROR_MEMORY, "calloc (%zu x %zu bytes) failed", count, size);
	}
	memset(p, 0, count*size);
	return p;
}

void *
fz_calloc_no_throw(fz_context *ctx, size_t count, size_t size)
{
	void *p;

	if (count == 0 || size == 0)
		return 0;

	if (count > SIZE_MAX / size)
	{
		fprintf(stderr, "error: calloc (" FZ_FMT_zu " x " FZ_FMT_zu " bytes) failed (size_t overflow)\n", count, size);
		return NULL;
	}

	p = do_scavenging_malloc(ctx, count * size);
	if (p)
	{
		memset(p, 0, count*size);
	}
	return p;
}

void *
fz_resize_array(fz_context *ctx, void *p, size_t count, size_t size)
{
	void *np;

	if (count == 0 || size == 0)
	{
		fz_free(ctx, p);
		return 0;
	}

	if (count > SIZE_MAX / size)
		fz_throw(ctx, FZ_ERROR_MEMORY, "resize array (%zu x %zu bytes) failed (size_t overflow)", count, size);

	np = do_scavenging_realloc(ctx, p, count * size);
	if (!np)
		fz_throw(ctx, FZ_ERROR_MEMORY, "resize array (%zu x %zu bytes) failed", count, size);
	return np;
}

void *
fz_resize_array_no_throw(fz_context *ctx, void *p, size_t count, size_t size)
{
	if (count == 0 || size == 0)
	{
		fz_free(ctx, p);
		return 0;
	}

	if (count > SIZE_MAX / size)
	{
		fprintf(stderr, "error: resize array (" FZ_FMT_zu " x " FZ_FMT_zu " bytes) failed (size_t overflow)\n", count, size);
		return NULL;
	}

	return do_scavenging_realloc(ctx, p, count * size);
}

void
fz_free(fz_context *ctx, void *p)
{
	fz_lock(ctx, FZ_LOCK_ALLOC);
	ctx->alloc->free(ctx->alloc->user, p);
	fz_unlock(ctx, FZ_LOCK_ALLOC);
}

char *
fz_strdup(fz_context *ctx, const char *s)
{
	size_t len = strlen(s) + 1;
	char *ns = fz_malloc(ctx, len);
	memcpy(ns, s, len);
	return ns;
}

char *
fz_strdup_no_throw(fz_context *ctx, const char *s)
{
	size_t len = strlen(s) + 1;
	char *ns = fz_malloc_no_throw(ctx, len);
	if (ns)
		memcpy(ns, s, len);
	return ns;
}

static void *
fz_malloc_default(void *opaque, size_t size)
{
	return malloc(size);
}

static void *
fz_realloc_default(void *opaque, void *old, size_t size)
{
	return realloc(old, size);
}

static void
fz_free_default(void *opaque, void *ptr)
{
	free(ptr);
}

fz_alloc_context fz_alloc_default =
{
	NULL,
	fz_malloc_default,
	fz_realloc_default,
	fz_free_default
};

static void
fz_lock_default(void *user, int lock)
{
}

static void
fz_unlock_default(void *user, int lock)
{
}

fz_locks_context fz_locks_default =
{
	NULL,
	fz_lock_default,
	fz_unlock_default
};

#ifdef FITZ_DEBUG_LOCKING

enum
{
	FZ_LOCK_DEBUG_CONTEXT_MAX = 100
};

fz_context *fz_lock_debug_contexts[FZ_LOCK_DEBUG_CONTEXT_MAX];
int fz_locks_debug[FZ_LOCK_DEBUG_CONTEXT_MAX][FZ_LOCK_MAX];
#ifdef FITZ_DEBUG_LOCKING_TIMES
int fz_debug_locking_inited = 0;
int fz_lock_program_start;
int fz_lock_time[FZ_LOCK_DEBUG_CONTEXT_MAX][FZ_LOCK_MAX] = { { 0 } };
int fz_lock_taken[FZ_LOCK_DEBUG_CONTEXT_MAX][FZ_LOCK_MAX] = { { 0 } };

