1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
#include "mupdf/fitz.h"
#ifndef INFINITY
#define INFINITY (DBL_MAX+DBL_MAX)
#endif
#ifndef NAN
#define NAN (INFINITY-INFINITY)
#endif
/*
We use "Algorithm D" from "Contributions to a Proposed Standard for Binary
Floating-Point Arithmetic" by Jerome Coonen (1984).
The implementation uses a self-made floating point type, 'strtof_fp_t', with
a 32-bit significand. The steps of the algorithm are
INPUT: Up to 9 decimal digits d1 , ... d9 and an exponent dexp.
OUTPUT: A float corresponding to the number d1 ... d9 * 10^dexp.
1) Convert the integer d1 ... d9 to an strtof_fp_t x.
2) Lookup the strtof_fp_t power = 10 ^ |dexp|.
3) If dexp is positive set x = x * power, else set x = x / power. Use rounding mode 'round to odd'.
4) Round x to a float using rounding mode 'to even'.
Step 1) is always lossless as the strtof_fp_t's significand can hold a 9-digit integer.
In the case |dexp| <= 13 the cached power is exact and the algorithm returns
the exactly rounded result (with rounding mode 'to even').
There is no double-rounding in 3), 4) as the multiply/divide uses 'round to odd'.
For |dexp| > 13 the maximum error is bounded by (1/2 + 1/256) ulp.
This is small enough to ensure that binary to decimal to binary conversion
is the identity if the decimal format uses 9 correctly rounded significant digits.
*/
typedef struct strtof_fp_t
{
uint32_t f;
int e;
} strtof_fp_t;
/* Multiply/Divide x by y with 'round to odd'. Assume that x and y are normalized. */
static strtof_fp_t
strtof_multiply(strtof_fp_t x, strtof_fp_t y)
{
uint64_t tmp;
strtof_fp_t res;
assert(x.f & y.f & 0x80000000);
res.e = x.e + y.e + 32;
tmp = (uint64_t) x.f * y.f;
/* Normalize. */
if ((tmp < ((uint64_t) 1 << 63)))
{
tmp <<= 1;
--res.e;
}
res.f = tmp >> 32;
/* Set the last bit of the significand to 1 if the result is
inexact. */
if (tmp & 0xffffffff)
res.f |= 1;
return res;
}
static strtof_fp_t
divide(strtof_fp_t x, strtof_fp_t y)
{
uint64_t product, quotient;
uint32_t remainder;
strtof_fp_t res;
res.e = x.e - y.e - 32;
product = (uint64_t) x.f << 32;
quotient = product / y.f;
remainder = product % y.f;
/* 2^31 <= quotient <= 2^33 - 2. */
if (quotient <= 0xffffffff)
res.f = quotient;
else
{
++res.e;
/* If quotient % 2 != 0 we have remainder != 0. */
res.f = quotient >> 1;
}
if (remainder)
res.f |= 1;
return res;
}
/* From 10^0 to 10^54. Generated with GNU MPFR. */
static const uint32_t strtof_powers_ten[55] = {
0x80000000, 0xa0000000, 0xc8000000, 0xfa000000, 0x9c400000, 0xc3500000,
0xf4240000, 0x98968000, 0xbebc2000, 0xee6b2800, 0x9502f900, 0xba43b740,
0xe8d4a510, 0x9184e72a, 0xb5e620f4, 0xe35fa932, 0x8e1bc9bf, 0xb1a2bc2f,
0xde0b6b3a, 0x8ac72305, 0xad78ebc6, 0xd8d726b7, 0x87867832, 0xa968163f,
0xd3c21bcf, 0x84595161, 0xa56fa5ba, 0xcecb8f28, 0x813f3979, 0xa18f07d7,
0xc9f2c9cd, 0xfc6f7c40, 0x9dc5ada8, 0xc5371912, 0xf684df57, 0x9a130b96,
0xc097ce7c, 0xf0bdc21b, 0x96769951, 0xbc143fa5, 0xeb194f8e, 0x92efd1b9,
0xb7abc627, 0xe596b7b1, 0x8f7e32ce, 0xb35dbf82, 0xe0352f63, 0x8c213d9e,
0xaf298d05, 0xdaf3f046, 0x88d8762c, 0xab0e93b7, 0xd5d238a5, 0x85a36367,
0xa70c3c41
};
static const int strtof_powers_ten_e[55] = {
-31, -28, -25, -22, -18, -15, -12, -8, -5, -2,
2, 5, 8, 12, 15, 18, 22, 25, 28, 32, 35, 38, 42, 45, 48, 52, 55, 58, 62, 65,
68, 71, 75, 78, 81, 85, 88, 91, 95, 98, 101, 105, 108, 111, 115, 118, 121,
125, 128, 131, 135, 138, 141, 145, 148
};
static strtof_fp_t
