

NVIDIA BIT_DISPLAY_PTRS (‘U’), BIT_DP_PTRS ('d')

Contents
BIT_DISPLAY_PTRS (‘U’) .. 1

Display Script Table ... 1

Display Control Flag Byte .. 8

BIT_DP_PTRS ('d') .. 8

DP Info Table ... 8

DP Info Table Header .. 9

DP Info Table Entries ... 11

DP Info Level Entry Table .. 11

DP Info Table Target Entry .. 13

BIT_DISPLAY_PTRS (‘U’)

Display Script Table

The root data structure for the IEDTable system is the DisplayScriptTbl structure defined

below. Note that it consists of a single header, DisplayScriptTblHdr, and a variable number

of entries, the DisplayScriptTblEntry structures. It is legal for no DisplayScriptTblEntrys to

exist (e.g., a design that only stuffs a single VGA connector to an internal DAC).

 DisplayScriptTblHdr struct

 Version db 22h ; The latest version is 2.2, initial version is

2.0

 HeaderSize db 5 ; Header size = SIZEOF(DisplayScriptTblHdr)

 EntrySize db 2 ; Entry size = SIZEOF(DisplayScriptTblEntry)

 EntryCount db ? ; Number of entries

 TargetSize db 14 ; Size of the structure that the entries point

to SIZEOF(IEDTable)

 DisplayScriptTblHdr ends

 DisplayScriptTblEntry struct

 IEDTablePtr dw 0000h ; pointer to Init/Enable/Disable Table

(IEDTable)

 DisplayScriptTblEntry ends

 …

The DisplayScriptTbl will be directly accessible via a pointer from the BIT, and if the table is

not present, the BIT will contain a null pointer. The IEDTables are the main secondary

structures. There is a 1:1 relationship between the number of IEDTables and the number of

DisplayScriptTbl.IEDTablePtr records (except for the cases of a NULL IEDTablePtr, which is

valid).

 IEDTable struct ; SIZEOF(IEDTable) = 12 bytes

 IEDTkey IEDkey ; 4 bytes of InitEnableDisable key to match DCB info

 Flags db 00h ; Flags

 ; [0:0] = Reserved

 ; [1:1] = Driver Skip (1 = skip, 0 = process)

 ; [2:2] = Manual power control

 ; (1 = manual, 0 = automatic)

 ; all other bits reserved for future use

 RuntimeCount db 00h ; Number of IEDTRuntimeSettingsEntry

structures

 ; following this IEDTable

 InitScript dw 0000h ; ptr to devinit script to initialize HW

resource

 OffINT1Script dw 0000h ; ptr to devinit script to OffINT1 HW

resource

 OffINT2Script dw 0000h ; ptr to devinit script to OffINT2 HW

resource

 IEDTable ends

 IEDTRuntimeSettingsEntry STRUCT

 Protocol db 00h ; Output Resource Protocol for this entry

 DeviceFlags db 00h ; Device specific flags

 ;(dlink/slink, 18/24 bpp, etc.) for this

entry

 OnINT2Table dw 0000h ; Pointer to SorClkMode array for scripts to

run

 ; during supervisior interrupt 2

 OnINT3Table dw 0000h ; Pointer to SorClkMode array for scripts to

run

 ; during supervisior interrupt 3

 IEDTRuntimeSettingsEntry ENDS

 …

The IEDTkey is used to match against a particular DCB record. To this end, the alignment of

the relevant bit fields in the IEDTkey were chosen to exactly match up to the bit fields in the

DCB 3.0 specification. The algorithm for matching an IEDTkey to a DCB is described below.

A match is made when the followings are all true:

1. The IEDTkeyDCBDPI.Type, Location, and IEDTkeyDCBDSI.SubType bit fields match

all of the equivalent DCB bit fields—i.e., all bit field 1’s and 0’s are identical.

2. The IEDTkeyDCBDPI.Head bits which are set to 1 correspond to the head (display

pipe) the device is attached to --i.e., (IEDTkeyDCBDPI.Head & CurrentHead) != 0.

3. All of the IEDTkeyDCBDPI.Outdev bits which are set to 1 correspond to any of the

DCB.OutDev bits which are set to 1—i.e., (IEDTkeyDCBDPI.Outdev &

DCB.Outdev) != 0.

4. For version 2.1, all of the IEDTkeyDCBDPI.Sublink bits which are set to 1 correspond

to any of the DCB.Sublink bits which are set to 1-i.e. (IEDTkeyDCBDPI.Sublink &

DCB.Sublink) != 0.

