1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
|
#include "mupdf/fitz.h"
typedef struct fz_item_s fz_item;
struct fz_item_s
{
void *key;
fz_storable *val;
size_t size;
fz_item *next;
fz_item *prev;
fz_store *store;
const fz_store_type *type;
};
struct fz_store_s
{
int refs;
/* Every item in the store is kept in a doubly linked list, ordered
* by usage (so LRU entries are at the end). */
fz_item *head;
fz_item *tail;
/* We have a hash table that allows to quickly find a subset of the
* entries (those whose keys are indirect objects). */
fz_hash_table *hash;
/* We keep track of the size of the store, and keep it below max. */
size_t max;
size_t size;
/* Protected by the reap lock */
int defer_reap_count;
int needs_reaping;
};
void
fz_new_store_context(fz_context *ctx, size_t max)
{
fz_store *store;
store = fz_malloc_struct(ctx, fz_store);
fz_try(ctx)
{
store->hash = fz_new_hash_table(ctx, 4096, sizeof(fz_store_hash), FZ_LOCK_ALLOC, NULL);
}
fz_catch(ctx)
{
fz_free(ctx, store);
fz_rethrow(ctx);
}
store->refs = 1;
store->head = NULL;
store->tail = NULL;
store->size = 0;
store->max = max;
store->defer_reap_count = 0;
store->needs_reaping = 0;
ctx->store = store;
}
void *
fz_keep_storable(fz_context *ctx, const fz_storable *sc)
{
/* Explicitly drop const to allow us to use const
* sanely throughout the code. */
fz_storable *s = (fz_storable *)sc;
return fz_keep_imp(ctx, s, &s->refs);
}
void
fz_drop_storable(fz_context *ctx, const fz_storable *sc)
{
/* Explicitly drop const to allow us to use const
* sanely throughout the code. */
fz_storable *s = (fz_storable *)sc;
/*
If we are dropping the last reference to an object, then
it cannot possibly be in the store (as the store always
keeps a ref to everything in it, and doesn't drop via
this method. So we can simply drop the storable object
itself without any operations on the fz_store.
*/
if (fz_drop_imp(ctx, s, &s->refs))
s->drop(ctx, s);
}
void *fz_keep_key_storable(fz_context *ctx, const fz_key_storable *sc)
{
return fz_keep_storable(ctx, &sc->storable);
}
/*
Entered with FZ_LOCK_ALLOC and FZ_LOCK_REAP held.
Drops FZ_LOCK_ALLOC and FZ_LOCK_REAP.
*/
static void
do_reap(fz_context *ctx)
{
fz_store *store = ctx->store;
fz_item *item, *prev, *remove;
if (store == NULL)
{
fz_unlock(ctx, FZ_LOCK_ALLOC);
return;
}
fz_assert_lock_held(ctx, FZ_LOCK_ALLOC);
fz_assert_lock_held(ctx, FZ_LOCK_REAP);
ctx->store->needs_reaping = 0;
/* Reap the items */
remove = NULL;
for (item = store->tail; item; item = prev)
{
prev = item->prev;
if (item->type->needs_reap == NULL || item->type->needs_reap(ctx, item->key) == 0)
continue;
/* We have to drop it */
store->size -= item->size;
/* Unlink from the linked list */
if (item->next)
item->next->prev = item->prev;
else
store->tail = item->prev;
if (item->prev)
item->prev->next = item->next;
else
store->head = item->next;
/* Remove from the hash table */
if (item->type->make_hash_key)
{
