summaryrefslogtreecommitdiff
path: root/core/src/fxcodec
diff options
context:
space:
mode:
authorTom Sepez <tsepez@chromium.org>2015-06-17 15:24:01 -0700
committerTom Sepez <tsepez@chromium.org>2015-06-17 15:24:01 -0700
commit13c1272fcd9717cfa481f211617e56a3e78a8f1a (patch)
tree4dfc7f26d909c59b54f8d1418a18f0dfc688aba3 /core/src/fxcodec
parent16a0b24fb35b6cb2e7e57a42735c0081fb9f2a20 (diff)
downloadpdfium-13c1272fcd9717cfa481f211617e56a3e78a8f1a.tar.xz
Move libjpeg to third_party/
Removal of fpdfapi_ suffix can be part of a future CL. R=thestig@chromium.org Review URL: https://codereview.chromium.org/1186113005.
Diffstat (limited to 'core/src/fxcodec')
-rw-r--r--core/src/fxcodec/codec/fx_codec_jpeg.cpp2
-rw-r--r--core/src/fxcodec/libjpeg/cderror.h132
-rw-r--r--core/src/fxcodec/libjpeg/cdjpeg.h184
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jcapimin.c283
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jcapistd.c164
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jccoefct.c452
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jccolor.c462
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jcdctmgr.c390
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jchuff.c915
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jcinit.c75
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jcmainct.c296
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jcmarker.c667
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jcmaster.c593
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jcomapi.c109
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jcparam.c613
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jcphuff.c836
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jcprepct.c357
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jcsample.c522
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jctrans.c391
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jdapimin.c398
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jdapistd.c279
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jdcoefct.c739
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jdcolor.c399
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jddctmgr.c272
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jdhuff.c657
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jdinput.c384
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jdmainct.c515
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jdmarker.c1396
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jdmaster.c560
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jdmerge.c406
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jdphuff.c671
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jdpostct.c293
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jdsample.c481
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jdtrans.c146
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jerror.c242
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jfdctfst.c227
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jfdctint.c286
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jidctfst.c371
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jidctint.c392
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jidctred.c401
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jmemmgr.c1123
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jmemnobs.c126
-rw-r--r--core/src/fxcodec/libjpeg/fpdfapi_jutils.c182
-rw-r--r--core/src/fxcodec/libjpeg/fx_libjpeg.h12
-rw-r--r--core/src/fxcodec/libjpeg/jchuff.h47
-rw-r--r--core/src/fxcodec/libjpeg/jconfig.h51
-rw-r--r--core/src/fxcodec/libjpeg/jdct.h176
-rw-r--r--core/src/fxcodec/libjpeg/jdhuff.h201
-rw-r--r--core/src/fxcodec/libjpeg/jerror.h291
-rw-r--r--core/src/fxcodec/libjpeg/jinclude.h102
-rw-r--r--core/src/fxcodec/libjpeg/jmemsys.h163
-rw-r--r--core/src/fxcodec/libjpeg/jmorecfg.h376
-rw-r--r--core/src/fxcodec/libjpeg/jpegint.h392
-rw-r--r--core/src/fxcodec/libjpeg/jpeglib.h1165
-rw-r--r--core/src/fxcodec/libjpeg/jversion.h14
-rw-r--r--core/src/fxcodec/libjpeg/makefile8
-rw-r--r--core/src/fxcodec/libjpeg/transupp.h135
57 files changed, 13 insertions, 21509 deletions
diff --git a/core/src/fxcodec/codec/fx_codec_jpeg.cpp b/core/src/fxcodec/codec/fx_codec_jpeg.cpp
index 4d2048831b..ff7e241e2f 100644
--- a/core/src/fxcodec/codec/fx_codec_jpeg.cpp
+++ b/core/src/fxcodec/codec/fx_codec_jpeg.cpp
@@ -30,7 +30,7 @@ extern "C" {
};
extern "C" {
#undef FAR
-#include "../../fx_jpeglib.h"
+#include "../libjpeg/fx_libjpeg.h"
}
extern "C" {
static void _src_do_nothing(struct jpeg_decompress_struct* cinfo) {}
diff --git a/core/src/fxcodec/libjpeg/cderror.h b/core/src/fxcodec/libjpeg/cderror.h
deleted file mode 100644
index 70435e161c..0000000000
--- a/core/src/fxcodec/libjpeg/cderror.h
+++ /dev/null
@@ -1,132 +0,0 @@
-/*
- * cderror.h
- *
- * Copyright (C) 1994-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file defines the error and message codes for the cjpeg/djpeg
- * applications. These strings are not needed as part of the JPEG library
- * proper.
- * Edit this file to add new codes, or to translate the message strings to
- * some other language.
- */
-
-/*
- * To define the enum list of message codes, include this file without
- * defining macro JMESSAGE. To create a message string table, include it
- * again with a suitable JMESSAGE definition (see jerror.c for an example).
- */
-#ifndef JMESSAGE
-#ifndef CDERROR_H
-#define CDERROR_H
-/* First time through, define the enum list */
-#define JMAKE_ENUM_LIST
-#else
-/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
-#define JMESSAGE(code,string)
-#endif /* CDERROR_H */
-#endif /* JMESSAGE */
-
-#ifdef JMAKE_ENUM_LIST
-
-typedef enum {
-
-#define JMESSAGE(code,string) code ,
-
-#endif /* JMAKE_ENUM_LIST */
-
-JMESSAGE(JMSG_FIRSTADDONCODE=1000, NULL) /* Must be first entry! */
-
-#ifdef BMP_SUPPORTED
-JMESSAGE(JERR_BMP_BADCMAP, "Unsupported BMP colormap format")
-JMESSAGE(JERR_BMP_BADDEPTH, "Only 8- and 24-bit BMP files are supported")
-JMESSAGE(JERR_BMP_BADHEADER, "Invalid BMP file: bad header length")
-JMESSAGE(JERR_BMP_BADPLANES, "Invalid BMP file: biPlanes not equal to 1")
-JMESSAGE(JERR_BMP_COLORSPACE, "BMP output must be grayscale or RGB")
-JMESSAGE(JERR_BMP_COMPRESSED, "Sorry, compressed BMPs not yet supported")
-JMESSAGE(JERR_BMP_NOT, "Not a BMP file - does not start with BM")
-JMESSAGE(JTRC_BMP, "%ux%u 24-bit BMP image")
-JMESSAGE(JTRC_BMP_MAPPED, "%ux%u 8-bit colormapped BMP image")
-JMESSAGE(JTRC_BMP_OS2, "%ux%u 24-bit OS2 BMP image")
-JMESSAGE(JTRC_BMP_OS2_MAPPED, "%ux%u 8-bit colormapped OS2 BMP image")
-#endif /* BMP_SUPPORTED */
-
-#ifdef GIF_SUPPORTED
-JMESSAGE(JERR_GIF_BUG, "GIF output got confused")
-JMESSAGE(JERR_GIF_CODESIZE, "Bogus GIF codesize %d")
-JMESSAGE(JERR_GIF_COLORSPACE, "GIF output must be grayscale or RGB")
-JMESSAGE(JERR_GIF_IMAGENOTFOUND, "Too few images in GIF file")
-JMESSAGE(JERR_GIF_NOT, "Not a GIF file")
-JMESSAGE(JTRC_GIF, "%ux%ux%d GIF image")
-JMESSAGE(JTRC_GIF_BADVERSION,
- "Warning: unexpected GIF version number '%c%c%c'")
-JMESSAGE(JTRC_GIF_EXTENSION, "Ignoring GIF extension block of type 0x%02x")
-JMESSAGE(JTRC_GIF_NONSQUARE, "Caution: nonsquare pixels in input")
-JMESSAGE(JWRN_GIF_BADDATA, "Corrupt data in GIF file")
-JMESSAGE(JWRN_GIF_CHAR, "Bogus char 0x%02x in GIF file, ignoring")
-JMESSAGE(JWRN_GIF_ENDCODE, "Premature end of GIF image")
-JMESSAGE(JWRN_GIF_NOMOREDATA, "Ran out of GIF bits")
-#endif /* GIF_SUPPORTED */
-
-#ifdef PPM_SUPPORTED
-JMESSAGE(JERR_PPM_COLORSPACE, "PPM output must be grayscale or RGB")
-JMESSAGE(JERR_PPM_NONNUMERIC, "Nonnumeric data in PPM file")
-JMESSAGE(JERR_PPM_NOT, "Not a PPM/PGM file")
-JMESSAGE(JTRC_PGM, "%ux%u PGM image")
-JMESSAGE(JTRC_PGM_TEXT, "%ux%u text PGM image")
-JMESSAGE(JTRC_PPM, "%ux%u PPM image")
-JMESSAGE(JTRC_PPM_TEXT, "%ux%u text PPM image")
-#endif /* PPM_SUPPORTED */
-
-#ifdef RLE_SUPPORTED
-JMESSAGE(JERR_RLE_BADERROR, "Bogus error code from RLE library")
-JMESSAGE(JERR_RLE_COLORSPACE, "RLE output must be grayscale or RGB")
-JMESSAGE(JERR_RLE_DIMENSIONS, "Image dimensions (%ux%u) too large for RLE")
-JMESSAGE(JERR_RLE_EMPTY, "Empty RLE file")
-JMESSAGE(JERR_RLE_EOF, "Premature EOF in RLE header")
-JMESSAGE(JERR_RLE_MEM, "Insufficient memory for RLE header")
-JMESSAGE(JERR_RLE_NOT, "Not an RLE file")
-JMESSAGE(JERR_RLE_TOOMANYCHANNELS, "Cannot handle %d output channels for RLE")
-JMESSAGE(JERR_RLE_UNSUPPORTED, "Cannot handle this RLE setup")
-JMESSAGE(JTRC_RLE, "%ux%u full-color RLE file")
-JMESSAGE(JTRC_RLE_FULLMAP, "%ux%u full-color RLE file with map of length %d")
-JMESSAGE(JTRC_RLE_GRAY, "%ux%u grayscale RLE file")
-JMESSAGE(JTRC_RLE_MAPGRAY, "%ux%u grayscale RLE file with map of length %d")
-JMESSAGE(JTRC_RLE_MAPPED, "%ux%u colormapped RLE file with map of length %d")
-#endif /* RLE_SUPPORTED */
-
-#ifdef TARGA_SUPPORTED
-JMESSAGE(JERR_TGA_BADCMAP, "Unsupported Targa colormap format")
-JMESSAGE(JERR_TGA_BADPARMS, "Invalid or unsupported Targa file")
-JMESSAGE(JERR_TGA_COLORSPACE, "Targa output must be grayscale or RGB")
-JMESSAGE(JTRC_TGA, "%ux%u RGB Targa image")
-JMESSAGE(JTRC_TGA_GRAY, "%ux%u grayscale Targa image")
-JMESSAGE(JTRC_TGA_MAPPED, "%ux%u colormapped Targa image")
-#else
-JMESSAGE(JERR_TGA_NOTCOMP, "Targa support was not compiled")
-#endif /* TARGA_SUPPORTED */
-
-JMESSAGE(JERR_BAD_CMAP_FILE,
- "Color map file is invalid or of unsupported format")
-JMESSAGE(JERR_TOO_MANY_COLORS,
- "Output file format cannot handle %d colormap entries")
-JMESSAGE(JERR_UNGETC_FAILED, "ungetc failed")
-#ifdef TARGA_SUPPORTED
-JMESSAGE(JERR_UNKNOWN_FORMAT,
- "Unrecognized input file format --- perhaps you need -targa")
-#else
-JMESSAGE(JERR_UNKNOWN_FORMAT, "Unrecognized input file format")
-#endif
-JMESSAGE(JERR_UNSUPPORTED_FORMAT, "Unsupported output file format")
-
-#ifdef JMAKE_ENUM_LIST
-
- JMSG_LASTADDONCODE
-} ADDON_MESSAGE_CODE;
-
-#undef JMAKE_ENUM_LIST
-#endif /* JMAKE_ENUM_LIST */
-
-/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
-#undef JMESSAGE
diff --git a/core/src/fxcodec/libjpeg/cdjpeg.h b/core/src/fxcodec/libjpeg/cdjpeg.h
deleted file mode 100644
index 3d728ee9c7..0000000000
--- a/core/src/fxcodec/libjpeg/cdjpeg.h
+++ /dev/null
@@ -1,184 +0,0 @@
-/*
- * cdjpeg.h
- *
- * Copyright (C) 1994-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains common declarations for the sample applications
- * cjpeg and djpeg. It is NOT used by the core JPEG library.
- */
-
-#define JPEG_CJPEG_DJPEG /* define proper options in jconfig.h */
-#define JPEG_INTERNAL_OPTIONS /* cjpeg.c,djpeg.c need to see xxx_SUPPORTED */
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jerror.h" /* get library error codes too */
-#include "cderror.h" /* get application-specific error codes */
-
-
-/*
- * Object interface for cjpeg's source file decoding modules
- */
-
-typedef struct cjpeg_source_struct * cjpeg_source_ptr;
-
-struct cjpeg_source_struct {
- JMETHOD(void, start_input, (j_compress_ptr cinfo,
- cjpeg_source_ptr sinfo));
- JMETHOD(JDIMENSION, get_pixel_rows, (j_compress_ptr cinfo,
- cjpeg_source_ptr sinfo));
- JMETHOD(void, finish_input, (j_compress_ptr cinfo,
- cjpeg_source_ptr sinfo));
-
- FXSYS_FILE *input_file;
-
- JSAMPARRAY buffer;
- JDIMENSION buffer_height;
-};
-
-
-/*
- * Object interface for djpeg's output file encoding modules
- */
-
-typedef struct djpeg_dest_struct * djpeg_dest_ptr;
-
-struct djpeg_dest_struct {
- /* start_output is called after jpeg_start_decompress finishes.
- * The color map will be ready at this time, if one is needed.
- */
- JMETHOD(void, start_output, (j_decompress_ptr cinfo,
- djpeg_dest_ptr dinfo));
- /* Emit the specified number of pixel rows from the buffer. */
- JMETHOD(void, put_pixel_rows, (j_decompress_ptr cinfo,
- djpeg_dest_ptr dinfo,
- JDIMENSION rows_supplied));
- /* Finish up at the end of the image. */
- JMETHOD(void, finish_output, (j_decompress_ptr cinfo,
- djpeg_dest_ptr dinfo));
-
- /* Target file spec; filled in by djpeg.c after object is created. */
- FXSYS_FILE * output_file;
-
- /* Output pixel-row buffer. Created by module init or start_output.
- * Width is cinfo->output_width * cinfo->output_components;
- * height is buffer_height.
- */
- JSAMPARRAY buffer;
- JDIMENSION buffer_height;
-};
-
-
-/*
- * cjpeg/djpeg may need to perform extra passes to convert to or from
- * the source/destination file format. The JPEG library does not know
- * about these passes, but we'd like them to be counted by the progress
- * monitor. We use an expanded progress monitor object to hold the
- * additional pass count.
- */
-
-struct cdjpeg_progress_mgr {
- struct jpeg_progress_mgr pub; /* fields known to JPEG library */
- int completed_extra_passes; /* extra passes completed */
- int total_extra_passes; /* total extra */
- /* last printed percentage stored here to avoid multiple printouts */
- int percent_done;
-};
-
-typedef struct cdjpeg_progress_mgr * cd_progress_ptr;
-
-
-/* Short forms of external names for systems with brain-damaged linkers. */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jinit_read_bmp jIRdBMP
-#define jinit_write_bmp jIWrBMP
-#define jinit_read_gif jIRdGIF
-#define jinit_write_gif jIWrGIF
-#define jinit_read_ppm jIRdPPM
-#define jinit_write_ppm jIWrPPM
-#define jinit_read_rle jIRdRLE
-#define jinit_write_rle jIWrRLE
-#define jinit_read_targa jIRdTarga
-#define jinit_write_targa jIWrTarga
-#define read_quant_tables RdQTables
-#define read_scan_script RdScnScript
-#define set_quant_slots SetQSlots
-#define set_sample_factors SetSFacts
-#define read_color_map RdCMap
-#define enable_signal_catcher EnSigCatcher
-#define start_progress_monitor StProgMon
-#define end_progress_monitor EnProgMon
-#define read_stdin RdStdin
-#define write_stdout WrStdout
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-/* Module selection routines for I/O modules. */
-
-EXTERN(cjpeg_source_ptr) jinit_read_bmp JPP((j_compress_ptr cinfo));
-EXTERN(djpeg_dest_ptr) jinit_write_bmp JPP((j_decompress_ptr cinfo,
- boolean is_os2));
-EXTERN(cjpeg_source_ptr) jinit_read_gif JPP((j_compress_ptr cinfo));
-EXTERN(djpeg_dest_ptr) jinit_write_gif JPP((j_decompress_ptr cinfo));
-EXTERN(cjpeg_source_ptr) jinit_read_ppm JPP((j_compress_ptr cinfo));
-EXTERN(djpeg_dest_ptr) jinit_write_ppm JPP((j_decompress_ptr cinfo));
-EXTERN(cjpeg_source_ptr) jinit_read_rle JPP((j_compress_ptr cinfo));
-EXTERN(djpeg_dest_ptr) jinit_write_rle JPP((j_decompress_ptr cinfo));
-EXTERN(cjpeg_source_ptr) jinit_read_targa JPP((j_compress_ptr cinfo));
-EXTERN(djpeg_dest_ptr) jinit_write_targa JPP((j_decompress_ptr cinfo));
-
-/* cjpeg support routines (in rdswitch.c) */
-
-EXTERN(boolean) read_quant_tables JPP((j_compress_ptr cinfo, char * filename,
- int scale_factor, boolean force_baseline));
-EXTERN(boolean) read_scan_script JPP((j_compress_ptr cinfo, char * filename));
-EXTERN(boolean) set_quant_slots JPP((j_compress_ptr cinfo, char *arg));
-EXTERN(boolean) set_sample_factors JPP((j_compress_ptr cinfo, char *arg));
-
-/* djpeg support routines (in rdcolmap.c) */
-
-EXTERN(void) read_color_map JPP((j_decompress_ptr cinfo, FXSYS_FILE * infile));
-
-/* common support routines (in cdjpeg.c) */
-
-EXTERN(void) enable_signal_catcher JPP((j_common_ptr cinfo));
-EXTERN(void) start_progress_monitor JPP((j_common_ptr cinfo,
- cd_progress_ptr progress));
-EXTERN(void) end_progress_monitor JPP((j_common_ptr cinfo));
-EXTERN(boolean) keymatch JPP((char * arg, const char * keyword, int minchars));
-EXTERN(FXSYS_FILE *) read_stdin JPP((void));
-EXTERN(FXSYS_FILE *) write_stdout JPP((void));
-
-/* miscellaneous useful macros */
-
-#ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */
-#define READ_BINARY "r"
-#define WRITE_BINARY "w"
-#else
-#ifdef VMS /* VMS is very nonstandard */
-#define READ_BINARY "rb", "ctx=stm"
-#define WRITE_BINARY "wb", "ctx=stm"
-#else /* standard ANSI-compliant case */
-#define READ_BINARY "rb"
-#define WRITE_BINARY "wb"
-#endif
-#endif
-
-#ifndef EXIT_FAILURE /* define exit() codes if not provided */
-#define EXIT_FAILURE 1
-#endif
-#ifndef EXIT_SUCCESS
-#ifdef VMS
-#define EXIT_SUCCESS 1 /* VMS is very nonstandard */
-#else
-#define EXIT_SUCCESS 0
-#endif
-#endif
-#ifndef EXIT_WARNING
-#ifdef VMS
-#define EXIT_WARNING 1 /* VMS is very nonstandard */
-#else
-#define EXIT_WARNING 2
-#endif
-#endif
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jcapimin.c b/core/src/fxcodec/libjpeg/fpdfapi_jcapimin.c
deleted file mode 100644
index ec04fd2f15..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jcapimin.c
+++ /dev/null
@@ -1,283 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jcapimin.c
- *
- * Copyright (C) 1994-1998, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains application interface code for the compression half
- * of the JPEG library. These are the "minimum" API routines that may be
- * needed in either the normal full-compression case or the transcoding-only
- * case.