For IED 2.0, this is the IEDKey:

 IEDTkey RECORD ; SIZEOF(IEDTkey) = 4 bytes, in MSb to LSb order

 Reserved: 6 ; [31:26]=000000 (hex). Unused.

 Head: 2 ; [25:24]=DCB.Head Bitmask {b0=HeadA,b1=HeadB}

 Reserved: 4 ; [23:20]=0000 (binary). Unused.

 OutDev: 4 ; [19:16]=depends on DCB.Type: DAC/Link/MIO {A,B,C,D}

 SubType:8 ; [15:08]=DCB.DSI.Encoder/ExtLinkType used if

Location=OnBoard.

 ; SubType interpretation depends on Type:

 ; if Type=CRT: Unused, set to=00h

 ; if Type=TV: {BT868,CX871,CH7007,PH7108B,…}

 ; if Type=LCD-TMDS {SI164,SI178,CH7009,SI164alt,CH7301}

 ; if Type=LCD=LVDS {CH7019,NSDS90C387}

 Reserved: 2 ; [07:06]=00 (binary). Unused.

 Location: 2 ; [05:04]=DCB.Location {OnChip,OnBoard}

 Type: 4 ; [03:00]=DCB.Type {CRT,TV,LCD-TMDS,LCD-LVDS}

 IEDkeyDCBDSI ends

For IED 2.1, DCB.DSI.SubLink is added to the previous reserved field:

 IEDTkey RECORD ; SIZEOF(IEDTkey) = 4 bytes, in MSb to LSb order

 Reserved: 4 ; [31:28]=000000 (hex). Unused.

 Head: 4 ; [27:24]=DCB.Head Bitmask

{b0=HeadA,b1=HeadB,b2=HeadC,b3=HeadD}

 SubLink: 2 ; [23:22]=DCB.DSI.SUBLINK

 Reserved: 2 ; [21:20]=0000 (binary). Unused.

 OutDev: 4 ; [19:16]=depends on DCB.Type: DAC/Link/MIO {A,B,C,D}

 SubType: 8 ; [15:08]=DCB.DSI.Encoder/ExtLinkType used if

Location=OnBoard.

 ; SubType interpretation depends on Type:

 ; if Type=CRT: Unused, set to=00h

 ; if Type=TV: {BT868,CX871,CH7007,PH7108B,…}

 ; if Type=LCD-TMDS {SI164,SI178,CH7009,SI164alt,CH7301}

 ; if Type=LCD=LVDS {CH7019,NSDS90C387}

 Reserved: 2 ; [07:06]=00 (binary). Unused.

 Location: 2 ; [05:04]=DCB.Location {OnChip,OnBoard}

 Type: 4 ; [03:00]=DCB.Type {CRT,TV,LCD-TMDS,LCD-LVDS}

 IEDkeyDCBDSI ends

For IED 2.2, DCB.DSI.PadLink replaces DCB.DSI.SubLink and OutDev will use Pad Macro

Index instead of Link/SOR. This is to match DCB 4.1.

 IEDTkey RECORD ; SIZEOF(IEDTkey) = 4 bytes, in MSb to LSb order

 Reserved: 4 ; [31:28]=000000 (hex). Unused.

 Head: 4 ; [27:24]=DCB.Head Bitmask

{b0=HeadA,b1=HeadB,b2=HeadC,b3=HeadD}

 PadLink: 2 ; [23:22]=DCB.DSI.PADLINK

 Reserved: 2 ; [21:20]=0000 (binary). Unused.

 OutDev: 4 ; [19:16]=depends on DCB.Type: DAC/Pad Macro Index/MIO

{A,B,C,D}

 SubType: 8 ; [15:08]=DCB.DSI.Encoder/ExtLinkType used if

Location=OnBoard.

 ; SubType interpretation depends on Type:

 ; if Type=CRT: Unused, set to=00h

 ; if Type=TV: {BT868,CX871,CH7007,PH7108B,…}

 ; if Type=LCD-TMDS {SI164,SI178,CH7009,SI164alt,CH7301}

 ; if Type=LCD=LVDS {CH7019,NSDS90C387}

 Reserved: 2 ; [07:06]=00 (binary). Unused.