fz_store_hash hash = { NULL };
hash.drop = item->val->drop;
if (item->type->make_hash_key(ctx, &hash, item->key))
fz_hash_remove(ctx, store->hash, &hash);
}
/* Store whether to drop this value or not in 'prev' */
item->prev = (item->val->refs > 0 && --item->val->refs == 0) ? item : NULL;
/* Store it in our removal chain - just singly linked */
item->next = remove;
remove = item;
}
fz_unlock(ctx, FZ_LOCK_ALLOC);
fz_unlock(ctx, FZ_LOCK_REAP);
/* Now drop the remove chain */
for (item = remove; item != NULL; item = remove)
{
remove = item->next;
/* Drop a reference to the value (freeing if required) */
if (item->prev)
item->val->drop(ctx, item->val);
/* Always drops the key and drop the item */
item->type->drop_key(ctx, item->key);
fz_free(ctx, item);
}
}
int fz_drop_key_storable(fz_context *ctx, const fz_key_storable *sc)
{
/* Explicitly drop const to allow us to use const
* sanely throughout the code. */
fz_key_storable *s = (fz_key_storable *)sc;
int drop;
int unlock = 1;
if (s == NULL)
return 0;
if (s->storable.refs > 0)
(void)Memento_dropRef(s);
fz_lock(ctx, FZ_LOCK_ALLOC);
if (s->storable.refs > 0)
{
drop = --s->storable.refs == 0;
if (!drop && s->storable.refs == s->store_key_refs)
{
fz_lock(ctx, FZ_LOCK_REAP);
if (ctx->store->defer_reap_count > 0)
{
ctx->store->needs_reaping = 1;
fz_unlock(ctx, FZ_LOCK_REAP);
}
else
{
do_reap(ctx);
unlock = 0;
}
}
}
else
drop = 0;
if (unlock)
fz_unlock(ctx, FZ_LOCK_ALLOC);
/*
If we are dropping the last reference to an object, then
it cannot possibly be in the store (as the store always
keeps a ref to everything in it, and doesn't drop via
this method. So we can simply drop the storable object
itself without any operations on the fz_store.
*/
if (drop)
s->storable.drop(ctx, &s->storable);
return drop;
}
void *fz_keep_key_storable_key(fz_context *ctx, const fz_key_storable *sc)
{
/* Explicitly drop const to allow us to use const
* sanely throughout the code. */
fz_key_storable *s = (fz_key_storable *)sc;
if (s == NULL)
return NULL;
if (s->storable.refs > 0)
(void)Memento_takeRef(s);
fz_lock(ctx, FZ_LOCK_ALLOC);
if (s->storable.refs > 0)
{
++s->storable.refs;
++s->store_key_refs;
}
fz_unlock(ctx, FZ_LOCK_ALLOC);
return s;
}
int fz_drop_key_storable_key(fz_context *ctx, const fz_key_storable *sc)
{
/* Explicitly drop const to allow us to use const
* sanely throughout the code. */
fz_key_storable *s = (fz_key_storable *)sc;
int drop;
if (s == NULL)
return;
if (s->storable.refs > 0)
(void)Memento_dropRef(s);
fz_lock(ctx, FZ_LOCK_ALLOC);
assert(s->store_key_refs > 0 && s->storable.refs >= s->store_key_refs);
drop = --s->storable.refs == 0;
--s->store_key_refs;
fz_unlock(ctx, FZ_LOCK_ALLOC);
/*
If we are dropping the last reference to an object, then
it cannot possibly be in the store (as the store always
keeps a ref to everything in it, and doesn't drop via
this method. So we can simply drop the storable object
itself without any operations on the fz_store.