- *
- * Most of the routines intended to be called directly by an application
- * are in this file or in jcapistd.c. But also see jcparam.c for
- * parameter-setup helper routines, jcomapi.c for routines shared by
- * compression and decompression, and jctrans.c for the transcoding case.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * Initialization of a JPEG compression object.
- * The error manager must already be set up (in case memory manager fails).
- */
-
-GLOBAL(void)
-jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
-{
- int i;
-
- /* Guard against version mismatches between library and caller. */
- cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
- if (version != JPEG_LIB_VERSION)
- ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
- if (structsize != SIZEOF(struct jpeg_compress_struct))
- ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
- (int) SIZEOF(struct jpeg_compress_struct), (int) structsize);
-
- /* For debugging purposes, we zero the whole master structure.
- * But the application has already set the err pointer, and may have set
- * client_data, so we have to save and restore those fields.
- * Note: if application hasn't set client_data, tools like Purify may
- * complain here.
- */
- {
- struct jpeg_error_mgr * err = cinfo->err;
- void * client_data = cinfo->client_data; /* ignore Purify complaint here */
- MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
- cinfo->err = err;
- cinfo->client_data = client_data;
- }
- cinfo->is_decompressor = FALSE;
-
- /* Initialize a memory manager instance for this object */
- jinit_memory_mgr((j_common_ptr) cinfo);
-
- /* Zero out pointers to permanent structures. */
- cinfo->progress = NULL;
- cinfo->dest = NULL;
-
- cinfo->comp_info = NULL;
-
- for (i = 0; i < NUM_QUANT_TBLS; i++)
- cinfo->quant_tbl_ptrs[i] = NULL;
-
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- cinfo->dc_huff_tbl_ptrs[i] = NULL;
- cinfo->ac_huff_tbl_ptrs[i] = NULL;
- }
-
- cinfo->script_space = NULL;
-
- cinfo->input_gamma = 1.0; /* in case application forgets */
-
- /* OK, I'm ready */
- cinfo->global_state = CSTATE_START;
-}
-
-
-/*
- * Destruction of a JPEG compression object
- */
-
-GLOBAL(void)
-jpeg_destroy_compress (j_compress_ptr cinfo)
-{
- jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
-}
-
-
-/*
- * Abort processing of a JPEG compression operation,
- * but don't destroy the object itself.
- */
-
-GLOBAL(void)
-jpeg_abort_compress (j_compress_ptr cinfo)
-{
- jpeg_abort((j_common_ptr) cinfo); /* use common routine */
-}
-
-
-/*
- * Forcibly suppress or un-suppress all quantization and Huffman tables.
- * Marks all currently defined tables as already written (if suppress)
- * or not written (if !suppress). This will control whether they get emitted
- * by a subsequent jpeg_start_compress call.
- *
- * This routine is exported for use by applications that want to produce
- * abbreviated JPEG datastreams. It logically belongs in jcparam.c, but
- * since it is called by jpeg_start_compress, we put it here --- otherwise
- * jcparam.o would be linked whether the application used it or not.
- */
-
-GLOBAL(void)
-jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress)
-{
- int i;
- JQUANT_TBL * qtbl;
- JHUFF_TBL * htbl;
-
- for (i = 0; i < NUM_QUANT_TBLS; i++) {
- if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
- qtbl->sent_table = suppress;
- }
-
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
- htbl->sent_table = suppress;
- if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
- htbl->sent_table = suppress;
- }
-}
-
-
-/*
- * Finish JPEG compression.
- *
- * If a multipass operating mode was selected, this may do a great deal of
- * work including most of the actual output.
- */
-
-GLOBAL(void)
-jpeg_finish_compress (j_compress_ptr cinfo)
-{
- JDIMENSION iMCU_row;
-
- if (cinfo->global_state == CSTATE_SCANNING ||
- cinfo->global_state == CSTATE_RAW_OK) {
- /* Terminate first pass */
- if (cinfo->next_scanline < cinfo->image_height)
- ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
- (*cinfo->master->finish_pass) (cinfo);
- } else if (cinfo->global_state != CSTATE_WRCOEFS)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- /* Perform any remaining passes */
- while (! cinfo->master->is_last_pass) {
- (*cinfo->master->prepare_for_pass) (cinfo);
- for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
- if (cinfo->progress != NULL) {
- cinfo->progress->pass_counter = (long) iMCU_row;
- cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- }
- /* We bypass the main controller and invoke coef controller directly;
- * all work is being done from the coefficient buffer.
- */
- if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL))
- ERREXIT(cinfo, JERR_CANT_SUSPEND);
- }
- (*cinfo->master->finish_pass) (cinfo);
- }
- /* Write EOI, do final cleanup */
- (*cinfo->marker->write_file_trailer) (cinfo);
- (*cinfo->dest->term_destination) (cinfo);
- /* We can use jpeg_abort to release memory and reset global_state */
- jpeg_abort((j_common_ptr) cinfo);
-}
-
-
-/*
- * Write a special marker.
- * This is only recommended for writing COM or APPn markers.
- * Must be called after jpeg_start_compress() and before
- * first call to jpeg_write_scanlines() or jpeg_write_raw_data().
- */
-
-GLOBAL(void)
-jpeg_write_marker (j_compress_ptr cinfo, int marker,
- const JOCTET *dataptr, unsigned int datalen)
-{
- JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val));
-
- if (cinfo->next_scanline != 0 ||
- (cinfo->global_state != CSTATE_SCANNING &&
- cinfo->global_state != CSTATE_RAW_OK &&
- cinfo->global_state != CSTATE_WRCOEFS))
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- (*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
- write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */
- while (datalen--) {
- (*write_marker_byte) (cinfo, *dataptr);
- dataptr++;
- }
-}
-
-/* Same, but piecemeal. */
-
-GLOBAL(void)
-jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
-{
- if (cinfo->next_scanline != 0 ||
- (cinfo->global_state != CSTATE_SCANNING &&
- cinfo->global_state != CSTATE_RAW_OK &&
- cinfo->global_state != CSTATE_WRCOEFS))
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- (*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
-}
-
-GLOBAL(void)
-jpeg_write_m_byte (j_compress_ptr cinfo, int val)
-{
- (*cinfo->marker->write_marker_byte) (cinfo, val);
-}
-
-
-/*
- * Alternate compression function: just write an abbreviated table file.
- * Before calling this, all parameters and a data destination must be set up.
- *
- * To produce a pair of files containing abbreviated tables and abbreviated
- * image data, one would proceed as follows:
- *
- * initialize JPEG object
- * set JPEG parameters
- * set destination to table file
- * jpeg_write_tables(cinfo);
- * set destination to image file
- * jpeg_start_compress(cinfo, FALSE);
- * write data...
- * jpeg_finish_compress(cinfo);
- *
- * jpeg_write_tables has the side effect of marking all tables written
- * (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress
- * will not re-emit the tables unless it is passed write_all_tables=TRUE.
- */
-
-GLOBAL(void)
-jpeg_write_tables (j_compress_ptr cinfo)
-{
- if (cinfo->global_state != CSTATE_START)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- /* (Re)initialize error mgr and destination modules */
- (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
- (*cinfo->dest->init_destination) (cinfo);
- /* Initialize the marker writer ... bit of a crock to do it here. */
- jinit_marker_writer(cinfo);
- /* Write them tables! */
- (*cinfo->marker->write_tables_only) (cinfo);
- /* And clean up. */
- (*cinfo->dest->term_destination) (cinfo);
- /*
- * In library releases up through v6a, we called jpeg_abort() here to free
- * any working memory allocated by the destination manager and marker
- * writer. Some applications had a problem with that: they allocated space
- * of their own from the library memory manager, and didn't want it to go
- * away during write_tables. So now we do nothing. This will cause a
- * memory leak if an app calls write_tables repeatedly without doing a full
- * compression cycle or otherwise resetting the JPEG object. However, that
- * seems less bad than unexpectedly freeing memory in the normal case.
- * An app that prefers the old behavior can call jpeg_abort for itself after
- * each call to jpeg_write_tables().
- */
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jcapistd.c b/core/src/fxcodec/libjpeg/fpdfapi_jcapistd.c
deleted file mode 100644
index 9d765e6f01..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jcapistd.c
+++ /dev/null
@@ -1,164 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jcapistd.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains application interface code for the compression half
- * of the JPEG library. These are the "standard" API routines that are
- * used in the normal full-compression case. They are not used by a
- * transcoding-only application. Note that if an application links in
- * jpeg_start_compress, it will end up linking in the entire compressor.
- * We thus must separate this file from jcapimin.c to avoid linking the
- * whole compression library into a transcoder.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * Compression initialization.
- * Before calling this, all parameters and a data destination must be set up.
- *
- * We require a write_all_tables parameter as a failsafe check when writing
- * multiple datastreams from the same compression object. Since prior runs
- * will have left all the tables marked sent_table=TRUE, a subsequent run
- * would emit an abbreviated stream (no tables) by default. This may be what
- * is wanted, but for safety's sake it should not be the default behavior:
- * programmers should have to make a deliberate choice to emit abbreviated
- * images. Therefore the documentation and examples should encourage people
- * to pass write_all_tables=TRUE; then it will take active thought to do the
- * wrong thing.
- */
-
-GLOBAL(void)
-jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
-{
- if (cinfo->global_state != CSTATE_START)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- if (write_all_tables)
- jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
-
- /* (Re)initialize error mgr and destination modules */
- (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
- (*cinfo->dest->init_destination) (cinfo);
- /* Perform master selection of active modules */
- jinit_compress_master(cinfo);
- /* Set up for the first pass */
- (*cinfo->master->prepare_for_pass) (cinfo);
- /* Ready for application to drive first pass through jpeg_write_scanlines
- * or jpeg_write_raw_data.
- */
- cinfo->next_scanline = 0;
- cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
-}
-
-
-/*
- * Write some scanlines of data to the JPEG compressor.
- *
- * The return value will be the number of lines actually written.
- * This should be less than the supplied num_lines only in case that
- * the data destination module has requested suspension of the compressor,
- * or if more than image_height scanlines are passed in.
- *
- * Note: we warn about excess calls to jpeg_write_scanlines() since
- * this likely signals an application programmer error. However,
- * excess scanlines passed in the last valid call are *silently* ignored,
- * so that the application need not adjust num_lines for end-of-image
- * when using a multiple-scanline buffer.
- */
-
-GLOBAL(JDIMENSION)
-jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
- JDIMENSION num_lines)
-{
- JDIMENSION row_ctr, rows_left;
-
- if (cinfo->global_state != CSTATE_SCANNING)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- if (cinfo->next_scanline >= cinfo->image_height)
- WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
-
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->pass_counter = (long) cinfo->next_scanline;
- cinfo->progress->pass_limit = (long) cinfo->image_height;
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- }
-
- /* Give master control module another chance if this is first call to
- * jpeg_write_scanlines. This lets output of the frame/scan headers be
- * delayed so that application can write COM, etc, markers between
- * jpeg_start_compress and jpeg_write_scanlines.
- */
- if (cinfo->master->call_pass_startup)
- (*cinfo->master->pass_startup) (cinfo);
-
- /* Ignore any extra scanlines at bottom of image. */
- rows_left = cinfo->image_height - cinfo->next_scanline;
- if (num_lines > rows_left)
- num_lines = rows_left;
-
- row_ctr = 0;
- (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
- cinfo->next_scanline += row_ctr;
- return row_ctr;
-}
-
-
-/*
- * Alternate entry point to write raw data.
- * Processes exactly one iMCU row per call, unless suspended.
- */
-
-GLOBAL(JDIMENSION)
-jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
- JDIMENSION num_lines)
-{
- JDIMENSION lines_per_iMCU_row;
-
- if (cinfo->global_state != CSTATE_RAW_OK)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- if (cinfo->next_scanline >= cinfo->image_height) {
- WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
- return 0;
- }
-
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->pass_counter = (long) cinfo->next_scanline;
- cinfo->progress->pass_limit = (long) cinfo->image_height;
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- }
-
- /* Give master control module another chance if this is first call to
- * jpeg_write_raw_data. This lets output of the frame/scan headers be
- * delayed so that application can write COM, etc, markers between
- * jpeg_start_compress and jpeg_write_raw_data.
- */
- if (cinfo->master->call_pass_startup)
- (*cinfo->master->pass_startup) (cinfo);
-
- /* Verify that at least one iMCU row has been passed. */
- lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE;
- if (num_lines < lines_per_iMCU_row)
- ERREXIT(cinfo, JERR_BUFFER_SIZE);
-
- /* Directly compress the row. */
- if (! (*cinfo->coef->compress_data) (cinfo, data)) {
- /* If compressor did not consume the whole row, suspend processing. */
- return 0;
- }
-
- /* OK, we processed one iMCU row. */
- cinfo->next_scanline += lines_per_iMCU_row;
- return lines_per_iMCU_row;
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jccoefct.c b/core/src/fxcodec/libjpeg/fpdfapi_jccoefct.c
deleted file mode 100644
index 08910ef6f3..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jccoefct.c
+++ /dev/null
@@ -1,452 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jccoefct.c
- *
- * Copyright (C) 1994-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the coefficient buffer controller for compression.
- * This controller is the top level of the JPEG compressor proper.
- * The coefficient buffer lies between forward-DCT and entropy encoding steps.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* We use a full-image coefficient buffer when doing Huffman optimization,
- * and also for writing multiple-scan JPEG files. In all cases, the DCT
- * step is run during the first pass, and subsequent passes need only read
- * the buffered coefficients.
- */
-#ifdef ENTROPY_OPT_SUPPORTED
-#define FULL_COEF_BUFFER_SUPPORTED
-#else
-#ifdef C_MULTISCAN_FILES_SUPPORTED
-#define FULL_COEF_BUFFER_SUPPORTED
-#endif
-#endif
-
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_c_coef_controller pub; /* public fields */
-
- JDIMENSION iMCU_row_num; /* iMCU row # within image */
- JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
- int MCU_vert_offset; /* counts MCU rows within iMCU row */
- int MCU_rows_per_iMCU_row; /* number of such rows needed */
-
- /* For single-pass compression, it's sufficient to buffer just one MCU
- * (although this may prove a bit slow in practice). We allocate a
- * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
- * MCU constructed and sent. (On 80x86, the workspace is FAR even though
- * it's not really very big; this is to keep the module interfaces unchanged
- * when a large coefficient buffer is necessary.)
- * In multi-pass modes, this array points to the current MCU's blocks
- * within the virtual arrays.
- */
- JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
-
- /* In multi-pass modes, we need a virtual block array for each component. */
- jvirt_barray_ptr whole_image[MAX_COMPONENTS];
-} my_coef_controller;
-
-typedef my_coef_controller * my_coef_ptr;
-
-
-/* Forward declarations */
-METHODDEF(boolean) compress_data
- JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
-#ifdef FULL_COEF_BUFFER_SUPPORTED
-METHODDEF(boolean) compress_first_pass
- JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
-METHODDEF(boolean) compress_output
- JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
-#endif
-
-
-LOCAL(void)
-start_iMCU_row (j_compress_ptr cinfo)
-/* Reset within-iMCU-row counters for a new row */
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-
- /* In an interleaved scan, an MCU row is the same as an iMCU row.
- * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
- * But at the bottom of the image, process only what's left.
- */
- if (cinfo->comps_in_scan > 1) {
- coef->MCU_rows_per_iMCU_row = 1;
- } else {
- if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
- else
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
- }
-
- coef->mcu_ctr = 0;
- coef->MCU_vert_offset = 0;
-}
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF(void)
-start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-
- coef->iMCU_row_num = 0;
- start_iMCU_row(cinfo);
-
- switch (pass_mode) {
- case JBUF_PASS_THRU:
- if (coef->whole_image[0] != NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- coef->pub.compress_data = compress_data;
- break;
-#ifdef FULL_COEF_BUFFER_SUPPORTED
- case JBUF_SAVE_AND_PASS:
- if (coef->whole_image[0] == NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- coef->pub.compress_data = compress_first_pass;
- break;
- case JBUF_CRANK_DEST:
- if (coef->whole_image[0] == NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- coef->pub.compress_data = compress_output;
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- break;
- }
-}
-
-
-/*
- * Process some data in the single-pass case.
- * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
- * per call, ie, v_samp_factor block rows for each component in the image.
- * Returns TRUE if the iMCU row is completed, FALSE if suspended.
- *
- * NB: input_buf contains a plane for each component in image,
- * which we index according to the component's SOF position.
- */
-
-METHODDEF(boolean)
-compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION MCU_col_num; /* index of current MCU within row */
- JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
- int blkn, bi, ci, yindex, yoffset, blockcnt;
- JDIMENSION ypos, xpos;
- jpeg_component_info *compptr;
-
- /* Loop to write as much as one whole iMCU row */
- for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
- yoffset++) {
- for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
- MCU_col_num++) {
- /* Determine where data comes from in input_buf and do the DCT thing.
- * Each call on forward_DCT processes a horizontal row of DCT blocks
- * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
- * sequentially. Dummy blocks at the right or bottom edge are filled in
- * specially. The data in them does not matter for image reconstruction,
- * so we fill them with values that will encode to the smallest amount of
- * data, viz: all zeroes in the AC entries, DC entries equal to previous
- * block's DC value. (Thanks to Thomas Kinsman for this idea.)