 Location: 2 ; [05:04]=DCB.Location {OnChip,OnBoard}

 Type: 4 ; [03:00]=DCB.Type {CRT,TV,LCD-TMDS,LCD-LVDS}

 IEDkeyDCBDSI ends

The flag at IEDTable.Flags.1 is used to signal to the Resource Manager that it should not

process the entry for that device. The Resource Manager should instead either not utilize

the device or use any hard coded initialization it has available. This allows entries to be

added for the use by the VBIOS that are either not tested yet with the Resource Manager or

that are not appropriate for use by the Resource Manager for other reasons.

The flag at IEDTable.Flags 2 is used to signal that a device requires “manual” power control.

These are usually PIOR devices that require a running pixel clock when communicating with

the device via the I2C protocol. See the Device Control Specification for more information.

The InitScript field points to a devinit script to run at boot time. At boot, the software

performing the GPU initialization (VBIOS, resman, fcode, etc.) loops through each DCB

entry present in the firmware image and looks for a matching IEDT entry. For each one it

locates, the software must execute the InitScript for that entry. If the InitScript field is

NULL, execution of the script is skipped.

The OffINT1Script field points to a script that must be run during Supervisior Interrupt 1

for a matching device if the device was previously running before the display update (mode

set) and is now being shutdown, either because the device is being disabled or because of a

change in backend timings or pixel clock. If the OffINT1Script field is NULL, execution of the

script is skipped.

The RuntimeCount field is a count of how many IEDTRuntimeSettingsEntry structures are

immediately following this IEDTable structure. Each IEDTRuntimeSettingsEntry structure

represents a possible runtime configuration of the matching device. It is possible for some

https://wiki.nvidia.com/engwiki/index.php/VBIOS/VBIOS_Core6/VBIOS_Core6DeviceControlSpec

runtime configurations to not have any matching entries. It is also possible for

RuntimeCount to be zero for a device that only has an InitScript and/or OffINT1Script.

The Protocol and DeviceFlags fields are used to locate the correct IEDTRuntimeSettingsEntry

structure to use for a running device. The Protocol field of the entry to use must match the

EVO protocol value of the device in affect. A Protocol field of IEDT_PROTOCOL_ALL is a

wildcard protocol that matches any protocol value. The DeviceFlags field varies depending

on the device type in use. Currently only flags for flat panels are defined (all other devices

always have the DeviceFlags field set to zero). The currently defined flags are:

Bit 0 - Link Count

 0 = Single link

 1 = Dual link

Bit 1 - Bits per pixel (LVDS only, always zero for TMDS)

 0 = 18 BPP

 1 = 24 BPP

If the device matching the IEDTable is in a configuration that matches a particular

IEDTRuntimeSettingsEntry the OnINT2Table and OnINT3Table fields are processed.

OnINT2Table and OnINT3Table are processed if the device was shutdown and is now

being started (such as for a pixel clock or backend timings change or for a device that is

just now being enabled). OnINT2Table is using during Supervisor Interrupt 2 and

OnINT3Table is used during Supervisor Interrupt 3

Both OnINT2Table and OnINT3Table point to an array of SorClkMode structures. The

intent is to allow support for devices where the initialization requirements depend on the

target sor_clk frequency. sor_clk is generally equal to pixel clock. Exceptional cases are

dual-link DVI along with HDMI Deep Color and Pixel Replication modes.

 SorClkMode struct ; identical to legacy TMDSMode{}

 SorClkFreq dw 0000h ; if target sor_clk > this sor_clk, run script

 InitScript dw 0000h ; ptr to devinit script to initialize HW

resource

 SorClkMode ends

The array of SorClkMode structures is scanned starting with the first entry. The first entry

encountered with a frequency that is less than the device's current sor_clk is the one

chosen. The SorClkFreq field value is specified in 10 kHz units. The devinit script pointed to

by the InitScript field of the chosen entry is executed. The last entry in an array of

SorClkMode structures will always have a frequency of 0 kHz so that a valid entry is always

found.

Is it is valid for either OnINT2Table or OnINT3Table to be NULL pointers, in which case

script execution is skipped for that period. Also, it is valid for any of the script pointers in

the array of SorClkMode structures to be NULL, in which case script execution is skipped as

well.

For a device that does not have scripts that are a function of frequency there will be only

one SorClkMode structure with the SorClkMode.SorClkFreq field specified as 0 kHz.