strtof_cached_power(int i)
{
strtof_fp_t result;
assert (i >= 0 && i <= 54);
result.f = strtof_powers_ten[i];
result.e = strtof_powers_ten_e[i];
return result;
}
/* Find number of leading zero bits in an uint32_t. Derived from the
"Bit Twiddling Hacks" at graphics.stanford.edu/~seander/bithacks.html. */
static unsigned char clz_table[256] = {
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
# define sixteen_times(N) N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
sixteen_times (3) sixteen_times (2) sixteen_times (2)
sixteen_times (1) sixteen_times (1) sixteen_times (1) sixteen_times (1)
/* Zero for the rest. */
};
static unsigned
leading_zeros (uint32_t x)
{
unsigned tmp1, tmp2;
tmp1 = x >> 16;
if (tmp1)
{
tmp2 = tmp1 >> 8;
if (tmp2)
return clz_table[tmp2];
else
return 8 + clz_table[tmp1];
}
else
{
tmp1 = x >> 8;
if (tmp1)
return 16 + clz_table[tmp1];
else
return 24 + clz_table[x];
}
}
static strtof_fp_t
uint32_to_diy (uint32_t x)
{
strtof_fp_t result = {x, 0};
unsigned shift = leading_zeros(x);
result.f <<= shift;
result.e -= shift;
return result;
}
#define SP_SIGNIFICAND_SIZE 23
#define SP_EXPONENT_BIAS (127 + SP_SIGNIFICAND_SIZE)
#define SP_MIN_EXPONENT (-SP_EXPONENT_BIAS)
#define SP_EXPONENT_MASK 0x7f800000
#define SP_SIGNIFICAND_MASK 0x7fffff
#define SP_HIDDEN_BIT 0x800000 /* 2^23 */
/* Convert normalized strtof_fp_t to IEEE-754 single with 'round to even'.
See "Implementing IEEE 754-2008 Rounding" in the
"Handbook of Floating-Point Arithmetik".
*/
static float
diy_to_float(strtof_fp_t x, int negative)
{
uint32_t result;
union
{
float f;
uint32_t n;
} tmp;
assert(x.f & 0x80000000);
/* We have 2^32 - 2^7 = 0xffffff80. */
if (x.e > 96 || (x.e == 96 && x.f >= 0xffffff80))
{
/* Overflow. Set result to infinity. */
errno = ERANGE;
result = 0xff << SP_SIGNIFICAND_SIZE;
}
/* We have 2^32 - 2^8 = 0xffffff00. */
else if (x.e > -158)
{
/* x is greater or equal to FLT_MAX. So we get a normalized number. */
result = (uint32_t) (x.e + 158) << SP_SIGNIFICAND_SIZE;
result |= (x.f >> 8) & SP_SIGNIFICAND_MASK;
if (x.f & 0x80)
{
/* Round-bit is set. */
if (x.f & 0x7f)
/* Sticky-bit is set. */
++result;
else if (x.f & 0x100)
/* Significand is odd. */
++result;
}
}
else if (x.e == -158 && x.f >= 0xffffff00)
{
/* x is in the range (2^32, 2^32 - 2^8] * 2^-158, so its smaller than
FLT_MIN but still rounds to it. */
result = 1U << SP_SIGNIFICAND_SIZE;
}
else if (x.e > -181)
{
/* Non-zero Denormal. */
int shift = -149 - x.e; /* 9 <= shift <= 31. */
result = x.f >> shift;
if (x.f & (1U << (shift - 1)))
/* Round-bit is set. */
{
if (x.f & ((1U << (shift - 1)) - 1))
/* Sticky-bit is set. */
++result;
else if (x.f & 1U << shift)
/* Significand is odd. */
++result;
}
}
else if (x.e == -181 && x.f > 0x80000000)
{
/* x is in the range (0.5,1) * 2^-149 so it rounds to the smallest
denormal. Can't handle this in the previous case as shifting a
uint32_t 32 bits to the right is undefined behaviour. */
result = 1;
}
else
{
/* Underflow. */
errno = ERANGE;
result = 0;
}
if (negative)
result |= 0x80000000;
tmp.n = result;
return tmp.f;
}
static float
scale_integer_to_float(uint32_t M, int N, int negative)
{
strtof_fp_t result, x, power;
if (M == 0)
return negative ? -0.f : 0.f;
if (N > 38)
{
/* Overflow. */
errno = ERANGE;
return negative ? -INFINITY : INFINITY;
}
if (N < -54)
{
/* Underflow. */
errno = ERANGE;
return negative ? -0.f : 0.f;
}
/* If N is in the range {-13, ..., 13} the conversion is exact.