- */
- blkn = 0;
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
- : compptr->last_col_width;
- xpos = MCU_col_num * compptr->MCU_sample_width;
- ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
- for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
- if (coef->iMCU_row_num < last_iMCU_row ||
- yoffset+yindex < compptr->last_row_height) {
- (*cinfo->fdct->forward_DCT) (cinfo, compptr,
- input_buf[compptr->component_index],
- coef->MCU_buffer[blkn],
- ypos, xpos, (JDIMENSION) blockcnt);
- if (blockcnt < compptr->MCU_width) {
- /* Create some dummy blocks at the right edge of the image. */
- jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
- (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
- for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
- coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
- }
- }
- } else {
- /* Create a row of dummy blocks at the bottom of the image. */
- jzero_far((void FAR *) coef->MCU_buffer[blkn],
- compptr->MCU_width * SIZEOF(JBLOCK));
- for (bi = 0; bi < compptr->MCU_width; bi++) {
- coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
- }
- }
- blkn += compptr->MCU_width;
- ypos += DCTSIZE;
- }
- }
- /* Try to write the MCU. In event of a suspension failure, we will
- * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
- */
- if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
- /* Suspension forced; update state counters and exit */
- coef->MCU_vert_offset = yoffset;
- coef->mcu_ctr = MCU_col_num;
- return FALSE;
- }
- }
- /* Completed an MCU row, but perhaps not an iMCU row */
- coef->mcu_ctr = 0;
- }
- /* Completed the iMCU row, advance counters for next one */
- coef->iMCU_row_num++;
- start_iMCU_row(cinfo);
- return TRUE;
-}
-
-
-#ifdef FULL_COEF_BUFFER_SUPPORTED
-
-/*
- * Process some data in the first pass of a multi-pass case.
- * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
- * per call, ie, v_samp_factor block rows for each component in the image.
- * This amount of data is read from the source buffer, DCT'd and quantized,
- * and saved into the virtual arrays. We also generate suitable dummy blocks
- * as needed at the right and lower edges. (The dummy blocks are constructed
- * in the virtual arrays, which have been padded appropriately.) This makes
- * it possible for subsequent passes not to worry about real vs. dummy blocks.
- *
- * We must also emit the data to the entropy encoder. This is conveniently
- * done by calling compress_output() after we've loaded the current strip
- * of the virtual arrays.
- *
- * NB: input_buf contains a plane for each component in image. All
- * components are DCT'd and loaded into the virtual arrays in this pass.
- * However, it may be that only a subset of the components are emitted to
- * the entropy encoder during this first pass; be careful about looking
- * at the scan-dependent variables (MCU dimensions, etc).
- */
-
-METHODDEF(boolean)
-compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
- JDIMENSION blocks_across, MCUs_across, MCUindex;
- int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
- JCOEF lastDC;
- jpeg_component_info *compptr;
- JBLOCKARRAY buffer;
- JBLOCKROW thisblockrow, lastblockrow;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Align the virtual buffer for this component. */
- buffer = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[ci],
- coef->iMCU_row_num * compptr->v_samp_factor,
- (JDIMENSION) compptr->v_samp_factor, TRUE);
- /* Count non-dummy DCT block rows in this iMCU row. */
- if (coef->iMCU_row_num < last_iMCU_row)
- block_rows = compptr->v_samp_factor;
- else {
- /* NB: can't use last_row_height here, since may not be set! */
- block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
- if (block_rows == 0) block_rows = compptr->v_samp_factor;
- }
- blocks_across = compptr->width_in_blocks;
- h_samp_factor = compptr->h_samp_factor;
- /* Count number of dummy blocks to be added at the right margin. */
- ndummy = (int) (blocks_across % h_samp_factor);
- if (ndummy > 0)
- ndummy = h_samp_factor - ndummy;
- /* Perform DCT for all non-dummy blocks in this iMCU row. Each call
- * on forward_DCT processes a complete horizontal row of DCT blocks.
- */
- for (block_row = 0; block_row < block_rows; block_row++) {
- thisblockrow = buffer[block_row];
- (*cinfo->fdct->forward_DCT) (cinfo, compptr,
- input_buf[ci], thisblockrow,
- (JDIMENSION) (block_row * DCTSIZE),
- (JDIMENSION) 0, blocks_across);
- if (ndummy > 0) {
- /* Create dummy blocks at the right edge of the image. */
- thisblockrow += blocks_across; /* => first dummy block */
- jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
- lastDC = thisblockrow[-1][0];
- for (bi = 0; bi < ndummy; bi++) {
- thisblockrow[bi][0] = lastDC;
- }
- }
- }
- /* If at end of image, create dummy block rows as needed.
- * The tricky part here is that within each MCU, we want the DC values
- * of the dummy blocks to match the last real block's DC value.
- * This squeezes a few more bytes out of the resulting file...
- */
- if (coef->iMCU_row_num == last_iMCU_row) {
- blocks_across += ndummy; /* include lower right corner */
- MCUs_across = blocks_across / h_samp_factor;
- for (block_row = block_rows; block_row < compptr->v_samp_factor;
- block_row++) {
- thisblockrow = buffer[block_row];
- lastblockrow = buffer[block_row-1];
- jzero_far((void FAR *) thisblockrow,
- (size_t) (blocks_across * SIZEOF(JBLOCK)));
- for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
- lastDC = lastblockrow[h_samp_factor-1][0];
- for (bi = 0; bi < h_samp_factor; bi++) {
- thisblockrow[bi][0] = lastDC;
- }
- thisblockrow += h_samp_factor; /* advance to next MCU in row */
- lastblockrow += h_samp_factor;
- }
- }
- }
- }
- /* NB: compress_output will increment iMCU_row_num if successful.
- * A suspension return will result in redoing all the work above next time.
- */
-
- /* Emit data to the entropy encoder, sharing code with subsequent passes */
- return compress_output(cinfo, input_buf);
-}
-
-
-/*
- * Process some data in subsequent passes of a multi-pass case.
- * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
- * per call, ie, v_samp_factor block rows for each component in the scan.
- * The data is obtained from the virtual arrays and fed to the entropy coder.
- * Returns TRUE if the iMCU row is completed, FALSE if suspended.
- *
- * NB: input_buf is ignored; it is likely to be a NULL pointer.
- */
-
-METHODDEF(boolean)
-compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION MCU_col_num; /* index of current MCU within row */
- int blkn, ci, xindex, yindex, yoffset;
- JDIMENSION start_col;
- JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
- JBLOCKROW buffer_ptr;
- jpeg_component_info *compptr;
-
- /* Align the virtual buffers for the components used in this scan.
- * NB: during first pass, this is safe only because the buffers will
- * already be aligned properly, so jmemmgr.c won't need to do any I/O.
- */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- buffer[ci] = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
- coef->iMCU_row_num * compptr->v_samp_factor,
- (JDIMENSION) compptr->v_samp_factor, FALSE);
- }
-
- /* Loop to process one whole iMCU row */
- for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
- yoffset++) {
- for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
- MCU_col_num++) {
- /* Construct list of pointers to DCT blocks belonging to this MCU */
- blkn = 0; /* index of current DCT block within MCU */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- start_col = MCU_col_num * compptr->MCU_width;
- for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
- buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
- for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
- coef->MCU_buffer[blkn++] = buffer_ptr++;
- }
- }
- }
- /* Try to write the MCU. */
- if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
- /* Suspension forced; update state counters and exit */
- coef->MCU_vert_offset = yoffset;
- coef->mcu_ctr = MCU_col_num;
- return FALSE;
- }
- }
- /* Completed an MCU row, but perhaps not an iMCU row */
- coef->mcu_ctr = 0;
- }
- /* Completed the iMCU row, advance counters for next one */
- coef->iMCU_row_num++;
- start_iMCU_row(cinfo);
- return TRUE;
-}
-
-#endif /* FULL_COEF_BUFFER_SUPPORTED */
-
-
-/*
- * Initialize coefficient buffer controller.
- */
-
-GLOBAL(void)
-jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
-{
- my_coef_ptr coef;
-
- coef = (my_coef_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_coef_controller));
- cinfo->coef = (struct jpeg_c_coef_controller *) coef;
- coef->pub.start_pass = start_pass_coef;
-
- /* Create the coefficient buffer. */
- if (need_full_buffer) {
-#ifdef FULL_COEF_BUFFER_SUPPORTED
- /* Allocate a full-image virtual array for each component, */
- /* padded to a multiple of samp_factor DCT blocks in each direction. */
- int ci;
- jpeg_component_info *compptr;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
- (JDIMENSION) jround_up((long) compptr->width_in_blocks,
- (long) compptr->h_samp_factor),
- (JDIMENSION) jround_up((long) compptr->height_in_blocks,
- (long) compptr->v_samp_factor),
- (JDIMENSION) compptr->v_samp_factor);
- }
-#else
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-#endif
- } else {
- /* We only need a single-MCU buffer. */
- JBLOCKROW buffer;
- int i;
-
- buffer = (JBLOCKROW)
- (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
- for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
- coef->MCU_buffer[i] = buffer + i;
- }
- coef->whole_image[0] = NULL; /* flag for no virtual arrays */
- }
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jccolor.c b/core/src/fxcodec/libjpeg/fpdfapi_jccolor.c
deleted file mode 100644
index 809a05b5a1..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jccolor.c
+++ /dev/null
@@ -1,462 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jccolor.c
- *
- * Copyright (C) 1991-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains input colorspace conversion routines.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private subobject */
-
-typedef struct {
- struct jpeg_color_converter pub; /* public fields */
-
- /* Private state for RGB->YCC conversion */
- INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
-} my_color_converter;
-
-typedef my_color_converter * my_cconvert_ptr;
-
-
-/**************** RGB -> YCbCr conversion: most common case **************/
-
-/*
- * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
- * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
- * The conversion equations to be implemented are therefore
- * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
- * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE
- * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE
- * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
- * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
- * rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and
- * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
- * were not represented exactly. Now we sacrifice exact representation of
- * maximum red and maximum blue in order to get exact grayscales.
- *
- * To avoid floating-point arithmetic, we represent the fractional constants
- * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
- * the products by 2^16, with appropriate rounding, to get the correct answer.
- *
- * For even more speed, we avoid doing any multiplications in the inner loop
- * by precalculating the constants times R,G,B for all possible values.
- * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
- * for 12-bit samples it is still acceptable. It's not very reasonable for
- * 16-bit samples, but if you want lossless storage you shouldn't be changing
- * colorspace anyway.
- * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
- * in the tables to save adding them separately in the inner loop.
- */
-
-#define SCALEBITS 16 /* speediest right-shift on some machines */
-#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS)
-#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
-#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
-
-/* We allocate one big table and divide it up into eight parts, instead of
- * doing eight alloc_small requests. This lets us use a single table base
- * address, which can be held in a register in the inner loops on many
- * machines (more than can hold all eight addresses, anyway).
- */
-
-#define R_Y_OFF 0 /* offset to R => Y section */
-#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
-#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
-#define R_CB_OFF (3*(MAXJSAMPLE+1))
-#define G_CB_OFF (4*(MAXJSAMPLE+1))
-#define B_CB_OFF (5*(MAXJSAMPLE+1))
-#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
-#define G_CR_OFF (6*(MAXJSAMPLE+1))
-#define B_CR_OFF (7*(MAXJSAMPLE+1))
-#define TABLE_SIZE (8*(MAXJSAMPLE+1))
-
-
-/*
- * Initialize for RGB->YCC colorspace conversion.
- */
-
-METHODDEF(void)
-rgb_ycc_start (j_compress_ptr cinfo)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- INT32 * rgb_ycc_tab;
- INT32 i;
-
- /* Allocate and fill in the conversion tables. */
- cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (TABLE_SIZE * SIZEOF(INT32)));
-
- for (i = 0; i <= MAXJSAMPLE; i++) {
- rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i;
- rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i;
- rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF;
- rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i;
- rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i;
- /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
- * This ensures that the maximum output will round to MAXJSAMPLE
- * not MAXJSAMPLE+1, and thus that we don't have to range-limit.
- */
- rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
-/* B=>Cb and R=>Cr tables are the same
- rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1;
-*/
- rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i;
- rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i;
- }
-}
-
-
-/*
- * Convert some rows of samples to the JPEG colorspace.
- *
- * Note that we change from the application's interleaved-pixel format
- * to our internal noninterleaved, one-plane-per-component format.
- * The input buffer is therefore three times as wide as the output buffer.
- *
- * A starting row offset is provided only for the output buffer. The caller
- * can easily adjust the passed input_buf value to accommodate any row
- * offset required on that side.
- */
-
-METHODDEF(void)
-rgb_ycc_convert (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
- JDIMENSION output_row, int num_rows)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- register int r, g, b;
- register INT32 * ctab = cconvert->rgb_ycc_tab;
- register JSAMPROW inptr;
- register JSAMPROW outptr0, outptr1, outptr2;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->image_width;
-
- while (--num_rows >= 0) {
- inptr = *input_buf++;
- outptr0 = output_buf[0][output_row];
- outptr1 = output_buf[1][output_row];
- outptr2 = output_buf[2][output_row];
- output_row++;
- for (col = 0; col < num_cols; col++) {
- r = GETJSAMPLE(inptr[RGB_RED]);
- g = GETJSAMPLE(inptr[RGB_GREEN]);
- b = GETJSAMPLE(inptr[RGB_BLUE]);
- inptr += RGB_PIXELSIZE;
- /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
- * must be too; we do not need an explicit range-limiting operation.
- * Hence the value being shifted is never negative, and we don't
- * need the general RIGHT_SHIFT macro.
- */
- /* Y */
- outptr0[col] = (JSAMPLE)
- ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
- >> SCALEBITS);
- /* Cb */
- outptr1[col] = (JSAMPLE)
- ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
- >> SCALEBITS);
- /* Cr */
- outptr2[col] = (JSAMPLE)
- ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
- >> SCALEBITS);
- }
- }
-}
-
-
-/**************** Cases other than RGB -> YCbCr **************/
-
-
-/*
- * Convert some rows of samples to the JPEG colorspace.
- * This version handles RGB->grayscale conversion, which is the same
- * as the RGB->Y portion of RGB->YCbCr.
- * We assume rgb_ycc_start has been called (we only use the Y tables).
- */
-
-METHODDEF(void)
-rgb_gray_convert (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
- JDIMENSION output_row, int num_rows)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- register int r, g, b;
- register INT32 * ctab = cconvert->rgb_ycc_tab;
- register JSAMPROW inptr;
- register JSAMPROW outptr;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->image_width;
-
- while (--num_rows >= 0) {
- inptr = *input_buf++;
- outptr = output_buf[0][output_row];
- output_row++;
- for (col = 0; col < num_cols; col++) {
- r = GETJSAMPLE(inptr[RGB_RED]);
- g = GETJSAMPLE(inptr[RGB_GREEN]);
- b = GETJSAMPLE(inptr[RGB_BLUE]);
- inptr += RGB_PIXELSIZE;
- /* Y */
- outptr[col] = (JSAMPLE)
- ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
- >> SCALEBITS);
- }
- }
-}
-
-
-/*
- * Convert some rows of samples to the JPEG colorspace.
- * This version handles Adobe-style CMYK->YCCK conversion,
- * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same
- * conversion as above, while passing K (black) unchanged.
- * We assume rgb_ycc_start has been called.
- */
-
-METHODDEF(void)
-cmyk_ycck_convert (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
- JDIMENSION output_row, int num_rows)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- register int r, g, b;
- register INT32 * ctab = cconvert->rgb_ycc_tab;
- register JSAMPROW inptr;
- register JSAMPROW outptr0, outptr1, outptr2, outptr3;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->image_width;
-
- while (--num_rows >= 0) {
- inptr = *input_buf++;
- outptr0 = output_buf[0][output_row];
- outptr1 = output_buf[1][output_row];
- outptr2 = output_buf[2][output_row];
- outptr3 = output_buf[3][output_row];
- output_row++;
- for (col = 0; col < num_cols; col++) {
- r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
- g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
- b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
- /* K passes through as-is */
- outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */
- inptr += 4;
- /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
- * must be too; we do not need an explicit range-limiting operation.
- * Hence the value being shifted is never negative, and we don't
- * need the general RIGHT_SHIFT macro.
- */
- /* Y */
- outptr0[col] = (JSAMPLE)
- ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
- >> SCALEBITS);
- /* Cb */
- outptr1[col] = (JSAMPLE)
- ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
- >> SCALEBITS);
- /* Cr */
- outptr2[col] = (JSAMPLE)
- ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
- >> SCALEBITS);
- }
- }
-}
-
-
-/*
- * Convert some rows of samples to the JPEG colorspace.
- * This version handles grayscale output with no conversion.
- * The source can be either plain grayscale or YCbCr (since Y == gray).
- */
-
-METHODDEF(void)
-grayscale_convert (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
- JDIMENSION output_row, int num_rows)
-{
- register JSAMPROW inptr;
- register JSAMPROW outptr;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->image_width;
- int instride = cinfo->input_components;
-
- while (--num_rows >= 0) {
- inptr = *input_buf++;
- outptr = output_buf[0][output_row];
- output_row++;
- for (col = 0; col < num_cols; col++) {
- outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */
- inptr += instride;
- }
- }
-}
-
-
-/*
- * Convert some rows of samples to the JPEG colorspace.
- * This version handles multi-component colorspaces without conversion.
- * We assume input_components == num_components.
- */
-
-METHODDEF(void)
-null_convert (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
- JDIMENSION output_row, int num_rows)
-{
- register JSAMPROW inptr;
- register JSAMPROW outptr;
- register JDIMENSION col;
- register int ci;
- int nc = cinfo->num_components;
- JDIMENSION num_cols = cinfo->image_width;
-
- while (--num_rows >= 0) {
- /* It seems fastest to make a separate pass for each component. */
- for (ci = 0; ci < nc; ci++) {
- inptr = *input_buf;
- outptr = output_buf[ci][output_row];
- for (col = 0; col < num_cols; col++) {
- outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */
- inptr += nc;
- }
- }
- input_buf++;
- output_row++;
- }
-}
-
-
-/*
- * Empty method for start_pass.
- */
-
-METHODDEF(void)
-null_method (j_compress_ptr cinfo)
-{
- /* no work needed */
-}
-
-
-/*
- * Module initialization routine for input colorspace conversion.