*/
if (drop)
s->storable.drop(ctx, &s->storable);
return drop;
}
static void
evict(fz_context *ctx, fz_item *item)
{
fz_store *store = ctx->store;
int drop;
store->size -= item->size;
/* Unlink from the linked list */
if (item->next)
item->next->prev = item->prev;
else
store->tail = item->prev;
if (item->prev)
item->prev->next = item->next;
else
store->head = item->next;
/* Drop a reference to the value (freeing if required) */
drop = (item->val->refs > 0 && --item->val->refs == 0);
/* Remove from the hash table */
if (item->type->make_hash_key)
{
fz_store_hash hash = { NULL };
hash.drop = item->val->drop;
if (item->type->make_hash_key(ctx, &hash, item->key))
fz_hash_remove(ctx, store->hash, &hash);
}
fz_unlock(ctx, FZ_LOCK_ALLOC);
if (drop)
item->val->drop(ctx, item->val);
/* Always drops the key and drop the item */
item->type->drop_key(ctx, item->key);
fz_free(ctx, item);
fz_lock(ctx, FZ_LOCK_ALLOC);
}
static size_t
ensure_space(fz_context *ctx, size_t tofree)
{
fz_item *item, *prev;
size_t count;
fz_store *store = ctx->store;
fz_assert_lock_held(ctx, FZ_LOCK_ALLOC);
/* First check that we *can* free tofree; if not, we'd rather not
* cache this. */
count = 0;
for (item = store->tail; item; item = item->prev)
{
if (item->val->refs == 1)
{
count += item->size;
if (count >= tofree)
break;
}
}
/* If we ran out of items to search, then we can never free enough */
if (item == NULL)
{
return 0;
}
/* Actually free the items */
count = 0;
for (item = store->tail; item; item = prev)
{
prev = item->prev;
if (item->val->refs == 1)
{
/* Free this item. Evict has to drop the lock to
* manage that, which could cause prev to be removed
* in the meantime. To avoid that we bump its reference
* count here. This may cause another simultaneous
* evict process to fail to make enough space as prev is
* pinned - but that will only happen if we're near to
* the limit anyway, and it will only cause something to
* not be cached. */
count += item->size;
if (prev)
prev->val->refs++;
evict(ctx, item); /* Drops then retakes lock */
/* So the store has 1 reference to prev, as do we, so
* no other evict process can have thrown prev away in
* the meantime. So we are safe to just decrement its
* reference count here. */
if (prev)
--prev->val->refs;
if (count >= tofree)
return count;
}
}
return count;
}
static void
touch(fz_store *store, fz_item *item)
{
if (item->next != item)
{
/* Already in the list - unlink it */
if (item->next)
item->next->prev = item->prev;
else
store->tail = item->prev;
if (item->prev)
item->prev->next = item->next;
else
store->head = item->next;
}
/* Now relink it at the start of the LRU chain */
item->next = store->head;
if (item->next)
item->next->prev = item;
else
store->tail = item;
store->head = item;
item->prev = NULL;
}
void *
fz_store_item(fz_context *ctx, void *key, void *val_, size_t itemsize, const fz_store_type *type)
{
fz_item *item = NULL;
size_t size;
fz_storable *val = (fz_storable *)val_;
fz_store *store = ctx->store;
fz_store_hash hash = { NULL };
int use_hash = 0;
if (!store)
return NULL;
fz_var(item);
/* If we fail for any reason, we swallow the exception and continue.
* All that the above program will see is that we failed to store
* the item. */
fz_try(ctx)
{
item = fz_malloc_struct(ctx, fz_item);
}
fz_catch(ctx)
{
return NULL;
}
if (type->make_hash_key)
{
hash.drop = val->drop;
use_hash = type->make_hash_key(ctx, &hash, key);
}
type->keep_key(ctx, key);
fz_lock(ctx, FZ_LOCK_ALLOC);
/* Fill out the item. To start with, we always set item->next == item
* and item->prev == item. This is so that we can spot items that have
* been put into the hash table without having made it into the linked
* list yet. */
item->key = key;
item->val = val;
item->size = itemsize;
item->next = item;
item->prev = item;
item->type = type;
/* If we can index it fast, put it into the hash table. This serves
* to check whether we have one there already. */
if (use_hash)
{
fz_item *existing;
fz_try(ctx)
{
/* May drop and retake the lock */
existing = fz_hash_insert(ctx, store->hash, &hash, item);
}
fz_catch(ctx)
{
/* Any error here means that item never made it into the
* hash - so no one else can have a reference. */
fz_unlock(ctx, FZ_LOCK_ALLOC);
fz_free(ctx, item);
type->drop_key(ctx, key);
return NULL;
}
if (existing)
{
/* There was one there already! Take a new reference
* to the existing one, and drop our current one. */
touch(store, existing);
if (existing->val->refs > 0)
existing->val->refs++;
fz_unlock(ctx, FZ_LOCK_ALLOC);
fz_free(ctx, item);
type->drop_key(ctx, key);
return existing->val;
}
}
/* Now bump the ref */
if (val->refs > 0)
val->refs++;
/* If we haven't got an infinite store, check for space within it */
if (store->max != FZ_STORE_UNLIMITED)
{
size = store->size + itemsize;
while (size > store->max)
{
size_t saved;
int relock = 0;
/* First, do any outstanding reaping, even if defer_reap_count > 0 */
fz_lock(ctx, FZ_LOCK_REAP);
if (store->needs_reaping)
{
do_reap(ctx); /* Drops alloc lock */
relock = 1;
}
else
fz_unlock(ctx, FZ_LOCK_REAP);
if (relock)
fz_lock(ctx, FZ_LOCK_ALLOC);
size = store->size + itemsize;
if (size <= store->max)
break;
/* ensure_space may drop, then retake the lock */
saved = ensure_space(ctx, size - store->max);
size -= saved;
if (saved == 0)
{
/* Failed to free any space. */
/* We used to 'unstore' it here, but that's wrong.