Try to scale N into this region. */
while (N > 13 && M <= 0xffffffff / 10)
{
M *= 10;
--N;
}
while (N < -13 && M % 10 == 0)
{
M /= 10;
++N;
}
x = uint32_to_diy (M);
if (N >= 0)
{
power = strtof_cached_power(N);
result = strtof_multiply(x, power);
}
else
{
power = strtof_cached_power(-N);
result = divide(x, power);
}
return diy_to_float(result, negative);
}
/* Return non-zero if *s starts with string (must be uppercase), ignoring case,
and increment *s by its length. */
static int
starts_with(const char **s, const char *string)
{
const char *x = *s, *y = string;
while (*x && *y && (*x == *y || *x == *y + 32))
++x, ++y;
if (*y == 0)
{
/* Match. */
*s = x;
return 1;
}
else
return 0;
}
#define SET_TAILPTR(tailptr, s) \
do \
if (tailptr) \
*tailptr = (char *) s; \
while (0)
static float
strtof_internal(const char *string, char **tailptr, int exp_format)
{
/* FIXME: error (1/2 + 1/256) ulp */
const char *s;
uint32_t M = 0;
int N = 0;
/* If decimal_digits gets 9 we truncate all following digits. */
int decimal_digits = 0;
int negative = 0;
const char *number_start = 0;
/* Skip leading whitespace (isspace in "C" locale). */
s = string;
while (*s == ' ' || *s == '\f' || *s == '\n' || *s == '\r' || *s == '\t'
|| *s == '\v')
++s;
/* Parse sign. */
if (*s == '+')
++s;
if (*s == '-')
{
negative = 1;
++s;
}
number_start = s;
/* Parse digits before decimal point. */
while (*s >= '0' && *s <= '9')
{
if (decimal_digits)
{
if (decimal_digits < 9)
{
++decimal_digits;
M = M * 10 + *s - '0';
}
/* Really arcane strings might overflow N. */
else if (N < 1000)
++N;
}
else if (*s > '0')
{
M = *s - '0';
++decimal_digits;
}
++s;
}
/* Parse decimal point. */
if (*s == '.')
++s;
/* Parse digits after decimal point. */
while (*s >= '0' && *s <= '9')
{
if (decimal_digits < 9)
{
if (decimal_digits || *s > '0')
{
++decimal_digits;
M = M * 10 + *s - '0';
}
--N;
}
++s;
}
if ((s == number_start + 1 && *number_start == '.') || number_start == s)
{
/* No Number. Check for INF and NAN strings. */
s = number_start;
if (starts_with(&s, "INFINITY") || starts_with(&s, "INF"))
{
errno = ERANGE;
SET_TAILPTR(tailptr, s);
return negative ? -INFINITY : +INFINITY;
}
else if (starts_with(&s, "NAN"))
{
SET_TAILPTR(tailptr, s);
return (float)NAN;
}
else
{
SET_TAILPTR(tailptr, string);
return 0.f;
}
}
/* Parse exponent. */
if (exp_format && (*s == 'e' || *s == 'E'))
{
int exp_negative = 0;
int exp = 0;
const char *int_start;
const char *exp_start = s;
++s;
if (*s == '+')
++s;
else if (*s == '-')
{
++s;
exp_negative = 1;
}
int_start = s;
/* Parse integer. */
while (*s >= '0' && *s <= '9')
{
/* Make sure exp does not get overflowed. */
if (exp < 100)
exp = exp * 10 + *s - '0';
++s;
}
if (exp_negative)
exp = -exp;
if (s == int_start)
/* No Number. */
s = exp_start;
else
N += exp;
}
SET_TAILPTR(tailptr, s);
return scale_integer_to_float(M, N, negative);
}
float
fz_strtof(const char *string, char **tailptr)
{
return strtof_internal(string, tailptr, 1);
}
float
fz_strtof_no_exp(const char *string, char **tailptr)
{
return strtof_internal(string, tailptr, 0);
}
|