- */
-
-GLOBAL(void)
-jinit_color_converter (j_compress_ptr cinfo)
-{
- my_cconvert_ptr cconvert;
-
- cconvert = (my_cconvert_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_color_converter));
- cinfo->cconvert = (struct jpeg_color_converter *) cconvert;
- /* set start_pass to null method until we find out differently */
- cconvert->pub.start_pass = null_method;
-
- /* Make sure input_components agrees with in_color_space */
- switch (cinfo->in_color_space) {
- case JCS_GRAYSCALE:
- if (cinfo->input_components != 1)
- ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
- break;
-
- case JCS_RGB:
-#if RGB_PIXELSIZE != 3
- if (cinfo->input_components != RGB_PIXELSIZE)
- ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
- break;
-#endif /* else share code with YCbCr */
-
- case JCS_YCbCr:
- if (cinfo->input_components != 3)
- ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
- break;
-
- case JCS_CMYK:
- case JCS_YCCK:
- if (cinfo->input_components != 4)
- ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
- break;
-
- default: /* JCS_UNKNOWN can be anything */
- if (cinfo->input_components < 1)
- ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
- break;
- }
-
- /* Check num_components, set conversion method based on requested space */
- switch (cinfo->jpeg_color_space) {
- case JCS_GRAYSCALE:
- if (cinfo->num_components != 1)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- if (cinfo->in_color_space == JCS_GRAYSCALE)
- cconvert->pub.color_convert = grayscale_convert;
- else if (cinfo->in_color_space == JCS_RGB) {
- cconvert->pub.start_pass = rgb_ycc_start;
- cconvert->pub.color_convert = rgb_gray_convert;
- } else if (cinfo->in_color_space == JCS_YCbCr)
- cconvert->pub.color_convert = grayscale_convert;
- else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- case JCS_RGB:
- if (cinfo->num_components != 3)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3)
- cconvert->pub.color_convert = null_convert;
- else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- case JCS_YCbCr:
- if (cinfo->num_components != 3)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- if (cinfo->in_color_space == JCS_RGB) {
- cconvert->pub.start_pass = rgb_ycc_start;
- cconvert->pub.color_convert = rgb_ycc_convert;
- } else if (cinfo->in_color_space == JCS_YCbCr)
- cconvert->pub.color_convert = null_convert;
- else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- case JCS_CMYK:
- if (cinfo->num_components != 4)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- if (cinfo->in_color_space == JCS_CMYK)
- cconvert->pub.color_convert = null_convert;
- else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- case JCS_YCCK:
- if (cinfo->num_components != 4)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- if (cinfo->in_color_space == JCS_CMYK) {
- cconvert->pub.start_pass = rgb_ycc_start;
- cconvert->pub.color_convert = cmyk_ycck_convert;
- } else if (cinfo->in_color_space == JCS_YCCK)
- cconvert->pub.color_convert = null_convert;
- else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- default: /* allow null conversion of JCS_UNKNOWN */
- if (cinfo->jpeg_color_space != cinfo->in_color_space ||
- cinfo->num_components != cinfo->input_components)
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- cconvert->pub.color_convert = null_convert;
- break;
- }
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jcdctmgr.c b/core/src/fxcodec/libjpeg/fpdfapi_jcdctmgr.c
deleted file mode 100644
index cbd7d11207..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jcdctmgr.c
+++ /dev/null
@@ -1,390 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jcdctmgr.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the forward-DCT management logic.
- * This code selects a particular DCT implementation to be used,
- * and it performs related housekeeping chores including coefficient
- * quantization.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-
-/* Private subobject for this module */
-
-typedef struct {
- struct jpeg_forward_dct pub; /* public fields */
-
- /* Pointer to the DCT routine actually in use */
- forward_DCT_method_ptr do_dct;
-
- /* The actual post-DCT divisors --- not identical to the quant table
- * entries, because of scaling (especially for an unnormalized DCT).
- * Each table is given in normal array order.
- */
- DCTELEM * divisors[NUM_QUANT_TBLS];
-
-#ifdef DCT_FLOAT_SUPPORTED
- /* Same as above for the floating-point case. */
- float_DCT_method_ptr do_float_dct;
- FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
-#endif
-} my_fdct_controller;
-
-typedef my_fdct_controller * my_fdct_ptr;
-
-
-/*
- * Initialize for a processing pass.
- * Verify that all referenced Q-tables are present, and set up
- * the divisor table for each one.
- * In the current implementation, DCT of all components is done during
- * the first pass, even if only some components will be output in the
- * first scan. Hence all components should be examined here.
- */
-
-METHODDEF(void)
-start_pass_fdctmgr (j_compress_ptr cinfo)
-{
- my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
- int ci, qtblno, i;
- jpeg_component_info *compptr;
- JQUANT_TBL * qtbl;
- DCTELEM * dtbl;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- qtblno = compptr->quant_tbl_no;
- /* Make sure specified quantization table is present */
- if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
- cinfo->quant_tbl_ptrs[qtblno] == NULL)
- ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
- qtbl = cinfo->quant_tbl_ptrs[qtblno];
- /* Compute divisors for this quant table */
- /* We may do this more than once for same table, but it's not a big deal */
- switch (cinfo->dct_method) {
-#ifdef DCT_ISLOW_SUPPORTED
- case JDCT_ISLOW:
- /* For LL&M IDCT method, divisors are equal to raw quantization
- * coefficients multiplied by 8 (to counteract scaling).
- */
- if (fdct->divisors[qtblno] == NULL) {
- fdct->divisors[qtblno] = (DCTELEM *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- DCTSIZE2 * SIZEOF(DCTELEM));
- }
- dtbl = fdct->divisors[qtblno];
- for (i = 0; i < DCTSIZE2; i++) {
- dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
- }
- break;
-#endif
-#ifdef DCT_IFAST_SUPPORTED
- case JDCT_IFAST:
- {
- /* For AA&N IDCT method, divisors are equal to quantization
- * coefficients scaled by scalefactor[row]*scalefactor[col], where
- * scalefactor[0] = 1
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
- * We apply a further scale factor of 8.
- */
-#define CONST_BITS 14
- static const INT16 aanscales[DCTSIZE2] = {
- /* precomputed values scaled up by 14 bits */
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
- 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
- 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
- 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
- 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
- 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
- 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
- };
- SHIFT_TEMPS
-
- if (fdct->divisors[qtblno] == NULL) {
- fdct->divisors[qtblno] = (DCTELEM *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- DCTSIZE2 * SIZEOF(DCTELEM));
- }
- dtbl = fdct->divisors[qtblno];
- for (i = 0; i < DCTSIZE2; i++) {
- dtbl[i] = (DCTELEM)
- DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
- (INT32) aanscales[i]),
- CONST_BITS-3);
- }
- }
- break;
-#endif
-#ifdef DCT_FLOAT_SUPPORTED
- case JDCT_FLOAT:
- {
- /* For float AA&N IDCT method, divisors are equal to quantization
- * coefficients scaled by scalefactor[row]*scalefactor[col], where
- * scalefactor[0] = 1
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
- * We apply a further scale factor of 8.
- * What's actually stored is 1/divisor so that the inner loop can
- * use a multiplication rather than a division.
- */
- FAST_FLOAT * fdtbl;
- int row, col;
- static const double aanscalefactor[DCTSIZE] = {
- 1.0, 1.387039845, 1.306562965, 1.175875602,
- 1.0, 0.785694958, 0.541196100, 0.275899379
- };
-
- if (fdct->float_divisors[qtblno] == NULL) {
- fdct->float_divisors[qtblno] = (FAST_FLOAT *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- DCTSIZE2 * SIZEOF(FAST_FLOAT));
- }
- fdtbl = fdct->float_divisors[qtblno];
- i = 0;
- for (row = 0; row < DCTSIZE; row++) {
- for (col = 0; col < DCTSIZE; col++) {
- fdtbl[i] = (FAST_FLOAT)
- (1.0 / (((double) qtbl->quantval[i] *
- aanscalefactor[row] * aanscalefactor[col] * 8.0)));
- i++;
- }
- }
- }
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- break;
- }
- }
-}
-
-
-/*
- * Perform forward DCT on one or more blocks of a component.
- *
- * The input samples are taken from the sample_data[] array starting at
- * position start_row/start_col, and moving to the right for any additional
- * blocks. The quantized coefficients are returned in coef_blocks[].
- */
-
-METHODDEF(void)
-forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
- JDIMENSION start_row, JDIMENSION start_col,
- JDIMENSION num_blocks)
-/* This version is used for integer DCT implementations. */
-{
- /* This routine is heavily used, so it's worth coding it tightly. */
- my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
- forward_DCT_method_ptr do_dct = fdct->do_dct;
- DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
- DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
- JDIMENSION bi;
-
- sample_data += start_row; /* fold in the vertical offset once */
-
- for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
- /* Load data into workspace, applying unsigned->signed conversion */
- { register DCTELEM *workspaceptr;
- register JSAMPROW elemptr;
- register int elemr;
-
- workspaceptr = workspace;
- for (elemr = 0; elemr < DCTSIZE; elemr++) {
- elemptr = sample_data[elemr] + start_col;
-#if DCTSIZE == 8 /* unroll the inner loop */
- *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
- *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
- *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
- *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
- *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
- *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
- *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
- *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
-#else
- { register int elemc;
- for (elemc = DCTSIZE; elemc > 0; elemc--) {
- *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
- }
- }
-#endif
- }
- }
-
- /* Perform the DCT */
- (*do_dct) (workspace);
-
- /* Quantize/descale the coefficients, and store into coef_blocks[] */
- { register DCTELEM temp, qval;
- register int i;
- register JCOEFPTR output_ptr = coef_blocks[bi];
-
- for (i = 0; i < DCTSIZE2; i++) {
- qval = divisors[i];
- temp = workspace[i];
- /* Divide the coefficient value by qval, ensuring proper rounding.
- * Since C does not specify the direction of rounding for negative
- * quotients, we have to force the dividend positive for portability.
- *
- * In most files, at least half of the output values will be zero
- * (at default quantization settings, more like three-quarters...)
- * so we should ensure that this case is fast. On many machines,
- * a comparison is enough cheaper than a divide to make a special test
- * a win. Since both inputs will be nonnegative, we need only test
- * for a < b to discover whether a/b is 0.
- * If your machine's division is fast enough, define FAST_DIVIDE.
- */
-#ifdef FAST_DIVIDE
-#define DIVIDE_BY(a,b) a /= b
-#else
-#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
-#endif
- if (temp < 0) {
- temp = -temp;
- temp += qval>>1; /* for rounding */
- DIVIDE_BY(temp, qval);
- temp = -temp;
- } else {
- temp += qval>>1; /* for rounding */
- DIVIDE_BY(temp, qval);
- }
- output_ptr[i] = (JCOEF) temp;
- }
- }
- }
-}
-
-
-#ifdef DCT_FLOAT_SUPPORTED
-
-METHODDEF(void)
-forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
- JDIMENSION start_row, JDIMENSION start_col,
- JDIMENSION num_blocks)
-/* This version is used for floating-point DCT implementations. */
-{
- /* This routine is heavily used, so it's worth coding it tightly. */
- my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
- float_DCT_method_ptr do_dct = fdct->do_float_dct;
- FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
- FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
- JDIMENSION bi;
-
- sample_data += start_row; /* fold in the vertical offset once */
-
- for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
- /* Load data into workspace, applying unsigned->signed conversion */
- { register FAST_FLOAT *workspaceptr;
- register JSAMPROW elemptr;
- register int elemr;
-
- workspaceptr = workspace;
- for (elemr = 0; elemr < DCTSIZE; elemr++) {
- elemptr = sample_data[elemr] + start_col;
-#if DCTSIZE == 8 /* unroll the inner loop */
- *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
- *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
- *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
- *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
- *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
- *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
- *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
- *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
-#else
- { register int elemc;
- for (elemc = DCTSIZE; elemc > 0; elemc--) {
- *workspaceptr++ = (FAST_FLOAT)
- (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
- }
- }
-#endif
- }
- }
-
- /* Perform the DCT */
- (*do_dct) (workspace);
-
- /* Quantize/descale the coefficients, and store into coef_blocks[] */
- { register FAST_FLOAT temp;
- register int i;
- register JCOEFPTR output_ptr = coef_blocks[bi];
-
- for (i = 0; i < DCTSIZE2; i++) {
- /* Apply the quantization and scaling factor */
- temp = workspace[i] * divisors[i];
- /* Round to nearest integer.
- * Since C does not specify the direction of rounding for negative
- * quotients, we have to force the dividend positive for portability.
- * The maximum coefficient size is +-16K (for 12-bit data), so this
- * code should work for either 16-bit or 32-bit ints.
- */
- output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
- }
- }
- }
-}
-
-#endif /* DCT_FLOAT_SUPPORTED */
-
-
-/*
- * Initialize FDCT manager.
- */
-
-GLOBAL(void)
-jinit_forward_dct (j_compress_ptr cinfo)
-{
- my_fdct_ptr fdct;
- int i;
-
- fdct = (my_fdct_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_fdct_controller));
- cinfo->fdct = (struct jpeg_forward_dct *) fdct;
- fdct->pub.start_pass = start_pass_fdctmgr;
-
- switch (cinfo->dct_method) {
-#ifdef DCT_ISLOW_SUPPORTED
- case JDCT_ISLOW:
- fdct->pub.forward_DCT = forward_DCT;
- fdct->do_dct = jpeg_fdct_islow;
- break;
-#endif
-#ifdef DCT_IFAST_SUPPORTED
- case JDCT_IFAST:
- fdct->pub.forward_DCT = forward_DCT;
- fdct->do_dct = jpeg_fdct_ifast;
- break;
-#endif
-#ifdef DCT_FLOAT_SUPPORTED
- case JDCT_FLOAT:
- fdct->pub.forward_DCT = forward_DCT_float;
- fdct->do_float_dct = jpeg_fdct_float;
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- break;
- }
-
- /* Mark divisor tables unallocated */
- for (i = 0; i < NUM_QUANT_TBLS; i++) {
- fdct->divisors[i] = NULL;
-#ifdef DCT_FLOAT_SUPPORTED
- fdct->float_divisors[i] = NULL;
-#endif
- }
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jchuff.c b/core/src/fxcodec/libjpeg/fpdfapi_jchuff.c
deleted file mode 100644
index 2a65aa253b..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jchuff.c
+++ /dev/null
@@ -1,915 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jchuff.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains Huffman entropy encoding routines.
- *
- * Much of the complexity here has to do with supporting output suspension.
- * If the data destination module demands suspension, we want to be able to
- * back up to the start of the current MCU. To do this, we copy state
- * variables into local working storage, and update them back to the
- * permanent JPEG objects only upon successful completion of an MCU.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jchuff.h" /* Declarations shared with jcphuff.c */
-
-#ifdef _FX_MANAGED_CODE_
-#define savable_state savable_state_c
-#endif
-
-/* Expanded entropy encoder object for Huffman encoding.
- *
- * The savable_state subrecord contains fields that change within an MCU,
- * but must not be updated permanently until we complete the MCU.
- */
-
-typedef struct {
- INT32 put_buffer; /* current bit-accumulation buffer */
- int put_bits; /* # of bits now in it */
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
-} savable_state;
-
-/* This macro is to work around compilers with missing or broken
- * structure assignment. You'll need to fix this code if you have
- * such a compiler and you change MAX_COMPS_IN_SCAN.
- */
-
-#ifndef NO_STRUCT_ASSIGN
-#define ASSIGN_STATE(dest,src) ((dest) = (src))
-#else
-#if MAX_COMPS_IN_SCAN == 4
-#define ASSIGN_STATE(dest,src) \
- ((dest).put_buffer = (src).put_buffer, \
- (dest).put_bits = (src).put_bits, \
- (dest).last_dc_val[0] = (src).last_dc_val[0], \
- (dest).last_dc_val[1] = (src).last_dc_val[1], \
- (dest).last_dc_val[2] = (src).last_dc_val[2], \
- (dest).last_dc_val[3] = (src).last_dc_val[3])
-#endif
-#endif
-
-
-typedef struct {
- struct jpeg_entropy_encoder pub; /* public fields */
-
- savable_state saved; /* Bit buffer & DC state at start of MCU */
-
- /* These fields are NOT loaded into local working state. */
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
- int next_restart_num; /* next restart number to write (0-7) */
-
- /* Pointers to derived tables (these workspaces have image lifespan) */
- c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
- c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
-
-#ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
- long * dc_count_ptrs[NUM_HUFF_TBLS];
- long * ac_count_ptrs[NUM_HUFF_TBLS];
-#endif
-} huff_entropy_encoder;
-
-typedef huff_entropy_encoder * huff_entropy_ptr;
-
-/* Working state while writing an MCU.
- * This struct contains all the fields that are needed by subroutines.
- */
-
-typedef struct {
- JOCTET * next_output_byte; /* => next byte to write in buffer */
- size_t free_in_buffer; /* # of byte spaces remaining in buffer */
- savable_state cur; /* Current bit buffer & DC state */
- j_compress_ptr cinfo; /* dump_buffer needs access to this */
-} working_state;
-
-
-/* Forward declarations */
-METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
- JBLOCKROW *MCU_data));
-METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
-#ifdef ENTROPY_OPT_SUPPORTED
-METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
- JBLOCKROW *MCU_data));
-METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
-#endif
-
-
-/*
- * Initialize for a Huffman-compressed scan.
- * If gather_statistics is TRUE, we do not output anything during the scan,
- * just count the Huffman symbols used and generate Huffman code tables.
- */
-
-METHODDEF(void)
-start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci, dctbl, actbl;
- jpeg_component_info * compptr;
-
- if (gather_statistics) {
-#ifdef ENTROPY_OPT_SUPPORTED
- entropy->pub.encode_mcu = encode_mcu_gather;
- entropy->pub.finish_pass = finish_pass_gather;
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else {
- entropy->pub.encode_mcu = encode_mcu_huff;
- entropy->pub.finish_pass = finish_pass_huff;
- }
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- dctbl = compptr->dc_tbl_no;
- actbl = compptr->ac_tbl_no;
- if (gather_statistics) {
-#ifdef ENTROPY_OPT_SUPPORTED
- /* Check for invalid table indexes */
- /* (make_c_derived_tbl does this in the other path) */
- if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
- if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
- /* Allocate and zero the statistics tables */
- /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
- if (entropy->dc_count_ptrs[dctbl] == NULL)
- entropy->dc_count_ptrs[dctbl] = (long *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- 257 * SIZEOF(long));
- MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
- if (entropy->ac_count_ptrs[actbl] == NULL)
- entropy->ac_count_ptrs[actbl] = (long *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- 257 * SIZEOF(long));
- MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
-#endif
- } else {
- /* Compute derived values for Huffman tables */
- /* We may do this more than once for a table, but it's not expensive */
- jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
- & entropy->dc_derived_tbls[dctbl]);
- jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
- & entropy->ac_derived_tbls[actbl]);
- }
- /* Initialize DC predictions to 0 */
- entropy->saved.last_dc_val[ci] = 0;
- }
-
- /* Initialize bit buffer to empty */
- entropy->saved.put_buffer = 0;
- entropy->saved.put_bits = 0;
-
- /* Initialize restart stuff */
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num = 0;
-}
-
-
-/*
- * Compute the derived values for a Huffman table.
- * This routine also performs some validation checks on the table.
- *
- * Note this is also used by jcphuff.c.
- */
-
-GLOBAL(void)
-jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
- c_derived_tbl ** pdtbl)
-{
- JHUFF_TBL *htbl;
- c_derived_tbl *dtbl;
- int p, i, l, lastp, _si, maxsymbol;
- char huffsize[257];
- unsigned int huffcode[257];
- unsigned int code;
-
- /* Note that huffsize[] and huffcode[] are filled in code-length order,
- * paralleling the order of the symbols themselves in htbl->huffval[].