* If we've already spent the memory to malloc it
* then not putting it in the store just means that
* a resource used multiple times will just be malloced
* again. Better to put it in the store, have the
* store account for it, and for it to potentially be reused.
* When the caller drops the reference to it, it can then
* be dropped from the store on the next attempt to store
* anything else. */
break;
}
}
}
store->size += itemsize;
/* Regardless of whether it's indexed, it goes into the linked list */
touch(store, item);
fz_unlock(ctx, FZ_LOCK_ALLOC);
return NULL;
}
void *
fz_find_item(fz_context *ctx, fz_store_drop_fn *drop, void *key, const fz_store_type *type)
{
fz_item *item;
fz_store *store = ctx->store;
fz_store_hash hash = { NULL };
int use_hash = 0;
if (!store)
return NULL;
if (!key)
return NULL;
if (type->make_hash_key)
{
hash.drop = drop;
use_hash = type->make_hash_key(ctx, &hash, key);
}
fz_lock(ctx, FZ_LOCK_ALLOC);
if (use_hash)
{
/* We can find objects keyed on indirected objects quickly */
item = fz_hash_find(ctx, store->hash, &hash);
}
else
{
/* Others we have to hunt for slowly */
for (item = store->head; item; item = item->next)
{
if (item->val->drop == drop && !type->cmp_key(ctx, item->key, key))
break;
}
}
if (item)
{
/* LRU the block. This also serves to ensure that any item
* picked up from the hash before it has made it into the
* linked list does not get whipped out again due to the
* store being full. */
touch(store, item);
/* And bump the refcount before returning */
if (item->val->refs > 0)
item->val->refs++;
fz_unlock(ctx, FZ_LOCK_ALLOC);
return (void *)item->val;
}
fz_unlock(ctx, FZ_LOCK_ALLOC);
return NULL;
}
void
fz_remove_item(fz_context *ctx, fz_store_drop_fn *drop, void *key, const fz_store_type *type)
{
fz_item *item;
fz_store *store = ctx->store;
int dodrop;
fz_store_hash hash = { NULL };
int use_hash = 0;
if (type->make_hash_key)
{
hash.drop = drop;
use_hash = type->make_hash_key(ctx, &hash, key);
}
fz_lock(ctx, FZ_LOCK_ALLOC);
if (use_hash)
{
/* We can find objects keyed on indirect objects quickly */
item = fz_hash_find(ctx, store->hash, &hash);
if (item)
fz_hash_remove(ctx, store->hash, &hash);
}
else
{
/* Others we have to hunt for slowly */
for (item = store->head; item; item = item->next)
if (item->val->drop == drop && !type->cmp_key(ctx, item->key, key))
break;
}
if (item)
{
/* Momentarily things can be in the hash table without being
* in the list. Don't attempt to unlink these. We indicate
* such items by setting item->next == item. */
if (item->next != item)
{
if (item->next)
item->next->prev = item->prev;
else
store->tail = item->prev;
if (item->prev)
item->prev->next = item->next;
else
store->head = item->next;
}
dodrop = (item->val->refs > 0 && --item->val->refs == 0);
fz_unlock(ctx, FZ_LOCK_ALLOC);
if (dodrop)
item->val->drop(ctx, item->val);
type->drop_key(ctx, item->key);
fz_free(ctx, item);
}
else
fz_unlock(ctx, FZ_LOCK_ALLOC);
}
void
fz_empty_store(fz_context *ctx)
{
fz_store *store = ctx->store;
if (store == NULL)
return;