Display Control Flag Byte

[0:0] = Reserved

[1:1] = NO_DISPLAY_SUBSYSTEM: Display subsystem isn't included in the GPU

(used for displayless coproc)
[2:2] = Reserved

[3:3] = VBIOS avoids touching mempool while drivers running

[4:4] = Offset PCLK between 2 heads

[5:5] = Boot with DP Hotplug disabled

[6:6] = Allow detection of DP sinks by doing a DPCD register read
[7:7] = Reserved

BIT_DP_PTRS ('d')

BIT_DP_PTRS ('d') - DP Info Table contains tables and scripts to enable the support of

various DP functionality. DP Info Table can be referenced through BIT_TOKEN_DP_PTRS('d')
in BIT table.

DP Info Table

DP Info Table consists of the following parts:

 Header - The version number (0x4x for Version 4.x), header size, the size of each DP

Info Table Entry, the number of Entries, size of the structures that the entries point to,

size of each level entry, and a flag byte.

 DP Info Table entries list - One for each DP link. Each entry consists a pointer which

points to the corresponding Target Entry(DPInfoStruct).

DP Info Table Header

Name
Bit

width
Values and meaning

Version 8

Version # of the DP Info Table Header and

Entries. Currently, this is 0x41 for version

4.1 and 0x42 for version 4.2 (Pascal

onward).

Header Size 8
Size of the DP Info Table Header in Bytes.

Currently, this is 9 bytes.

Entry Size 8
Size of Each Entry in bytes. With DP Info

Table 4.x, this field should be 2.

Entry Count 8
Number of DP Info Table Entries starting

directly after the end of this table.

Target Size 8

Size of the structure that the entry points in

bytes. With the latest version of DP Info

Table 4.x, this field should be 19.

Level Entry Table Count 8
Number of Level Entry Tables. It can be

either 2 or 3 for DP Info Table version 4.2.

Level Entry Size 8

Size of each level entry in Level Entry

Table. With DP Info Table 4.1, this field

should be 4. With DP Info Table 4.2, this

field should be 3.

Level Entry Count 8

Number of entries in Level Entry Table.

With DP Info Table 4.1, this field should be

40. With DP Info Table 4.2, this field should

be 10.

Flags 8

Each bit flag has a different meaning. All

non-defined bits must be set to 0:

Bit 0: 1-force SST

Bit 1: 1-force MST

Bit 2: MST, 0-disabled, 1-enabled

Bit 3: SC(Stream Cloning), 0-

disabled, 1-enabled

Bit 4: PostCursor2 Support (Not

present in version 4.2), 0-enabled,

1-disabled

Regular

VSwing
16

Regular VSwing is applicable for linkrate

lower than HBR3. Applicable only for

version 4.2.

[7:0] = Regular_VSwing_DRVI: Active high

output driver current control. This is 6 bits

in actual register, reserving a byte.

[11:8] = Regular_VSwing_DRVZ: Active

high driver output impedance control. This

is 3 bits in actual register, reserving a

nibble.

[15:12] = Regular_VSwing_CMH: Active

high signal to control the output common

mode voltage. This is 2bits in actual

register, reserving a nibble.

Low

VSwing
16

Low VSwing is applicable for HBR3.

Applicable only for version 4.2.

[7:0] = Low_VSwing_DRVI: Active high

output driver current control. This is 6 bits

in actual register, reserving a byte.

[11:8] = Low_VSwing_DRVZ: Active high

driver output impedance control. This is 3

bits in actual register, reserving a nibble.

[15:12] = Low_VSwing_CMH: Active high

signal to control the output common mode

voltage. This is 2bits in actual register,

reserving a nibble.

DP Info Table Entries

This follows right after DP Info Table Header. Each entry is 2 bytes, a pointer pointing to the

corresponding Target Entry(DPInfoStruct). There is one entry for each DP link. The number

of DP Info Table entries is listed in the DP Info Table Header.

Name
Bit

width
Values and meaning

TargetEntryPtr 16 Pointer to the corresponding Target Entry(DPInfoStruct).

DP Info Level Entry Table

This table starts directly after the end of DP Info Table Entries. DP Info Table Header has

the information of number of level entry tables, size of each entry, and number of entries in

each table. This table is used to set up GPU pri-register value for PostCursor2, Drive

Current, Pre-Emphasis, and TxPu when the corresponding PostCursor2, DriveCurrent,

Pre_Emphasis levels are requested by sink through DPCD. The number of entries in this

table is defined in DPInfoStruct above. The size of each entry is defined in DP Info Table

Header.

Here is level entry's format for DP Info Table 4.0 and 4.1:

Name
Bit

width
Values and meaning

PostCursor2 8
Value to set in GPU for PostCursor2. Not present with DP Info Table

4.2.