- */
-
- /* Find the input Huffman table */
- if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
- htbl =
- isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
- if (htbl == NULL)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
-
- /* Allocate a workspace if we haven't already done so. */
- if (*pdtbl == NULL)
- *pdtbl = (c_derived_tbl *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(c_derived_tbl));
- dtbl = *pdtbl;
-
- /* Figure C.1: make table of Huffman code length for each symbol */
-
- p = 0;
- for (l = 1; l <= 16; l++) {
- i = (int) htbl->bits[l];
- if (i < 0 || p + i > 256) /* protect against table overrun */
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- while (i--)
- huffsize[p++] = (char) l;
- }
- huffsize[p] = 0;
- lastp = p;
-
- /* Figure C.2: generate the codes themselves */
- /* We also validate that the counts represent a legal Huffman code tree. */
-
- code = 0;
- _si = huffsize[0];
- p = 0;
- while (huffsize[p]) {
- while (((int) huffsize[p]) == _si) {
- huffcode[p++] = code;
- code++;
- }
- /* code is now 1 more than the last code used for codelength si; but
- * it must still fit in si bits, since no code is allowed to be all ones.
- */
- if (((INT32) code) >= (((INT32) 1) << _si))
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- code <<= 1;
- _si++;
- }
-
- /* Figure C.3: generate encoding tables */
- /* These are code and size indexed by symbol value */
-
- /* Set all codeless symbols to have code length 0;
- * this lets us detect duplicate VAL entries here, and later
- * allows emit_bits to detect any attempt to emit such symbols.
- */
- MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
-
- /* This is also a convenient place to check for out-of-range
- * and duplicated VAL entries. We allow 0..255 for AC symbols
- * but only 0..15 for DC. (We could constrain them further
- * based on data depth and mode, but this seems enough.)
- */
- maxsymbol = isDC ? 15 : 255;
-
- for (p = 0; p < lastp; p++) {
- i = htbl->huffval[p];
- if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- dtbl->ehufco[i] = huffcode[p];
- dtbl->ehufsi[i] = huffsize[p];
- }
-}
-
-
-/* Outputting bytes to the file */
-
-/* Emit a byte, taking 'action' if must suspend. */
-#define emit_byte(state,val,action) \
- { *(state)->next_output_byte++ = (JOCTET) (val); \
- if (--(state)->free_in_buffer == 0) \
- if (! dump_buffer(state)) \
- { action; } }
-
-
-LOCAL(boolean)
-dump_buffer (working_state * state)
-/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
-{
- struct jpeg_destination_mgr * dest = state->cinfo->dest;
-
- if (! (*dest->empty_output_buffer) (state->cinfo))
- return FALSE;
- /* After a successful buffer dump, must reset buffer pointers */
- state->next_output_byte = dest->next_output_byte;
- state->free_in_buffer = dest->free_in_buffer;
- return TRUE;
-}
-
-
-/* Outputting bits to the file */
-
-/* Only the right 24 bits of put_buffer are used; the valid bits are
- * left-justified in this part. At most 16 bits can be passed to emit_bits
- * in one call, and we never retain more than 7 bits in put_buffer
- * between calls, so 24 bits are sufficient.
- */
-
-INLINE
-LOCAL(boolean)
-emit_bits (working_state * state, unsigned int code, int size)
-/* Emit some bits; return TRUE if successful, FALSE if must suspend */
-{
- /* This routine is heavily used, so it's worth coding tightly. */
- register INT32 put_buffer = (INT32) code;
- register int put_bits = state->cur.put_bits;
-
- /* if size is 0, caller used an invalid Huffman table entry */
- if (size == 0)
- ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
-
- put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
-
- put_bits += size; /* new number of bits in buffer */
-
- put_buffer <<= 24 - put_bits; /* align incoming bits */
-
- put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
-
- while (put_bits >= 8) {
- int c = (int) ((put_buffer >> 16) & 0xFF);
-
- emit_byte(state, c, return FALSE);
- if (c == 0xFF) { /* need to stuff a zero byte? */
- emit_byte(state, 0, return FALSE);
- }
- put_buffer <<= 8;
- put_bits -= 8;
- }
-
- state->cur.put_buffer = put_buffer; /* update state variables */
- state->cur.put_bits = put_bits;
-
- return TRUE;
-}
-
-
-LOCAL(boolean)
-flush_bits (working_state * state)
-{
- if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
- return FALSE;
- state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
- state->cur.put_bits = 0;
- return TRUE;
-}
-
-
-/* Encode a single block's worth of coefficients */
-
-LOCAL(boolean)
-encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
- c_derived_tbl *dctbl, c_derived_tbl *actbl)
-{
- register int temp, temp2;
- register int nbits;
- register int k, r, i;
-
- /* Encode the DC coefficient difference per section F.1.2.1 */
-
- temp = temp2 = block[0] - last_dc_val;
-
- if (temp < 0) {
- temp = -temp; /* temp is abs value of input */
- /* For a negative input, want temp2 = bitwise complement of abs(input) */
- /* This code assumes we are on a two's complement machine */
- temp2--;
- }
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 0;
- while (temp) {
- nbits++;
- temp >>= 1;
- }
- /* Check for out-of-range coefficient values.
- * Since we're encoding a difference, the range limit is twice as much.
- */
- if (nbits > MAX_COEF_BITS+1)
- ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
-
- /* Emit the Huffman-coded symbol for the number of bits */
- if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
- return FALSE;
-
- /* Emit that number of bits of the value, if positive, */
- /* or the complement of its magnitude, if negative. */
- if (nbits) /* emit_bits rejects calls with size 0 */
- if (! emit_bits(state, (unsigned int) temp2, nbits))
- return FALSE;
-
- /* Encode the AC coefficients per section F.1.2.2 */
-
- r = 0; /* r = run length of zeros */
-
- for (k = 1; k < DCTSIZE2; k++) {
- if ((temp = block[jpeg_natural_order[k]]) == 0) {
- r++;
- } else {
- /* if run length > 15, must emit special run-length-16 codes (0xF0) */
- while (r > 15) {
- if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
- return FALSE;
- r -= 16;
- }
-
- temp2 = temp;
- if (temp < 0) {
- temp = -temp; /* temp is abs value of input */
- /* This code assumes we are on a two's complement machine */
- temp2--;
- }
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 1; /* there must be at least one 1 bit */
- while ((temp >>= 1))
- nbits++;
- /* Check for out-of-range coefficient values */
- if (nbits > MAX_COEF_BITS)
- ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
-
- /* Emit Huffman symbol for run length / number of bits */
- i = (r << 4) + nbits;
- if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
- return FALSE;
-
- /* Emit that number of bits of the value, if positive, */
- /* or the complement of its magnitude, if negative. */
- if (! emit_bits(state, (unsigned int) temp2, nbits))
- return FALSE;
-
- r = 0;
- }
- }
-
- /* If the last coef(s) were zero, emit an end-of-block code */
- if (r > 0)
- if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
- return FALSE;
-
- return TRUE;
-}
-
-
-/*
- * Emit a restart marker & resynchronize predictions.
- */
-
-LOCAL(boolean)
-emit_restart (working_state * state, int restart_num)
-{
- int ci;
-
- if (! flush_bits(state))
- return FALSE;
-
- emit_byte(state, 0xFF, return FALSE);
- emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
-
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
- state->cur.last_dc_val[ci] = 0;
-
- /* The restart counter is not updated until we successfully write the MCU. */
-
- return TRUE;
-}
-
-
-/*
- * Encode and output one MCU's worth of Huffman-compressed coefficients.
- */
-
-METHODDEF(boolean)
-encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- working_state state;
- int blkn, ci;
- jpeg_component_info * compptr;
-
- /* Load up working state */
- state.next_output_byte = cinfo->dest->next_output_byte;
- state.free_in_buffer = cinfo->dest->free_in_buffer;
- ASSIGN_STATE(state.cur, entropy->saved);
- state.cinfo = cinfo;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! emit_restart(&state, entropy->next_restart_num))
- return FALSE;
- }
-
- /* Encode the MCU data blocks */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- if (! encode_one_block(&state,
- MCU_data[blkn][0], state.cur.last_dc_val[ci],
- entropy->dc_derived_tbls[compptr->dc_tbl_no],
- entropy->ac_derived_tbls[compptr->ac_tbl_no]))
- return FALSE;
- /* Update last_dc_val */
- state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
- }
-
- /* Completed MCU, so update state */
- cinfo->dest->next_output_byte = state.next_output_byte;
- cinfo->dest->free_in_buffer = state.free_in_buffer;
- ASSIGN_STATE(entropy->saved, state.cur);
-
- /* Update restart-interval state too */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- return TRUE;
-}
-
-
-/*
- * Finish up at the end of a Huffman-compressed scan.
- */
-
-METHODDEF(void)
-finish_pass_huff (j_compress_ptr cinfo)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- working_state state;
-
- /* Load up working state ... flush_bits needs it */
- state.next_output_byte = cinfo->dest->next_output_byte;
- state.free_in_buffer = cinfo->dest->free_in_buffer;
- ASSIGN_STATE(state.cur, entropy->saved);
- state.cinfo = cinfo;
-
- /* Flush out the last data */
- if (! flush_bits(&state))
- ERREXIT(cinfo, JERR_CANT_SUSPEND);
-
- /* Update state */
- cinfo->dest->next_output_byte = state.next_output_byte;
- cinfo->dest->free_in_buffer = state.free_in_buffer;
- ASSIGN_STATE(entropy->saved, state.cur);
-}
-
-
-/*
- * Huffman coding optimization.
- *
- * We first scan the supplied data and count the number of uses of each symbol
- * that is to be Huffman-coded. (This process MUST agree with the code above.)
- * Then we build a Huffman coding tree for the observed counts.
- * Symbols which are not needed at all for the particular image are not
- * assigned any code, which saves space in the DHT marker as well as in
- * the compressed data.
- */
-
-#ifdef ENTROPY_OPT_SUPPORTED
-
-
-/* Process a single block's worth of coefficients */
-
-LOCAL(void)
-htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
- long dc_counts[], long ac_counts[])
-{
- register int temp;
- register int nbits;
- register int k, r;
-
- /* Encode the DC coefficient difference per section F.1.2.1 */
-
- temp = block[0] - last_dc_val;
- if (temp < 0)
- temp = -temp;
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 0;
- while (temp) {
- nbits++;
- temp >>= 1;
- }
- /* Check for out-of-range coefficient values.
- * Since we're encoding a difference, the range limit is twice as much.
- */
- if (nbits > MAX_COEF_BITS+1)
- ERREXIT(cinfo, JERR_BAD_DCT_COEF);
-
- /* Count the Huffman symbol for the number of bits */
- dc_counts[nbits]++;
-
- /* Encode the AC coefficients per section F.1.2.2 */
-
- r = 0; /* r = run length of zeros */
-
- for (k = 1; k < DCTSIZE2; k++) {
- if ((temp = block[jpeg_natural_order[k]]) == 0) {
- r++;
- } else {
- /* if run length > 15, must emit special run-length-16 codes (0xF0) */
- while (r > 15) {
- ac_counts[0xF0]++;
- r -= 16;
- }
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- if (temp < 0)
- temp = -temp;
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 1; /* there must be at least one 1 bit */
- while ((temp >>= 1))
- nbits++;
- /* Check for out-of-range coefficient values */
- if (nbits > MAX_COEF_BITS)
- ERREXIT(cinfo, JERR_BAD_DCT_COEF);
-
- /* Count Huffman symbol for run length / number of bits */
- ac_counts[(r << 4) + nbits]++;
-
- r = 0;
- }
- }
-
- /* If the last coef(s) were zero, emit an end-of-block code */
- if (r > 0)
- ac_counts[0]++;
-}
-
-
-/*
- * Trial-encode one MCU's worth of Huffman-compressed coefficients.
- * No data is actually output, so no suspension return is possible.
- */
-
-METHODDEF(boolean)
-encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int blkn, ci;
- jpeg_component_info * compptr;
-
- /* Take care of restart intervals if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++)
- entropy->saved.last_dc_val[ci] = 0;
- /* Update restart state */
- entropy->restarts_to_go = cinfo->restart_interval;
- }
- entropy->restarts_to_go--;
- }
-
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
- entropy->dc_count_ptrs[compptr->dc_tbl_no],
- entropy->ac_count_ptrs[compptr->ac_tbl_no]);
- entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
- }
-
- return TRUE;
-}
-
-
-/*
- * Generate the best Huffman code table for the given counts, fill htbl.
- * Note this is also used by jcphuff.c.
- *
- * The JPEG standard requires that no symbol be assigned a codeword of all
- * one bits (so that padding bits added at the end of a compressed segment
- * can't look like a valid code). Because of the canonical ordering of
- * codewords, this just means that there must be an unused slot in the
- * longest codeword length category. Section K.2 of the JPEG spec suggests
- * reserving such a slot by pretending that symbol 256 is a valid symbol
- * with count 1. In theory that's not optimal; giving it count zero but
- * including it in the symbol set anyway should give a better Huffman code.
- * But the theoretically better code actually seems to come out worse in
- * practice, because it produces more all-ones bytes (which incur stuffed
- * zero bytes in the final file). In any case the difference is tiny.
- *
- * The JPEG standard requires Huffman codes to be no more than 16 bits long.
- * If some symbols have a very small but nonzero probability, the Huffman tree
- * must be adjusted to meet the code length restriction. We currently use
- * the adjustment method suggested in JPEG section K.2. This method is *not*
- * optimal; it may not choose the best possible limited-length code. But
- * typically only very-low-frequency symbols will be given less-than-optimal
- * lengths, so the code is almost optimal. Experimental comparisons against
- * an optimal limited-length-code algorithm indicate that the difference is
- * microscopic --- usually less than a hundredth of a percent of total size.
- * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
- */
-
-GLOBAL(void)
-jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
-{
-#define MAX_CLEN 32 /* assumed maximum initial code length */
- UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
- int codesize[257]; /* codesize[k] = code length of symbol k */
- int others[257]; /* next symbol in current branch of tree */
- int c1, c2;
- int p, i, j;
- long v;
-
- /* This algorithm is explained in section K.2 of the JPEG standard */
-
- MEMZERO(bits, SIZEOF(bits));
- MEMZERO(codesize, SIZEOF(codesize));
- for (i = 0; i < 257; i++)
- others[i] = -1; /* init links to empty */
-
- freq[256] = 1; /* make sure 256 has a nonzero count */
- /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
- * that no real symbol is given code-value of all ones, because 256
- * will be placed last in the largest codeword category.
- */
-
- /* Huffman's basic algorithm to assign optimal code lengths to symbols */
-
- for (;;) {
- /* Find the smallest nonzero frequency, set c1 = its symbol */
- /* In case of ties, take the larger symbol number */
- c1 = -1;
- v = 1000000000L;
- for (i = 0; i <= 256; i++) {
- if (freq[i] && freq[i] <= v) {
- v = freq[i];
- c1 = i;
- }
- }
-
- /* Find the next smallest nonzero frequency, set c2 = its symbol */
- /* In case of ties, take the larger symbol number */
- c2 = -1;
- v = 1000000000L;
- for (i = 0; i <= 256; i++) {
- if (freq[i] && freq[i] <= v && i != c1) {
- v = freq[i];
- c2 = i;
- }
- }
-
- /* Done if we've merged everything into one frequency */
- if (c2 < 0)
- break;
-
- /* Else merge the two counts/trees */
- freq[c1] += freq[c2];
- freq[c2] = 0;
-
- /* Increment the codesize of everything in c1's tree branch */
- codesize[c1]++;
- while (others[c1] >= 0) {
- c1 = others[c1];
- codesize[c1]++;
- }
-
- others[c1] = c2; /* chain c2 onto c1's tree branch */
-
- /* Increment the codesize of everything in c2's tree branch */
- codesize[c2]++;
- while (others[c2] >= 0) {
- c2 = others[c2];
- codesize[c2]++;
- }
- }
-
- /* Now count the number of symbols of each code length */
- for (i = 0; i <= 256; i++) {
- if (codesize[i]) {
- /* The JPEG standard seems to think that this can't happen, */
- /* but I'm paranoid... */
- if (codesize[i] > MAX_CLEN)
- ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
-
- bits[codesize[i]]++;
- }
- }
-
- /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
- * Huffman procedure assigned any such lengths, we must adjust the coding.
- * Here is what the JPEG spec says about how this next bit works:
- * Since symbols are paired for the longest Huffman code, the symbols are
- * removed from this length category two at a time. The prefix for the pair
- * (which is one bit shorter) is allocated to one of the pair; then,
- * skipping the BITS entry for that prefix length, a code word from the next
- * shortest nonzero BITS entry is converted into a prefix for two code words
- * one bit longer.
- */
-
- for (i = MAX_CLEN; i > 16; i--) {
- while (bits[i] > 0) {
- j = i - 2; /* find length of new prefix to be used */
- while (bits[j] == 0)
- j--;
-
- bits[i] -= 2; /* remove two symbols */
- bits[i-1]++; /* one goes in this length */
- bits[j+1] += 2; /* two new symbols in this length */
- bits[j]--; /* symbol of this length is now a prefix */
- }
- }
-
- /* Remove the count for the pseudo-symbol 256 from the largest codelength */
- while (bits[i] == 0) /* find largest codelength still in use */
- i--;
- bits[i]--;
-
- /* Return final symbol counts (only for lengths 0..16) */
- MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
-
- /* Return a list of the symbols sorted by code length */
- /* It's not real clear to me why we don't need to consider the codelength
- * changes made above, but the JPEG spec seems to think this works.
- */
- p = 0;
- for (i = 1; i <= MAX_CLEN; i++) {
- for (j = 0; j <= 255; j++) {
- if (codesize[j] == i) {
- htbl->huffval[p] = (UINT8) j;
- p++;
- }
- }
- }
-
- /* Set sent_table FALSE so updated table will be written to JPEG file. */
- htbl->sent_table = FALSE;
-}
-
-
-/*
- * Finish up a statistics-gathering pass and create the new Huffman tables.
- */
-
-METHODDEF(void)
-finish_pass_gather (j_compress_ptr cinfo)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci, dctbl, actbl;
- jpeg_component_info * compptr;
- JHUFF_TBL **htblptr;
- boolean did_dc[NUM_HUFF_TBLS];
- boolean did_ac[NUM_HUFF_TBLS];
-
- /* It's important not to apply jpeg_gen_optimal_table more than once
- * per table, because it clobbers the input frequency counts!