/* We implement our own millisecond clock, as clock() cannot be trusted
 * when threads are involved. */
static int ms_clock(void)
{
#if defined(_WIN32) || defined(_WIN64)
	return (int)GetTickCount();
#else
	struct timeval tp;
	gettimeofday(&tp, NULL);
	return (tp.tv_sec*1000) + (tp.tv_usec/1000);
#endif
}

static void dump_lock_times(void)
{
	int i, j;
	int prog_time = ms_clock() - fz_lock_program_start;

	for (j = 0; j < FZ_LOCK_MAX; j++)
	{
		int total = 0;
		for (i = 0; i < FZ_LOCK_DEBUG_CONTEXT_MAX; i++)
		{
			total += fz_lock_time[i][j];
		}
		printf("Lock %d held for %g seconds (%g%%)\n", j, total / 1000.0f, 100.0f*total/prog_time);
	}
	printf("Total program time %g seconds\n", prog_time / 1000.0f);
}

#endif

static int find_context(fz_context *ctx)
{
	int i;

	for (i = 0; i < FZ_LOCK_DEBUG_CONTEXT_MAX; i++)
	{
		if (fz_lock_debug_contexts[i] == ctx)
			return i;
		if (fz_lock_debug_contexts[i] == NULL)
		{
			int gottit = 0;
			/* We've not locked on this context before, so use
			 * this one for this new context. We might have other
			 * threads trying here too though so, so claim it
			 * atomically. No one has locked on this context
			 * before, so we are safe to take the ALLOC lock. */
			ctx->locks->lock(ctx->locks->user, FZ_LOCK_ALLOC);
			/* If it's still free, then claim it as ours,
			 * otherwise we'll keep hunting. */
			if (fz_lock_debug_contexts[i] == NULL)
			{
				gottit = 1;
				fz_lock_debug_contexts[i] = ctx;
#ifdef FITZ_DEBUG_LOCKING_TIMES
				if (fz_debug_locking_inited == 0)
				{
					fz_debug_locking_inited = 1;
					fz_lock_program_start = ms_clock();
					atexit(dump_lock_times);
				}
#endif
			}
			ctx->locks->unlock(ctx->locks->user, FZ_LOCK_ALLOC);
			if (gottit)
				return i;
		}
	}
	return -1;
}

void
fz_assert_lock_held(fz_context *ctx, int lock)
{
	int idx = find_context(ctx);
	if (idx < 0)
		return;

	if (fz_locks_debug[idx][lock] == 0)
		fprintf(stderr, "Lock %d not held when expected\n", lock);
}

void
fz_assert_lock_not_held(fz_context *ctx, int lock)
{
	int idx = find_context(ctx);
	if (idx < 0)
		return;

	if (fz_locks_debug[idx][lock] != 0)
		fprintf(stderr, "Lock %d held when not expected\n", lock);
}

void fz_lock_debug_lock(fz_context *ctx, int lock)
{
	int i;
	int idx = find_context(ctx);
	if (idx < 0)
		return;

	if (fz_locks_debug[idx][lock] != 0)
	{
		fprintf(stderr, "Attempt to take lock %d when held already!\n", lock);
	}
	for (i = lock-1; i >= 0; i--)
	{
		if (fz_locks_debug[idx][i] != 0)
		{
			fprintf(stderr, "Lock ordering violation: Attempt to take lock %d when %d held already!\n", lock, i);
		}
	}
	fz_locks_debug[idx][lock] = 1;
#ifdef FITZ_DEBUG_LOCKING_TIMES
	fz_lock_taken[idx][lock] = clock();
#endif
}

void fz_lock_debug_unlock(fz_context *ctx, int lock)
{
	int idx = find_context(ctx);
	if (idx < 0)
		return;

	if (fz_locks_debug[idx][lock] == 0)
	{
		fprintf(stderr, "Attempt to release lock %d when not held!\n", lock);
	}
	fz_locks_debug[idx][lock] = 0;
#ifdef FITZ_DEBUG_LOCKING_TIMES
	fz_lock_time[idx][lock] += clock() - fz_lock_taken[idx][lock];
#endif
}

#endif