DriveCurrent 8 Value to set in GPU for DriveCurrent

PreEmphasis 8 Value to set in GPU for Pre-Emphasis

TxPu 8 Value to set in GPU for TX pull-up current source drive

Here is one DP Info Table Level Table for version 4.0 and 4.1, the sequence of PostCursor2,

DriveCurrent, and Pre-Emphasis levels are indicated at the right side of each entry:

 DPInfoLevelEntryStart LABEL DPInfoLevelEntry

 DPInfoLevelEntry{ 000h, 011h, 000h, 02h } ; 0, 0, 0

 DPInfoLevelEntry{ 000h, 015h, 004h, 02h } ; 0, 0, 1

 DPInfoLevelEntry{ 000h, 01ah, 008h, 04h } ; 0, 0, 2

 DPInfoLevelEntry{ 000h, 022h, 011h, 04h } ; 0, 0, 3

 DPInfoLevelEntry{ 000h, 01ah, 000h, 04h } ; 0, 1, 0

 DPInfoLevelEntry{ 000h, 020h, 006h, 04h } ; 0, 1, 1

 DPInfoLevelEntry{ 000h, 027h, 00dh, 04h } ; 0, 1, 2

 DPInfoLevelEntry{ 000h, 022h, 000h, 04h } ; 0, 2, 0

 DPInfoLevelEntry{ 000h, 02bh, 011h, 04h } ; 0, 2, 1

 DPInfoLevelEntry{ 000h, 033h, 000h, 04h } ; 0, 3, 0

 DPInfoLevelEntry{ 000h, 011h, 000h, 02h } ; 1, 0, 0

 DPInfoLevelEntry{ 000h, 015h, 004h, 02h } ; 1, 0, 1

 DPInfoLevelEntry{ 000h, 01ah, 008h, 04h } ; 1, 0, 2

 DPInfoLevelEntry{ 000h, 022h, 011h, 04h } ; 1, 0, 3

 DPInfoLevelEntry{ 000h, 01ah, 000h, 04h } ; 1, 1, 0

 DPInfoLevelEntry{ 000h, 020h, 006h, 04h } ; 1, 1, 1

 DPInfoLevelEntry{ 000h, 027h, 00dh, 04h } ; 1, 1, 2

 DPInfoLevelEntry{ 000h, 022h, 000h, 04h } ; 1, 2, 0

 DPInfoLevelEntry{ 000h, 02bh, 011h, 04h } ; 1, 2, 1

 DPInfoLevelEntry{ 000h, 033h, 000h, 04h } ; 1, 3, 0

 DPInfoLevelEntry{ 000h, 011h, 000h, 02h } ; 2, 0, 0

 DPInfoLevelEntry{ 000h, 015h, 004h, 02h } ; 2, 0, 1

 DPInfoLevelEntry{ 000h, 01ah, 008h, 04h } ; 2, 0, 2

 DPInfoLevelEntry{ 000h, 022h, 011h, 04h } ; 2, 0, 3

 DPInfoLevelEntry{ 000h, 01ah, 000h, 04h } ; 2, 1, 0

 DPInfoLevelEntry{ 000h, 020h, 006h, 04h } ; 2, 1, 1

 DPInfoLevelEntry{ 000h, 027h, 00dh, 04h } ; 2, 1, 2

 DPInfoLevelEntry{ 000h, 022h, 000h, 04h } ; 2, 2, 0

 DPInfoLevelEntry{ 000h, 02bh, 011h, 04h } ; 2, 2, 1

 DPInfoLevelEntry{ 000h, 033h, 000h, 04h } ; 2, 3, 0

 DPInfoLevelEntry{ 000h, 011h, 000h, 02h } ; 3, 0, 0

 DPInfoLevelEntry{ 000h, 015h, 004h, 02h } ; 3, 0, 1

 DPInfoLevelEntry{ 000h, 01ah, 008h, 04h } ; 3, 0, 2

 DPInfoLevelEntry{ 000h, 022h, 011h, 04h } ; 3, 0, 3

 DPInfoLevelEntry{ 000h, 01ah, 000h, 04h } ; 3, 1, 0

 DPInfoLevelEntry{ 000h, 020h, 006h, 04h } ; 3, 1, 1

 DPInfoLevelEntry{ 000h, 027h, 00dh, 04h } ; 3, 1, 2

 DPInfoLevelEntry{ 000h, 022h, 000h, 04h } ; 3, 2, 0

 DPInfoLevelEntry{ 000h, 02bh, 011h, 04h } ; 3, 2, 1

 DPInfoLevelEntry{ 000h, 033h, 000h, 04h } ; 3, 3, 0

Here is the DP Info Level Table Entry format for version 4.2:

Name
Bit

width
Values and meaning

DriveCurrent 8 Value to set in GPU for DriveCurrent

PreEmphasis 8 Value to set in GPU for Pre-Emphasis

TxPu 8 Value to set in GPU for TX pull-up current source drive

Here is one DP Info Table Level Table for version 4.2, the sequence of DriveCurrent, and

Pre-Emphasis levels are indicated at the right side of each entry:

 DPInfoLevelEntryStart LABEL DPInfoLevelEntry

 DPInfoLevelEntry{ 011h, 000h, 02h } ; 0, 0

 DPInfoLevelEntry{ 015h, 004h, 02h } ; 0, 1

 DPInfoLevelEntry{ 01ah, 008h, 04h } ; 0, 2

 DPInfoLevelEntry{ 022h, 011h, 04h } ; 0, 3

 DPInfoLevelEntry{ 01ah, 000h, 04h } ; 1, 0

 DPInfoLevelEntry{ 020h, 006h, 04h } ; 1, 1

 DPInfoLevelEntry{ 027h, 00dh, 04h } ; 1, 2

 DPInfoLevelEntry{ 022h, 000h, 04h } ; 2, 0

 DPInfoLevelEntry{ 02bh, 011h, 04h } ; 2, 1

 DPInfoLevelEntry{ 033h, 000h, 04h } ; 3, 0

DP Info Table Target Entry

Each DP Info Table Entry points(when it's not NULL) to on Target Entry(i.e. DPInfoStruct).

Name
Bit

width
Values and meaning

Key 32 Key to match DCB info(same as IEDT Key).

Flags 8

Each bit flag has a different meaning. All non-defined

bits must be set to 0:

Bit 0: 1-use SPPLL0, 0-not use SPPLL0

Bit 1: 1-use SPPLL1, 0-not use SPPLL1

Bits 3:2: reserved for SPPLLx

Bit 4: default color depth, 0-24bpp, 1-18bpp

BeforeLinkTraining 16 Pointer to the script to run before link training

AfterLinkTraining 16 Pointer to the script to run after link training

BeforeLinkSpeed 16 Pointer to an array of scripts to run before set up link speed

EnableSpread 16 Pointer to script to run when enable spread

DisableSpread 16 Pointer to script to run when disable spread

DisableLT 16
Pointer to script to run to disable what was set up by

BeforeLinkTraining

LevelEntryTableIndex 8 The index to Level Entry Table to use

HBR2MinVDTIndex 8 Reserved

Before Link Training Script

This script is pointed by BeforeLinkTraining in DP Info Table Target Entry. It should be run

before link training.

After Link Training Script

This script is pointed by AfterLinkTraining in DP Info Table Target Entry. It should be run

after link training.

Before Link Speed

This is an array of scripts which is pointed by BeforeLinkSpeed in DP Info Table Target

Entry. It should be run before set up and/or change link speed. As it is now, there are four

link speeds defined. Each entry in the array is LinkRateMode struct which is defined below.

GP100 will be the first chip to have 4 link speeds with the introduction of HBR3. Kepler and

Maxwell have 3 link speed entries.

Name
Bit

width
Values and meaning

LinkRate 8
Indicate the link rate, 06h=1.62G, 0Ah=2.7G, 14h=5.4G,

1Eh=8.1G

LinkRatePtr 16 Pointer to the script to run for this link rate

BeforeLinkSpeed_SOR_ALL LABEL LinkRateMode

 LinkRateMode { 1Eh, OFFSET BeforeLinkSpeed_SOR_ALL_810 }

 LinkRateMode { 14h, OFFSET BeforeLinkSpeed_SOR_ALL_540 }

 LinkRateMode { 0Ah, OFFSET BeforeLinkSpeed_SOR_ALL_270 }

 LinkRateMode { 06h, OFFSET BeforeLinkSpeed_SOR_ALL_162 }

Enable Spread Script

This script is pointed by EnableSpread in DP Info Table Target Entry. It should be run before

enable spread.

Disable Spread Script

This script is pointed by DisableSpread in DP Info Table Target Entry. It should be run

before disable spread.

Disable Link Training Script

This script is pointed by DisableLT in DP Info Table Target Entry. It should be run to disable

what was set up by BeforeLinkTraining.

--

Last updated 7/14/16