- */
- MEMZERO(did_dc, SIZEOF(did_dc));
- MEMZERO(did_ac, SIZEOF(did_ac));
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- dctbl = compptr->dc_tbl_no;
- actbl = compptr->ac_tbl_no;
- if (! did_dc[dctbl]) {
- htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
- if (*htblptr == NULL)
- *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
- jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
- did_dc[dctbl] = TRUE;
- }
- if (! did_ac[actbl]) {
- htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
- if (*htblptr == NULL)
- *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
- jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
- did_ac[actbl] = TRUE;
- }
- }
-}
-
-
-#endif /* ENTROPY_OPT_SUPPORTED */
-
-
-/*
- * Module initialization routine for Huffman entropy encoding.
- */
-
-GLOBAL(void)
-jinit_huff_encoder (j_compress_ptr cinfo)
-{
- huff_entropy_ptr entropy;
- int i;
-
- entropy = (huff_entropy_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(huff_entropy_encoder));
- cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
- entropy->pub.start_pass = start_pass_huff;
-
- /* Mark tables unallocated */
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
-#ifdef ENTROPY_OPT_SUPPORTED
- entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
-#endif
- }
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jcinit.c b/core/src/fxcodec/libjpeg/fpdfapi_jcinit.c
deleted file mode 100644
index 58e5d18764..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jcinit.c
+++ /dev/null
@@ -1,75 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jcinit.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains initialization logic for the JPEG compressor.
- * This routine is in charge of selecting the modules to be executed and
- * making an initialization call to each one.
- *
- * Logically, this code belongs in jcmaster.c. It's split out because
- * linking this routine implies linking the entire compression library.
- * For a transcoding-only application, we want to be able to use jcmaster.c
- * without linking in the whole library.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * Master selection of compression modules.
- * This is done once at the start of processing an image. We determine
- * which modules will be used and give them appropriate initialization calls.
- */
-
-GLOBAL(void)
-jinit_compress_master (j_compress_ptr cinfo)
-{
- /* Initialize master control (includes parameter checking/processing) */
- jinit_c_master_control(cinfo, FALSE /* full compression */);
-
- /* Preprocessing */
- if (! cinfo->raw_data_in) {
- jinit_color_converter(cinfo);
- jinit_downsampler(cinfo);
- jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
- }
- /* Forward DCT */
- jinit_forward_dct(cinfo);
- /* Entropy encoding: either Huffman or arithmetic coding. */
- if (cinfo->arith_code) {
- ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
- } else {
- if (cinfo->progressive_mode) {
-#ifdef C_PROGRESSIVE_SUPPORTED
- jinit_phuff_encoder(cinfo);
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else
- jinit_huff_encoder(cinfo);
- }
-
- /* Need a full-image coefficient buffer in any multi-pass mode. */
- jinit_c_coef_controller(cinfo,
- (boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
- jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
-
- jinit_marker_writer(cinfo);
-
- /* We can now tell the memory manager to allocate virtual arrays. */
- (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
-
- /* Write the datastream header (SOI) immediately.
- * Frame and scan headers are postponed till later.
- * This lets application insert special markers after the SOI.
- */
- (*cinfo->marker->write_file_header) (cinfo);
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jcmainct.c b/core/src/fxcodec/libjpeg/fpdfapi_jcmainct.c
deleted file mode 100644
index 4bf2c403ea..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jcmainct.c
+++ /dev/null
@@ -1,296 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jcmainct.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the main buffer controller for compression.
- * The main buffer lies between the pre-processor and the JPEG
- * compressor proper; it holds downsampled data in the JPEG colorspace.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Note: currently, there is no operating mode in which a full-image buffer
- * is needed at this step. If there were, that mode could not be used with
- * "raw data" input, since this module is bypassed in that case. However,
- * we've left the code here for possible use in special applications.
- */
-#undef FULL_MAIN_BUFFER_SUPPORTED
-
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_c_main_controller pub; /* public fields */
-
- JDIMENSION cur_iMCU_row; /* number of current iMCU row */
- JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */
- boolean suspended; /* remember if we suspended output */
- J_BUF_MODE pass_mode; /* current operating mode */
-
- /* If using just a strip buffer, this points to the entire set of buffers
- * (we allocate one for each component). In the full-image case, this
- * points to the currently accessible strips of the virtual arrays.
- */
- JSAMPARRAY buffer[MAX_COMPONENTS];
-
-#ifdef FULL_MAIN_BUFFER_SUPPORTED
- /* If using full-image storage, this array holds pointers to virtual-array
- * control blocks for each component. Unused if not full-image storage.
- */
- jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
-#endif
-} my_main_controller;
-
-typedef my_main_controller * my_main_ptr;
-
-
-/* Forward declarations */
-METHODDEF(void) process_data_simple_main
- JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
- JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
-#ifdef FULL_MAIN_BUFFER_SUPPORTED
-METHODDEF(void) process_data_buffer_main
- JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
- JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
-#endif
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF(void)
-start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
-
- /* Do nothing in raw-data mode. */
- if (cinfo->raw_data_in)
- return;
-
- main->cur_iMCU_row = 0; /* initialize counters */
- main->rowgroup_ctr = 0;
- main->suspended = FALSE;
- main->pass_mode = pass_mode; /* save mode for use by process_data */
-
- switch (pass_mode) {
- case JBUF_PASS_THRU:
-#ifdef FULL_MAIN_BUFFER_SUPPORTED
- if (main->whole_image[0] != NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-#endif
- main->pub.process_data = process_data_simple_main;
- break;
-#ifdef FULL_MAIN_BUFFER_SUPPORTED
- case JBUF_SAVE_SOURCE:
- case JBUF_CRANK_DEST:
- case JBUF_SAVE_AND_PASS:
- if (main->whole_image[0] == NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- main->pub.process_data = process_data_buffer_main;
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- break;
- }
-}
-
-
-/*
- * Process some data.
- * This routine handles the simple pass-through mode,
- * where we have only a strip buffer.
- */
-
-METHODDEF(void)
-process_data_simple_main (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail)
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
-
- while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
- /* Read input data if we haven't filled the main buffer yet */
- if (main->rowgroup_ctr < DCTSIZE)
- (*cinfo->prep->pre_process_data) (cinfo,
- input_buf, in_row_ctr, in_rows_avail,
- main->buffer, &main->rowgroup_ctr,
- (JDIMENSION) DCTSIZE);
-
- /* If we don't have a full iMCU row buffered, return to application for
- * more data. Note that preprocessor will always pad to fill the iMCU row
- * at the bottom of the image.
- */
- if (main->rowgroup_ctr != DCTSIZE)
- return;
-
- /* Send the completed row to the compressor */
- if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
- /* If compressor did not consume the whole row, then we must need to
- * suspend processing and return to the application. In this situation
- * we pretend we didn't yet consume the last input row; otherwise, if
- * it happened to be the last row of the image, the application would
- * think we were done.
- */
- if (! main->suspended) {
- (*in_row_ctr)--;
- main->suspended = TRUE;
- }
- return;
- }
- /* We did finish the row. Undo our little suspension hack if a previous
- * call suspended; then mark the main buffer empty.
- */
- if (main->suspended) {
- (*in_row_ctr)++;
- main->suspended = FALSE;
- }
- main->rowgroup_ctr = 0;
- main->cur_iMCU_row++;
- }
-}
-
-
-#ifdef FULL_MAIN_BUFFER_SUPPORTED
-
-/*
- * Process some data.
- * This routine handles all of the modes that use a full-size buffer.
- */
-
-METHODDEF(void)
-process_data_buffer_main (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail)
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
- int ci;
- jpeg_component_info *compptr;
- boolean writing = (main->pass_mode != JBUF_CRANK_DEST);
-
- while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
- /* Realign the virtual buffers if at the start of an iMCU row. */
- if (main->rowgroup_ctr == 0) {
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- main->buffer[ci] = (*cinfo->mem->access_virt_sarray)
- ((j_common_ptr) cinfo, main->whole_image[ci],
- main->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE),
- (JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing);
- }
- /* In a read pass, pretend we just read some source data. */
- if (! writing) {
- *in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE;
- main->rowgroup_ctr = DCTSIZE;
- }
- }
-
- /* If a write pass, read input data until the current iMCU row is full. */
- /* Note: preprocessor will pad if necessary to fill the last iMCU row. */
- if (writing) {
- (*cinfo->prep->pre_process_data) (cinfo,
- input_buf, in_row_ctr, in_rows_avail,
- main->buffer, &main->rowgroup_ctr,
- (JDIMENSION) DCTSIZE);
- /* Return to application if we need more data to fill the iMCU row. */
- if (main->rowgroup_ctr < DCTSIZE)
- return;
- }
-
- /* Emit data, unless this is a sink-only pass. */
- if (main->pass_mode != JBUF_SAVE_SOURCE) {
- if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
- /* If compressor did not consume the whole row, then we must need to
- * suspend processing and return to the application. In this situation
- * we pretend we didn't yet consume the last input row; otherwise, if
- * it happened to be the last row of the image, the application would
- * think we were done.
- */
- if (! main->suspended) {
- (*in_row_ctr)--;
- main->suspended = TRUE;
- }
- return;
- }
- /* We did finish the row. Undo our little suspension hack if a previous
- * call suspended; then mark the main buffer empty.
- */
- if (main->suspended) {
- (*in_row_ctr)++;
- main->suspended = FALSE;
- }
- }
-
- /* If get here, we are done with this iMCU row. Mark buffer empty. */
- main->rowgroup_ctr = 0;
- main->cur_iMCU_row++;
- }
-}
-
-#endif /* FULL_MAIN_BUFFER_SUPPORTED */
-
-
-/*
- * Initialize main buffer controller.
- */
-
-GLOBAL(void)
-jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
-{
- my_main_ptr main;
- int ci;
- jpeg_component_info *compptr;
-
- main = (my_main_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_main_controller));
- cinfo->main = (struct jpeg_c_main_controller *) main;
- main->pub.start_pass = start_pass_main;
-
- /* We don't need to create a buffer in raw-data mode. */
- if (cinfo->raw_data_in)
- return;
-
- /* Create the buffer. It holds downsampled data, so each component
- * may be of a different size.
- */
- if (need_full_buffer) {
-#ifdef FULL_MAIN_BUFFER_SUPPORTED
- /* Allocate a full-image virtual array for each component */
- /* Note we pad the bottom to a multiple of the iMCU height */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- main->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
- compptr->width_in_blocks * DCTSIZE,
- (JDIMENSION) jround_up((long) compptr->height_in_blocks,
- (long) compptr->v_samp_factor) * DCTSIZE,
- (JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
- }
-#else
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-#endif
- } else {
-#ifdef FULL_MAIN_BUFFER_SUPPORTED
- main->whole_image[0] = NULL; /* flag for no virtual arrays */
-#endif
- /* Allocate a strip buffer for each component */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- main->buffer[ci] = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- compptr->width_in_blocks * DCTSIZE,
- (JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
- }
- }
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jcmarker.c b/core/src/fxcodec/libjpeg/fpdfapi_jcmarker.c
deleted file mode 100644
index f1c89d92a9..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jcmarker.c
+++ /dev/null
@@ -1,667 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jcmarker.c
- *
- * Copyright (C) 1991-1998, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains routines to write JPEG datastream markers.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-typedef enum { /* JPEG marker codes */
- M_SOF0 = 0xc0,
- M_SOF1 = 0xc1,
- M_SOF2 = 0xc2,
- M_SOF3 = 0xc3,
-
- M_SOF5 = 0xc5,
- M_SOF6 = 0xc6,
- M_SOF7 = 0xc7,
-
- M_JPG = 0xc8,
- M_SOF9 = 0xc9,
- M_SOF10 = 0xca,
- M_SOF11 = 0xcb,
-
- M_SOF13 = 0xcd,
- M_SOF14 = 0xce,
- M_SOF15 = 0xcf,
-
- M_DHT = 0xc4,
-
- M_DAC = 0xcc,
-
- M_RST0 = 0xd0,
- M_RST1 = 0xd1,
- M_RST2 = 0xd2,
- M_RST3 = 0xd3,
- M_RST4 = 0xd4,
- M_RST5 = 0xd5,
- M_RST6 = 0xd6,
- M_RST7 = 0xd7,
-
- M_SOI = 0xd8,
- M_EOI = 0xd9,
- M_SOS = 0xda,
- M_DQT = 0xdb,
- M_DNL = 0xdc,
- M_DRI = 0xdd,
- M_DHP = 0xde,
- M_EXP = 0xdf,
-
- M_APP0 = 0xe0,
- M_APP1 = 0xe1,
- M_APP2 = 0xe2,
- M_APP3 = 0xe3,
- M_APP4 = 0xe4,
- M_APP5 = 0xe5,
- M_APP6 = 0xe6,
- M_APP7 = 0xe7,
- M_APP8 = 0xe8,
- M_APP9 = 0xe9,
- M_APP10 = 0xea,
- M_APP11 = 0xeb,
- M_APP12 = 0xec,
- M_APP13 = 0xed,
- M_APP14 = 0xee,
- M_APP15 = 0xef,
-
- M_JPG0 = 0xf0,
- M_JPG13 = 0xfd,
- M_COM = 0xfe,
-
- M_TEM = 0x01,
-
- M_ERROR = 0x100
-} JPEG_MARKER;
-
-
-/* Private state */
-
-typedef struct {
- struct jpeg_marker_writer pub; /* public fields */
-
- unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */
-} my_marker_writer;
-
-typedef my_marker_writer * my_marker_ptr;
-
-
-/*
- * Basic output routines.
- *
- * Note that we do not support suspension while writing a marker.
- * Therefore, an application using suspension must ensure that there is
- * enough buffer space for the initial markers (typ. 600-700 bytes) before
- * calling jpeg_start_compress, and enough space to write the trailing EOI
- * (a few bytes) before calling jpeg_finish_compress. Multipass compression
- * modes are not supported at all with suspension, so those two are the only
- * points where markers will be written.
- */
-
-LOCAL(void)
-emit_byte (j_compress_ptr cinfo, int val)
-/* Emit a byte */
-{
- struct jpeg_destination_mgr * dest = cinfo->dest;
-
- *(dest->next_output_byte)++ = (JOCTET) val;
- if (--dest->free_in_buffer == 0) {
- if (! (*dest->empty_output_buffer) (cinfo))
- ERREXIT(cinfo, JERR_CANT_SUSPEND);
- }
-}
-
-
-LOCAL(void)
-emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark)
-/* Emit a marker code */
-{
- emit_byte(cinfo, 0xFF);
- emit_byte(cinfo, (int) mark);
-}
-
-
-LOCAL(void)
-emit_2bytes (j_compress_ptr cinfo, int value)
-/* Emit a 2-byte integer; these are always MSB first in JPEG files */
-{
- emit_byte(cinfo, (value >> 8) & 0xFF);
- emit_byte(cinfo, value & 0xFF);
-}
-
-
-/*
- * Routines to write specific marker types.
- */
-
-LOCAL(int)
-emit_dqt (j_compress_ptr cinfo, int index)
-/* Emit a DQT marker */
-/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */
-{
- JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index];
- int prec;
- int i;
-
- if (qtbl == NULL)
- ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index);
-
- prec = 0;
- for (i = 0; i < DCTSIZE2; i++) {
- if (qtbl->quantval[i] > 255)
- prec = 1;
- }
-
- if (! qtbl->sent_table) {
- emit_marker(cinfo, M_DQT);
-
- emit_2bytes(cinfo, prec ? DCTSIZE2*2 + 1 + 2 : DCTSIZE2 + 1 + 2);
-
- emit_byte(cinfo, index + (prec<<4));
-
- for (i = 0; i < DCTSIZE2; i++) {
- /* The table entries must be emitted in zigzag order. */
- unsigned int qval = qtbl->quantval[jpeg_natural_order[i]];
- if (prec)
- emit_byte(cinfo, (int) (qval >> 8));
- emit_byte(cinfo, (int) (qval & 0xFF));
- }
-
- qtbl->sent_table = TRUE;
- }
-
- return prec;
-}
-
-
-LOCAL(void)
-emit_dht (j_compress_ptr cinfo, int index, boolean is_ac)
-/* Emit a DHT marker */
-{
- JHUFF_TBL * htbl;
- int length, i;
-
- if (is_ac) {
- htbl = cinfo->ac_huff_tbl_ptrs[index];
- index += 0x10; /* output index has AC bit set */
- } else {
- htbl = cinfo->dc_huff_tbl_ptrs[index];
- }
-
- if (htbl == NULL)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index);
-
- if (! htbl->sent_table) {
- emit_marker(cinfo, M_DHT);
-
- length = 0;
- for (i = 1; i <= 16; i++)
- length += htbl->bits[i];
-
- emit_2bytes(cinfo, length + 2 + 1 + 16);
- emit_byte(cinfo, index);
-
- for (i = 1; i <= 16; i++)
- emit_byte(cinfo, htbl->bits[i]);
-
- for (i = 0; i < length; i++)
- emit_byte(cinfo, htbl->huffval[i]);
-
- htbl->sent_table = TRUE;
- }
-}
-
-
-LOCAL(void)
-emit_dac (j_compress_ptr cinfo)
-/* Emit a DAC marker */
-/* Since the useful info is so small, we want to emit all the tables in */
-/* one DAC marker. Therefore this routine does its own scan of the table. */
-{
-#ifdef C_ARITH_CODING_SUPPORTED
- char dc_in_use[NUM_ARITH_TBLS];
- char ac_in_use[NUM_ARITH_TBLS];
- int length, i;
- jpeg_component_info *compptr;
-
- for (i = 0; i < NUM_ARITH_TBLS; i++)
- dc_in_use[i] = ac_in_use[i] = 0;
-
- for (i = 0; i < cinfo->comps_in_scan; i++) {
- compptr = cinfo->cur_comp_info[i];
- dc_in_use[compptr->dc_tbl_no] = 1;
- ac_in_use[compptr->ac_tbl_no] = 1;
- }
-
- length = 0;
- for (i = 0; i < NUM_ARITH_TBLS; i++)
- length += dc_in_use[i] + ac_in_use[i];
-
- emit_marker(cinfo, M_DAC);
-
- emit_2bytes(cinfo, length*2 + 2);
-
- for (i = 0; i < NUM_ARITH_TBLS; i++) {
- if (dc_in_use[i]) {
- emit_byte(cinfo, i);
- emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4));
- }
- if (ac_in_use[i]) {
- emit_byte(cinfo, i + 0x10);
- emit_byte(cinfo, cinfo->arith_ac_K[i]);
- }
- }
-#endif /* C_ARITH_CODING_SUPPORTED */
-}
-
-
-LOCAL(void)
-emit_dri (j_compress_ptr cinfo)
-/* Emit a DRI marker */
-{
- emit_marker(cinfo, M_DRI);
-
- emit_2bytes(cinfo, 4); /* fixed length */
-
- emit_2bytes(cinfo, (int) cinfo->restart_interval);
-}
-
-
-LOCAL(void)
-emit_sof (j_compress_ptr cinfo, JPEG_MARKER code)
-/* Emit a SOF marker */
-{
- int ci;
- jpeg_component_info *compptr;
-
- emit_marker(cinfo, code);
-
- emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */
-
- /* Make sure image isn't bigger than SOF field can handle */
- if ((long) cinfo->image_height > 65535L ||
- (long) cinfo->image_width > 65535L)
- ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535);
-
- emit_byte(cinfo, cinfo->data_precision);
- emit_2bytes(cinfo, (int) cinfo->image_height);
- emit_2bytes(cinfo, (int) cinfo->image_width);
-
- emit_byte(cinfo, cinfo->num_components);
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- emit_byte(cinfo, compptr->component_id);
- emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor);
- emit_byte(cinfo, compptr->quant_tbl_no);
- }
-}
-
-
-LOCAL(void)
-emit_sos (j_compress_ptr cinfo)
-/* Emit a SOS marker */
-{
- int i, td, ta;
- jpeg_component_info *compptr;
-
- emit_marker(cinfo, M_SOS);
-
- emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */
-
- emit_byte(cinfo, cinfo->comps_in_scan);
-
- for (i = 0; i < cinfo->comps_in_scan; i++) {
- compptr = cinfo->cur_comp_info[i];
- emit_byte(cinfo, compptr->component_id);
- td = compptr->dc_tbl_no;
- ta = compptr->ac_tbl_no;
- if (cinfo->progressive_mode) {
- /* Progressive mode: only DC or only AC tables are used in one scan;
- * furthermore, Huffman coding of DC refinement uses no table at all.