fz_lock(ctx, FZ_LOCK_ALLOC);
/* Run through all the items in the store */
while (store->head)
{
evict(ctx, store->head); /* Drops then retakes lock */
}
fz_unlock(ctx, FZ_LOCK_ALLOC);
}
fz_store *
fz_keep_store_context(fz_context *ctx)
{
if (ctx == NULL || ctx->store == NULL)
return NULL;
return fz_keep_imp(ctx, ctx->store, &ctx->store->refs);
}
void
fz_drop_store_context(fz_context *ctx)
{
if (!ctx)
return;
if (fz_drop_imp(ctx, ctx->store, &ctx->store->refs))
{
fz_empty_store(ctx);
fz_drop_hash_table(ctx, ctx->store->hash);
fz_free(ctx, ctx->store);
ctx->store = NULL;
}
}
static void
print_item(fz_context *ctx, fz_output *out, void *item_)
{
fz_item *item = (fz_item *)item_;
fz_write_printf(ctx, out, " val=%p item=%p\n", item->val, item);
}
void
fz_print_store_locked(fz_context *ctx, fz_output *out)
{
fz_item *item, *next;
fz_store *store = ctx->store;
fz_write_printf(ctx, out, "-- resource store contents --\n");
for (item = store->head; item; item = next)
{
next = item->next;
if (next)
next->val->refs++;
fz_write_printf(ctx, out, "store[*][refs=%d][size=%d] ", item->val->refs, item->size);
fz_unlock(ctx, FZ_LOCK_ALLOC);
item->type->print(ctx, out, item->key);
fz_write_printf(ctx, out, " = %p\n", item->val);
fz_lock(ctx, FZ_LOCK_ALLOC);
if (next)
next->val->refs--;
}
fz_write_printf(ctx, out, "-- resource store hash contents --\n");
fz_print_hash_details(ctx, out, store->hash, print_item, 1);
fz_write_printf(ctx, out, "-- end --\n");
}
void
fz_print_store(fz_context *ctx, fz_output *out)
{
fz_lock(ctx, FZ_LOCK_ALLOC);
fz_print_store_locked(ctx, out);
fz_unlock(ctx, FZ_LOCK_ALLOC);
}
/* This is now an n^2 algorithm - not ideal, but it'll only be bad if we are
* actually managing to scavenge lots of blocks back. */
static int
scavenge(fz_context *ctx, size_t tofree)
{
fz_store *store = ctx->store;
size_t count = 0;
fz_item *item, *prev;
/* Free the items */
for (item = store->tail; item; item = prev)
{
prev = item->prev;
if (item->val->refs == 1)
{
/* Free this item */
count += item->size;
evict(ctx, item); /* Drops then retakes lock */
if (count >= tofree)
break;
/* Have to restart search again, as prev may no longer
* be valid due to release of lock in evict. */
prev = store->tail;
}
}
/* Success is managing to evict any blocks */
return count != 0;
}
int fz_store_scavenge(fz_context *ctx, size_t size, int *phase)
{
fz_store *store;
size_t max;
store = ctx->store;
if (store == NULL)
return 0;
#ifdef DEBUG_SCAVENGING
printf("Scavenging: store=" FMT_zu " size=" FMT_zu " phase=%d\n", store->size, size, *phase);
fz_print_store_locked(ctx, stderr);
Memento_stats();
#endif
do
{
size_t tofree;
/* Calculate 'max' as the maximum size of the store for this phase */
if (*phase >= 16)
max = 0;
else if (store->max != FZ_STORE_UNLIMITED)
max = store->max / 16 * (16 - *phase);
else
max = store->size / (16 - *phase) * (15 - *phase);
(*phase)++;
/* Slightly baroque calculations to avoid overflow */
if (size > SIZE_MAX - store->size)
tofree = SIZE_MAX - max;
else if (size + store->size > max)