- * We emit 0 for unused field(s); this is recommended by the P&M text
- * but does not seem to be specified in the standard.
- */
- if (cinfo->Ss == 0) {
- ta = 0; /* DC scan */
- if (cinfo->Ah != 0 && !cinfo->arith_code)
- td = 0; /* no DC table either */
- } else {
- td = 0; /* AC scan */
- }
- }
- emit_byte(cinfo, (td << 4) + ta);
- }
-
- emit_byte(cinfo, cinfo->Ss);
- emit_byte(cinfo, cinfo->Se);
- emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al);
-}
-
-
-LOCAL(void)
-emit_jfif_app0 (j_compress_ptr cinfo)
-/* Emit a JFIF-compliant APP0 marker */
-{
- /*
- * Length of APP0 block (2 bytes)
- * Block ID (4 bytes - ASCII "JFIF")
- * Zero byte (1 byte to terminate the ID string)
- * Version Major, Minor (2 bytes - major first)
- * Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm)
- * Xdpu (2 bytes - dots per unit horizontal)
- * Ydpu (2 bytes - dots per unit vertical)
- * Thumbnail X size (1 byte)
- * Thumbnail Y size (1 byte)
- */
-
- emit_marker(cinfo, M_APP0);
-
- emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */
-
- emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */
- emit_byte(cinfo, 0x46);
- emit_byte(cinfo, 0x49);
- emit_byte(cinfo, 0x46);
- emit_byte(cinfo, 0);
- emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */
- emit_byte(cinfo, cinfo->JFIF_minor_version);
- emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */
- emit_2bytes(cinfo, (int) cinfo->X_density);
- emit_2bytes(cinfo, (int) cinfo->Y_density);
- emit_byte(cinfo, 0); /* No thumbnail image */
- emit_byte(cinfo, 0);
-}
-
-
-LOCAL(void)
-emit_adobe_app14 (j_compress_ptr cinfo)
-/* Emit an Adobe APP14 marker */
-{
- /*
- * Length of APP14 block (2 bytes)
- * Block ID (5 bytes - ASCII "Adobe")
- * Version Number (2 bytes - currently 100)
- * Flags0 (2 bytes - currently 0)
- * Flags1 (2 bytes - currently 0)
- * Color transform (1 byte)
- *
- * Although Adobe TN 5116 mentions Version = 101, all the Adobe files
- * now in circulation seem to use Version = 100, so that's what we write.
- *
- * We write the color transform byte as 1 if the JPEG color space is
- * YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with
- * whether the encoder performed a transformation, which is pretty useless.
- */
-
- emit_marker(cinfo, M_APP14);
-
- emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */
-
- emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */
- emit_byte(cinfo, 0x64);
- emit_byte(cinfo, 0x6F);
- emit_byte(cinfo, 0x62);
- emit_byte(cinfo, 0x65);
- emit_2bytes(cinfo, 100); /* Version */
- emit_2bytes(cinfo, 0); /* Flags0 */
- emit_2bytes(cinfo, 0); /* Flags1 */
- switch (cinfo->jpeg_color_space) {
- case JCS_YCbCr:
- emit_byte(cinfo, 1); /* Color transform = 1 */
- break;
- case JCS_YCCK:
- emit_byte(cinfo, 2); /* Color transform = 2 */
- break;
- default:
- emit_byte(cinfo, 0); /* Color transform = 0 */
- break;
- }
-}
-
-
-/*
- * These routines allow writing an arbitrary marker with parameters.
- * The only intended use is to emit COM or APPn markers after calling
- * write_file_header and before calling write_frame_header.
- * Other uses are not guaranteed to produce desirable results.
- * Counting the parameter bytes properly is the caller's responsibility.
- */
-
-METHODDEF(void)
-write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
-/* Emit an arbitrary marker header */
-{
- if (datalen > (unsigned int) 65533) /* safety check */
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- emit_marker(cinfo, (JPEG_MARKER) marker);
-
- emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */
-}
-
-METHODDEF(void)
-write_marker_byte (j_compress_ptr cinfo, int val)
-/* Emit one byte of marker parameters following write_marker_header */
-{
- emit_byte(cinfo, val);
-}
-
-
-/*
- * Write datastream header.
- * This consists of an SOI and optional APPn markers.
- * We recommend use of the JFIF marker, but not the Adobe marker,
- * when using YCbCr or grayscale data. The JFIF marker should NOT
- * be used for any other JPEG colorspace. The Adobe marker is helpful
- * to distinguish RGB, CMYK, and YCCK colorspaces.
- * Note that an application can write additional header markers after
- * jpeg_start_compress returns.
- */
-
-METHODDEF(void)
-write_file_header (j_compress_ptr cinfo)
-{
- my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
-
- emit_marker(cinfo, M_SOI); /* first the SOI */
-
- /* SOI is defined to reset restart interval to 0 */
- marker->last_restart_interval = 0;
-
- if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */
- emit_jfif_app0(cinfo);
- if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */
- emit_adobe_app14(cinfo);
-}
-
-
-/*
- * Write frame header.
- * This consists of DQT and SOFn markers.
- * Note that we do not emit the SOF until we have emitted the DQT(s).
- * This avoids compatibility problems with incorrect implementations that
- * try to error-check the quant table numbers as soon as they see the SOF.
- */
-
-METHODDEF(void)
-write_frame_header (j_compress_ptr cinfo)
-{
- int ci, prec;
- boolean is_baseline;
- jpeg_component_info *compptr;
-
- /* Emit DQT for each quantization table.
- * Note that emit_dqt() suppresses any duplicate tables.
- */
- prec = 0;
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- prec += emit_dqt(cinfo, compptr->quant_tbl_no);
- }
- /* now prec is nonzero iff there are any 16-bit quant tables. */
-
- /* Check for a non-baseline specification.
- * Note we assume that Huffman table numbers won't be changed later.
- */
- if (cinfo->arith_code || cinfo->progressive_mode ||
- cinfo->data_precision != 8) {
- is_baseline = FALSE;
- } else {
- is_baseline = TRUE;
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1)
- is_baseline = FALSE;
- }
- if (prec && is_baseline) {
- is_baseline = FALSE;
- /* If it's baseline except for quantizer size, warn the user */
- TRACEMS(cinfo, 0, JTRC_16BIT_TABLES);
- }
- }
-
- /* Emit the proper SOF marker */
- if (cinfo->arith_code) {
- emit_sof(cinfo, M_SOF9); /* SOF code for arithmetic coding */
- } else {
- if (cinfo->progressive_mode)
- emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */
- else if (is_baseline)
- emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */
- else
- emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */
- }
-}
-
-
-/*
- * Write scan header.
- * This consists of DHT or DAC markers, optional DRI, and SOS.
- * Compressed data will be written following the SOS.
- */
-
-METHODDEF(void)
-write_scan_header (j_compress_ptr cinfo)
-{
- my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
- int i;
- jpeg_component_info *compptr;
-
- if (cinfo->arith_code) {
- /* Emit arith conditioning info. We may have some duplication
- * if the file has multiple scans, but it's so small it's hardly
- * worth worrying about.
- */
- emit_dac(cinfo);
- } else {
- /* Emit Huffman tables.
- * Note that emit_dht() suppresses any duplicate tables.
- */
- for (i = 0; i < cinfo->comps_in_scan; i++) {
- compptr = cinfo->cur_comp_info[i];
- if (cinfo->progressive_mode) {
- /* Progressive mode: only DC or only AC tables are used in one scan */
- if (cinfo->Ss == 0) {
- if (cinfo->Ah == 0) /* DC needs no table for refinement scan */
- emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
- } else {
- emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
- }
- } else {
- /* Sequential mode: need both DC and AC tables */
- emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
- emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
- }
- }
- }
-
- /* Emit DRI if required --- note that DRI value could change for each scan.
- * We avoid wasting space with unnecessary DRIs, however.
- */
- if (cinfo->restart_interval != marker->last_restart_interval) {
- emit_dri(cinfo);
- marker->last_restart_interval = cinfo->restart_interval;
- }
-
- emit_sos(cinfo);
-}
-
-
-/*
- * Write datastream trailer.
- */
-
-METHODDEF(void)
-write_file_trailer (j_compress_ptr cinfo)
-{
- emit_marker(cinfo, M_EOI);
-}
-
-
-/*
- * Write an abbreviated table-specification datastream.
- * This consists of SOI, DQT and DHT tables, and EOI.
- * Any table that is defined and not marked sent_table = TRUE will be
- * emitted. Note that all tables will be marked sent_table = TRUE at exit.
- */
-
-METHODDEF(void)
-write_tables_only (j_compress_ptr cinfo)
-{
- int i;
-
- emit_marker(cinfo, M_SOI);
-
- for (i = 0; i < NUM_QUANT_TBLS; i++) {
- if (cinfo->quant_tbl_ptrs[i] != NULL)
- (void) emit_dqt(cinfo, i);
- }
-
- if (! cinfo->arith_code) {
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- if (cinfo->dc_huff_tbl_ptrs[i] != NULL)
- emit_dht(cinfo, i, FALSE);
- if (cinfo->ac_huff_tbl_ptrs[i] != NULL)
- emit_dht(cinfo, i, TRUE);
- }
- }
-
- emit_marker(cinfo, M_EOI);
-}
-
-
-/*
- * Initialize the marker writer module.
- */
-
-GLOBAL(void)
-jinit_marker_writer (j_compress_ptr cinfo)
-{
- my_marker_ptr marker;
-
- /* Create the subobject */
- marker = (my_marker_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_marker_writer));
- cinfo->marker = (struct jpeg_marker_writer *) marker;
- /* Initialize method pointers */
- marker->pub.write_file_header = write_file_header;
- marker->pub.write_frame_header = write_frame_header;
- marker->pub.write_scan_header = write_scan_header;
- marker->pub.write_file_trailer = write_file_trailer;
- marker->pub.write_tables_only = write_tables_only;
- marker->pub.write_marker_header = write_marker_header;
- marker->pub.write_marker_byte = write_marker_byte;
- /* Initialize private state */
- marker->last_restart_interval = 0;
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jcmaster.c b/core/src/fxcodec/libjpeg/fpdfapi_jcmaster.c
deleted file mode 100644
index 45322a53b3..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jcmaster.c
+++ /dev/null
@@ -1,593 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jcmaster.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains master control logic for the JPEG compressor.
- * These routines are concerned with parameter validation, initial setup,
- * and inter-pass control (determining the number of passes and the work
- * to be done in each pass).
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private state */
-
-typedef enum {
- main_pass, /* input data, also do first output step */
- huff_opt_pass, /* Huffman code optimization pass */
- output_pass /* data output pass */
-} c_pass_type;
-
-typedef struct {
- struct jpeg_comp_master pub; /* public fields */
-
- c_pass_type pass_type; /* the type of the current pass */
-
- int pass_number; /* # of passes completed */
- int total_passes; /* total # of passes needed */
-
- int scan_number; /* current index in scan_info[] */
-} my_comp_master;
-
-typedef my_comp_master * my_master_ptr;
-
-
-/*
- * Support routines that do various essential calculations.
- */
-
-LOCAL(void)
-initial_setup (j_compress_ptr cinfo)
-/* Do computations that are needed before master selection phase */
-{
- int ci;
- jpeg_component_info *compptr;
- long samplesperrow;
- JDIMENSION jd_samplesperrow;
-
- /* Sanity check on image dimensions */
- if (cinfo->image_height <= 0 || cinfo->image_width <= 0
- || cinfo->num_components <= 0 || cinfo->input_components <= 0)
- ERREXIT(cinfo, JERR_EMPTY_IMAGE);
-
- /* Make sure image isn't bigger than I can handle */
- if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
- (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
- ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
-
- /* Width of an input scanline must be representable as JDIMENSION. */
- samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
- jd_samplesperrow = (JDIMENSION) samplesperrow;
- if ((long) jd_samplesperrow != samplesperrow)
- ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
-
- /* For now, precision must match compiled-in value... */
- if (cinfo->data_precision != BITS_IN_JSAMPLE)
- ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
-
- /* Check that number of components won't exceed internal array sizes */
- if (cinfo->num_components > MAX_COMPONENTS)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
- MAX_COMPONENTS);
-
- /* Compute maximum sampling factors; check factor validity */
- cinfo->max_h_samp_factor = 1;
- cinfo->max_v_samp_factor = 1;
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
- compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
- ERREXIT(cinfo, JERR_BAD_SAMPLING);
- cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
- compptr->h_samp_factor);
- cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
- compptr->v_samp_factor);
- }
-
- /* Compute dimensions of components */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Fill in the correct component_index value; don't rely on application */
- compptr->component_index = ci;
- /* For compression, we never do DCT scaling. */
- compptr->DCT_scaled_size = DCTSIZE;
- /* Size in DCT blocks */
- compptr->width_in_blocks = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
- (long) (cinfo->max_h_samp_factor * DCTSIZE));
- compptr->height_in_blocks = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
- (long) (cinfo->max_v_samp_factor * DCTSIZE));
- /* Size in samples */
- compptr->downsampled_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
- (long) cinfo->max_h_samp_factor);
- compptr->downsampled_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
- (long) cinfo->max_v_samp_factor);
- /* Mark component needed (this flag isn't actually used for compression) */
- compptr->component_needed = TRUE;
- }
-
- /* Compute number of fully interleaved MCU rows (number of times that
- * main controller will call coefficient controller).
- */
- cinfo->total_iMCU_rows = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height,
- (long) (cinfo->max_v_samp_factor*DCTSIZE));
-}
-
-
-#ifdef C_MULTISCAN_FILES_SUPPORTED
-
-LOCAL(void)
-validate_script (j_compress_ptr cinfo)
-/* Verify that the scan script in cinfo->scan_info[] is valid; also
- * determine whether it uses progressive JPEG, and set cinfo->progressive_mode.
- */
-{
- const jpeg_scan_info * scanptr;
- int scanno, ncomps, ci, coefi, thisi;
- int Ss, Se, Ah, Al;
- boolean component_sent[MAX_COMPONENTS];
-#ifdef C_PROGRESSIVE_SUPPORTED
- int * last_bitpos_ptr;
- int last_bitpos[MAX_COMPONENTS][DCTSIZE2];
- /* -1 until that coefficient has been seen; then last Al for it */
-#endif
-
- if (cinfo->num_scans <= 0)
- ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0);
-
- /* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
- * for progressive JPEG, no scan can have this.
- */
- scanptr = cinfo->scan_info;
- if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) {
-#ifdef C_PROGRESSIVE_SUPPORTED
- cinfo->progressive_mode = TRUE;
- last_bitpos_ptr = & last_bitpos[0][0];
- for (ci = 0; ci < cinfo->num_components; ci++)
- for (coefi = 0; coefi < DCTSIZE2; coefi++)
- *last_bitpos_ptr++ = -1;
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else {
- cinfo->progressive_mode = FALSE;
- for (ci = 0; ci < cinfo->num_components; ci++)
- component_sent[ci] = FALSE;
- }
-
- for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) {
- /* Validate component indexes */
- ncomps = scanptr->comps_in_scan;
- if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN);
- for (ci = 0; ci < ncomps; ci++) {
- thisi = scanptr->component_index[ci];
- if (thisi < 0 || thisi >= cinfo->num_components)
- ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
- /* Components must appear in SOF order within each scan */
- if (ci > 0 && thisi <= scanptr->component_index[ci-1])
- ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
- }
- /* Validate progression parameters */
- Ss = scanptr->Ss;
- Se = scanptr->Se;
- Ah = scanptr->Ah;
- Al = scanptr->Al;
- if (cinfo->progressive_mode) {
-#ifdef C_PROGRESSIVE_SUPPORTED
- /* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that
- * seems wrong: the upper bound ought to depend on data precision.
- * Perhaps they really meant 0..N+1 for N-bit precision.
- * Here we allow 0..10 for 8-bit data; Al larger than 10 results in
- * out-of-range reconstructed DC values during the first DC scan,
- * which might cause problems for some decoders.
- */
-#if BITS_IN_JSAMPLE == 8
-#define MAX_AH_AL 10
-#else
-#define MAX_AH_AL 13
-#endif
- if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 ||
- Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL)
- ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
- if (Ss == 0) {
- if (Se != 0) /* DC and AC together not OK */
- ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
- } else {
- if (ncomps != 1) /* AC scans must be for only one component */
- ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
- }
- for (ci = 0; ci < ncomps; ci++) {
- last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0];
- if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */
- ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
- for (coefi = Ss; coefi <= Se; coefi++) {
- if (last_bitpos_ptr[coefi] < 0) {
- /* first scan of this coefficient */
- if (Ah != 0)
- ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
- } else {
- /* not first scan */
- if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1)
- ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
- }
- last_bitpos_ptr[coefi] = Al;
- }
- }
-#endif
- } else {
- /* For sequential JPEG, all progression parameters must be these: */
- if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0)
- ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
- /* Make sure components are not sent twice */
- for (ci = 0; ci < ncomps; ci++) {
- thisi = scanptr->component_index[ci];
- if (component_sent[thisi])
- ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
- component_sent[thisi] = TRUE;
- }
- }
- }
-
- /* Now verify that everything got sent. */
- if (cinfo->progressive_mode) {
-#ifdef C_PROGRESSIVE_SUPPORTED
- /* For progressive mode, we only check that at least some DC data
- * got sent for each component; the spec does not require that all bits
- * of all coefficients be transmitted. Would it be wiser to enforce
- * transmission of all coefficient bits??