continue;
else
tofree = size + store->size - max;
if (scavenge(ctx, tofree))
{
#ifdef DEBUG_SCAVENGING
printf("scavenged: store=" FMT_zu "\n", store->size);
fz_print_store(ctx, stderr);
Memento_stats();
#endif
return 1;
}
}
while (max > 0);
#ifdef DEBUG_SCAVENGING
printf("scavenging failed\n");
fz_print_store(ctx, stderr);
Memento_listBlocks();
#endif
return 0;
}
int
fz_shrink_store(fz_context *ctx, unsigned int percent)
{
int success;
fz_store *store;
size_t new_size;
if (percent >= 100)
return 1;
store = ctx->store;
if (store == NULL)
return 0;
#ifdef DEBUG_SCAVENGING
fprintf(stderr, "fz_shrink_store: " FMT_zu "\n", store->size/(1024*1024));
#endif
fz_lock(ctx, FZ_LOCK_ALLOC);
new_size = (size_t)(((uint64_t)store->size * percent) / 100);
if (store->size > new_size)
scavenge(ctx, store->size - new_size);
success = (store->size <= new_size) ? 1 : 0;
fz_unlock(ctx, FZ_LOCK_ALLOC);
#ifdef DEBUG_SCAVENGING
fprintf(stderr, "fz_shrink_store after: " FMT_zu "\n", store->size/(1024*1024));
#endif
return success;
}
void fz_filter_store(fz_context *ctx, fz_store_filter_fn *fn, void *arg, const fz_store_type *type)
{
fz_store *store;
fz_item *item, *prev, *remove;
store = ctx->store;
if (store == NULL)
return;
fz_lock(ctx, FZ_LOCK_ALLOC);
/* Filter the items */
remove = NULL;
for (item = store->tail; item; item = prev)
{
prev = item->prev;
if (item->type != type)
continue;
if (fn(ctx, arg, item->key) == 0)
continue;
/* We have to drop it */
store->size -= item->size;
/* Unlink from the linked list */
if (item->next)
item->next->prev = item->prev;
else
store->tail = item->prev;
if (item->prev)
item->prev->next = item->next;
else
store->head = item->next;
/* Remove from the hash table */
if (item->type->make_hash_key)
{
fz_store_hash hash = { NULL };
hash.drop = item->val->drop;
if (item->type->make_hash_key(ctx, &hash, item->key))
fz_hash_remove(ctx, store->hash, &hash);
}
/* Store whether to drop this value or not in 'prev' */
item->prev = (item->val->refs > 0 && --item->val->refs == 0) ? item : NULL;
/* Store it in our removal chain - just singly linked */
item->next = remove;
remove = item;
}
fz_unlock(ctx, FZ_LOCK_ALLOC);
/* Now drop the remove chain */
for (item = remove; item != NULL; item = remove)
{
remove = item->next;
/* Drop a reference to the value (freeing if required) */
if (item->prev)
item->val->drop(ctx, item->val);
/* Always drops the key and drop the item */
item->type->drop_key(ctx, item->key);
fz_free(ctx, item);
}
}
void fz_defer_reap_start(fz_context *ctx)
{
if (ctx->store == NULL)
return;
fz_lock(ctx, FZ_LOCK_REAP);
ctx->store->defer_reap_count++;
fz_unlock(ctx, FZ_LOCK_REAP);
}
void fz_defer_reap_end(fz_context *ctx)
{
int reap;
if (ctx->store == NULL)
return;
fz_lock(ctx, FZ_LOCK_ALLOC);
fz_lock(ctx, FZ_LOCK_REAP);
--ctx->store->defer_reap_count;
reap = ctx->store->defer_reap_count == 0 && ctx->store->needs_reaping;
if (reap)
do_reap(ctx); /* Drops FZ_LOCK_ALLOC and FZ_LOCK_REAP*/
else
{
fz_unlock(ctx, FZ_LOCK_REAP);
fz_unlock(ctx, FZ_LOCK_ALLOC);
}
}
|