- */
- for (ci = 0; ci < cinfo->num_components; ci++) {
- if (last_bitpos[ci][0] < 0)
- ERREXIT(cinfo, JERR_MISSING_DATA);
- }
-#endif
- } else {
- for (ci = 0; ci < cinfo->num_components; ci++) {
- if (! component_sent[ci])
- ERREXIT(cinfo, JERR_MISSING_DATA);
- }
- }
-}
-
-#endif /* C_MULTISCAN_FILES_SUPPORTED */
-
-
-LOCAL(void)
-select_scan_parameters (j_compress_ptr cinfo)
-/* Set up the scan parameters for the current scan */
-{
- int ci;
-
-#ifdef C_MULTISCAN_FILES_SUPPORTED
- if (cinfo->scan_info != NULL) {
- /* Prepare for current scan --- the script is already validated */
- my_master_ptr master = (my_master_ptr) cinfo->master;
- const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number;
-
- cinfo->comps_in_scan = scanptr->comps_in_scan;
- for (ci = 0; ci < scanptr->comps_in_scan; ci++) {
- cinfo->cur_comp_info[ci] =
- &cinfo->comp_info[scanptr->component_index[ci]];
- }
- cinfo->Ss = scanptr->Ss;
- cinfo->Se = scanptr->Se;
- cinfo->Ah = scanptr->Ah;
- cinfo->Al = scanptr->Al;
- }
- else
-#endif
- {
- /* Prepare for single sequential-JPEG scan containing all components */
- if (cinfo->num_components > MAX_COMPS_IN_SCAN)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
- MAX_COMPS_IN_SCAN);
- cinfo->comps_in_scan = cinfo->num_components;
- for (ci = 0; ci < cinfo->num_components; ci++) {
- cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
- }
- cinfo->Ss = 0;
- cinfo->Se = DCTSIZE2-1;
- cinfo->Ah = 0;
- cinfo->Al = 0;
- }
-}
-
-
-LOCAL(void)
-per_scan_setup (j_compress_ptr cinfo)
-/* Do computations that are needed before processing a JPEG scan */
-/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */
-{
- int ci, mcublks, tmp;
- jpeg_component_info *compptr;
-
- if (cinfo->comps_in_scan == 1) {
-
- /* Noninterleaved (single-component) scan */
- compptr = cinfo->cur_comp_info[0];
-
- /* Overall image size in MCUs */
- cinfo->MCUs_per_row = compptr->width_in_blocks;
- cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
-
- /* For noninterleaved scan, always one block per MCU */
- compptr->MCU_width = 1;
- compptr->MCU_height = 1;
- compptr->MCU_blocks = 1;
- compptr->MCU_sample_width = DCTSIZE;
- compptr->last_col_width = 1;
- /* For noninterleaved scans, it is convenient to define last_row_height
- * as the number of block rows present in the last iMCU row.
- */
- tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
- if (tmp == 0) tmp = compptr->v_samp_factor;
- compptr->last_row_height = tmp;
-
- /* Prepare array describing MCU composition */
- cinfo->blocks_in_MCU = 1;
- cinfo->MCU_membership[0] = 0;
-
- } else {
-
- /* Interleaved (multi-component) scan */
- if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
- MAX_COMPS_IN_SCAN);
-
- /* Overall image size in MCUs */
- cinfo->MCUs_per_row = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width,
- (long) (cinfo->max_h_samp_factor*DCTSIZE));
- cinfo->MCU_rows_in_scan = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height,
- (long) (cinfo->max_v_samp_factor*DCTSIZE));
-
- cinfo->blocks_in_MCU = 0;
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Sampling factors give # of blocks of component in each MCU */
- compptr->MCU_width = compptr->h_samp_factor;
- compptr->MCU_height = compptr->v_samp_factor;
- compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
- compptr->MCU_sample_width = compptr->MCU_width * DCTSIZE;
- /* Figure number of non-dummy blocks in last MCU column & row */
- tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
- if (tmp == 0) tmp = compptr->MCU_width;
- compptr->last_col_width = tmp;
- tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
- if (tmp == 0) tmp = compptr->MCU_height;
- compptr->last_row_height = tmp;
- /* Prepare array describing MCU composition */
- mcublks = compptr->MCU_blocks;
- if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU)
- ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
- while (mcublks-- > 0) {
- cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
- }
- }
-
- }
-
- /* Convert restart specified in rows to actual MCU count. */
- /* Note that count must fit in 16 bits, so we provide limiting. */
- if (cinfo->restart_in_rows > 0) {
- long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row;
- cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L);
- }
-}
-
-
-/*
- * Per-pass setup.
- * This is called at the beginning of each pass. We determine which modules
- * will be active during this pass and give them appropriate start_pass calls.
- * We also set is_last_pass to indicate whether any more passes will be
- * required.
- */
-
-METHODDEF(void)
-prepare_for_pass (j_compress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
-
- switch (master->pass_type) {
- case main_pass:
- /* Initial pass: will collect input data, and do either Huffman
- * optimization or data output for the first scan.
- */
- select_scan_parameters(cinfo);
- per_scan_setup(cinfo);
- if (! cinfo->raw_data_in) {
- (*cinfo->cconvert->start_pass) (cinfo);
- (*cinfo->downsample->start_pass) (cinfo);
- (*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU);
- }
- (*cinfo->fdct->start_pass) (cinfo);
- (*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding);
- (*cinfo->coef->start_pass) (cinfo,
- (master->total_passes > 1 ?
- JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
- (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
- if (cinfo->optimize_coding) {
- /* No immediate data output; postpone writing frame/scan headers */
- master->pub.call_pass_startup = FALSE;
- } else {
- /* Will write frame/scan headers at first jpeg_write_scanlines call */
- master->pub.call_pass_startup = TRUE;
- }
- break;
-#ifdef ENTROPY_OPT_SUPPORTED
- case huff_opt_pass:
- /* Do Huffman optimization for a scan after the first one. */
- select_scan_parameters(cinfo);
- per_scan_setup(cinfo);
- if (cinfo->Ss != 0 || cinfo->Ah == 0 || cinfo->arith_code) {
- (*cinfo->entropy->start_pass) (cinfo, TRUE);
- (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
- master->pub.call_pass_startup = FALSE;
- break;
- }
- /* Special case: Huffman DC refinement scans need no Huffman table
- * and therefore we can skip the optimization pass for them.
- */
- master->pass_type = output_pass;
- master->pass_number++;
- /*FALLTHROUGH*/
-#endif
- case output_pass:
- /* Do a data-output pass. */
- /* We need not repeat per-scan setup if prior optimization pass did it. */
- if (! cinfo->optimize_coding) {
- select_scan_parameters(cinfo);
- per_scan_setup(cinfo);
- }
- (*cinfo->entropy->start_pass) (cinfo, FALSE);
- (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
- /* We emit frame/scan headers now */
- if (master->scan_number == 0)
- (*cinfo->marker->write_frame_header) (cinfo);
- (*cinfo->marker->write_scan_header) (cinfo);
- master->pub.call_pass_startup = FALSE;
- break;
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- }
-
- master->pub.is_last_pass = (master->pass_number == master->total_passes-1);
-
- /* Set up progress monitor's pass info if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->completed_passes = master->pass_number;
- cinfo->progress->total_passes = master->total_passes;
- }
-}
-
-
-/*
- * Special start-of-pass hook.
- * This is called by jpeg_write_scanlines if call_pass_startup is TRUE.
- * In single-pass processing, we need this hook because we don't want to
- * write frame/scan headers during jpeg_start_compress; we want to let the
- * application write COM markers etc. between jpeg_start_compress and the
- * jpeg_write_scanlines loop.
- * In multi-pass processing, this routine is not used.
- */
-
-METHODDEF(void)
-pass_startup (j_compress_ptr cinfo)
-{
- cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */
-
- (*cinfo->marker->write_frame_header) (cinfo);
- (*cinfo->marker->write_scan_header) (cinfo);
-}
-
-
-/*
- * Finish up at end of pass.
- */
-
-METHODDEF(void)
-finish_pass_master (j_compress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
-
- /* The entropy coder always needs an end-of-pass call,
- * either to analyze statistics or to flush its output buffer.
- */
- (*cinfo->entropy->finish_pass) (cinfo);
-
- /* Update state for next pass */
- switch (master->pass_type) {
- case main_pass:
- /* next pass is either output of scan 0 (after optimization)
- * or output of scan 1 (if no optimization).
- */
- master->pass_type = output_pass;
- if (! cinfo->optimize_coding)
- master->scan_number++;
- break;
- case huff_opt_pass:
- /* next pass is always output of current scan */
- master->pass_type = output_pass;
- break;
- case output_pass:
- /* next pass is either optimization or output of next scan */
- if (cinfo->optimize_coding)
- master->pass_type = huff_opt_pass;
- master->scan_number++;
- break;
- }
-
- master->pass_number++;
-}
-
-
-/*
- * Initialize master compression control.
- */
-
-GLOBAL(void)
-jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
-{
- my_master_ptr master;
-
- master = (my_master_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_comp_master));
- cinfo->master = (struct jpeg_comp_master *) master;
- master->pub.prepare_for_pass = prepare_for_pass;
- master->pub.pass_startup = pass_startup;
- master->pub.finish_pass = finish_pass_master;
- master->pub.is_last_pass = FALSE;
-
- /* Validate parameters, determine derived values */
- initial_setup(cinfo);
-
- if (cinfo->scan_info != NULL) {
-#ifdef C_MULTISCAN_FILES_SUPPORTED
- validate_script(cinfo);
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else {
- cinfo->progressive_mode = FALSE;
- cinfo->num_scans = 1;
- }
-
- if (cinfo->progressive_mode) /* TEMPORARY HACK ??? */
- cinfo->optimize_coding = TRUE; /* assume default tables no good for progressive mode */
-
- /* Initialize my private state */
- if (transcode_only) {
- /* no main pass in transcoding */
- if (cinfo->optimize_coding)
- master->pass_type = huff_opt_pass;
- else
- master->pass_type = output_pass;
- } else {
- /* for normal compression, first pass is always this type: */
- master->pass_type = main_pass;
- }
- master->scan_number = 0;
- master->pass_number = 0;
- if (cinfo->optimize_coding)
- master->total_passes = cinfo->num_scans * 2;
- else
- master->total_passes = cinfo->num_scans;
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jcomapi.c b/core/src/fxcodec/libjpeg/fpdfapi_jcomapi.c
deleted file mode 100644
index aad37d8879..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jcomapi.c
+++ /dev/null
@@ -1,109 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jcomapi.c
- *
- * Copyright (C) 1994-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains application interface routines that are used for both
- * compression and decompression.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * Abort processing of a JPEG compression or decompression operation,
- * but don't destroy the object itself.
- *
- * For this, we merely clean up all the nonpermanent memory pools.
- * Note that temp files (virtual arrays) are not allowed to belong to
- * the permanent pool, so we will be able to close all temp files here.
- * Closing a data source or destination, if necessary, is the application's
- * responsibility.
- */
-
-GLOBAL(void)
-jpeg_abort (j_common_ptr cinfo)
-{
- int pool;
-
- /* Do nothing if called on a not-initialized or destroyed JPEG object. */
- if (cinfo->mem == NULL)
- return;
-
- /* Releasing pools in reverse order might help avoid fragmentation
- * with some (brain-damaged) malloc libraries.
- */
- for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
- (*cinfo->mem->free_pool) (cinfo, pool);
- }
-
- /* Reset overall state for possible reuse of object */
- if (cinfo->is_decompressor) {
- cinfo->global_state = DSTATE_START;
- /* Try to keep application from accessing now-deleted marker list.
- * A bit kludgy to do it here, but this is the most central place.
- */
- ((j_decompress_ptr) cinfo)->marker_list = NULL;
- } else {
- cinfo->global_state = CSTATE_START;
- }
-}
-
-
-/*
- * Destruction of a JPEG object.
- *
- * Everything gets deallocated except the master jpeg_compress_struct itself
- * and the error manager struct. Both of these are supplied by the application
- * and must be freed, if necessary, by the application. (Often they are on
- * the stack and so don't need to be freed anyway.)
- * Closing a data source or destination, if necessary, is the application's
- * responsibility.
- */
-
-GLOBAL(void)
-jpeg_destroy (j_common_ptr cinfo)
-{
- /* We need only tell the memory manager to release everything. */
- /* NB: mem pointer is NULL if memory mgr failed to initialize. */
- if (cinfo->mem != NULL)
- (*cinfo->mem->self_destruct) (cinfo);
- cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
- cinfo->global_state = 0; /* mark it destroyed */
-}
-
-
-/*
- * Convenience routines for allocating quantization and Huffman tables.
- * (Would jutils.c be a more reasonable place to put these?)
- */
-
-GLOBAL(JQUANT_TBL *)
-jpeg_alloc_quant_table (j_common_ptr cinfo)
-{
- JQUANT_TBL *tbl;
-
- tbl = (JQUANT_TBL *)
- (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
- tbl->sent_table = FALSE; /* make sure this is false in any new table */
- return tbl;
-}
-
-
-GLOBAL(JHUFF_TBL *)
-jpeg_alloc_huff_table (j_common_ptr cinfo)
-{
- JHUFF_TBL *tbl;
-
- tbl = (JHUFF_TBL *)
- (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
- tbl->sent_table = FALSE; /* make sure this is false in any new table */
- return tbl;
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jcparam.c b/core/src/fxcodec/libjpeg/fpdfapi_jcparam.c
deleted file mode 100644
index f3ea109878..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jcparam.c
+++ /dev/null
@@ -1,613 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jcparam.c
- *
- * Copyright (C) 1991-1998, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains optional default-setting code for the JPEG compressor.
- * Applications do not have to use this file, but those that don't use it
- * must know a lot more about the innards of the JPEG code.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * Quantization table setup routines
- */
-
-GLOBAL(void)
-jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
- const unsigned int *basic_table,
- int scale_factor, boolean force_baseline)
-/* Define a quantization table equal to the basic_table times
- * a scale factor (given as a percentage).
- * If force_baseline is TRUE, the computed quantization table entries
- * are limited to 1..255 for JPEG baseline compatibility.
- */
-{
- JQUANT_TBL ** qtblptr;
- int i;
- long temp;
-
- /* Safety check to ensure start_compress not called yet. */
- if (cinfo->global_state != CSTATE_START)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
- ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
-
- qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
-
- if (*qtblptr == NULL)
- *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
-
- for (i = 0; i < DCTSIZE2; i++) {
- temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
- /* limit the values to the valid range */
- if (temp <= 0L) temp = 1L;
- if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
- if (force_baseline && temp > 255L)
- temp = 255L; /* limit to baseline range if requested */
- (*qtblptr)->quantval[i] = (UINT16) temp;
- }
-
- /* Initialize sent_table FALSE so table will be written to JPEG file. */
- (*qtblptr)->sent_table = FALSE;
-}
-
-
-GLOBAL(void)
-jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
- boolean force_baseline)
-/* Set or change the 'quality' (quantization) setting, using default tables
- * and a straight percentage-scaling quality scale. In most cases it's better
- * to use jpeg_set_quality (below); this entry point is provided for
- * applications that insist on a linear percentage scaling.
- */
-{
- /* These are the sample quantization tables given in JPEG spec section K.1.
- * The spec says that the values given produce "good" quality, and
- * when divided by 2, "very good" quality.
- */
- static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
- 16, 11, 10, 16, 24, 40, 51, 61,
- 12, 12, 14, 19, 26, 58, 60, 55,
- 14, 13, 16, 24, 40, 57, 69, 56,
- 14, 17, 22, 29, 51, 87, 80, 62,
- 18, 22, 37, 56, 68, 109, 103, 77,
- 24, 35, 55, 64, 81, 104, 113, 92,
- 49, 64, 78, 87, 103, 121, 120, 101,
- 72, 92, 95, 98, 112, 100, 103, 99
- };
- static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
- 17, 18, 24, 47, 99, 99, 99, 99,
- 18, 21, 26, 66, 99, 99, 99, 99,
- 24, 26, 56, 99, 99, 99, 99, 99,
- 47, 66, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99,
- 99, 99, 99, 99, 99, 99, 99, 99
- };
-
- /* Set up two quantization tables using the specified scaling */
- jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
- scale_factor, force_baseline);
- jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
- scale_factor, force_baseline);
-}
-
-
-GLOBAL(int)
-jpeg_quality_scaling (int quality)
-/* Convert a user-specified quality rating to a percentage scaling factor
- * for an underlying quantization table, using our recommended scaling curve.
- * The input 'quality' factor should be 0 (terrible) to 100 (very good).
- */
-{
- /* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
- if (quality <= 0) quality = 1;
- if (quality > 100) quality = 100;
-
- /* The basic table is used as-is (scaling 100) for a quality of 50.
- * Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
- * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
- * to make all the table entries 1 (hence, minimum quantization loss).
- * Qualities 1..50 are converted to scaling percentage 5000/Q.
- */
- if (quality < 50)
- quality = 5000 / quality;
- else
- quality = 200 - quality*2;
-
- return quality;
-}
-
-
-GLOBAL(void)
-jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
-/* Set or change the 'quality' (quantization) setting, using default tables.
- * This is the standard quality-adjusting entry point for typical user
- * interfaces; only those who want detailed control over quantization tables
- * would use the preceding three routines directly.
- */
-{
- /* Convert user 0-100 rating to percentage scaling */
- quality = jpeg_quality_scaling(quality);
-
- /* Set up standard quality tables */
- jpeg_set_linear_quality(cinfo, quality, force_baseline);
-}
-
-
-/*
- * Huffman table setup routines
- */
-
-LOCAL(void)
-add_huff_table (j_compress_ptr cinfo,
- JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
-/* Define a Huffman table */
-{
- int nsymbols, len;
-
- if (*htblptr == NULL)
- *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
-
- /* Copy the number-of-symbols-of-each-code-length counts */
- MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
-
- /* Validate the counts. We do this here mainly so we can copy the right
- * number of symbols from the val[] array, without risking marching off
- * the end of memory. jchuff.c will do a more thorough test later.
- */
- nsymbols = 0;
- for (len = 1; len <= 16; len++)
- nsymbols += bits[len];
- if (nsymbols < 1 || nsymbols > 256)
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
-
- MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
-
- /* Initialize sent_table FALSE so table will be written to JPEG file. */
- (*htblptr)->sent_table = FALSE;
-}
-
-
-LOCAL(void)
-std_huff_tables (j_compress_ptr cinfo)
-/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
-/* IMPORTANT: these are only valid for 8-bit data precision! */
-{
- static const UINT8 bits_dc_luminance[17] =
- { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
- static const UINT8 val_dc_luminance[] =
- { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
-
- static const UINT8 bits_dc_chrominance[17] =
- { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
- static const UINT8 val_dc_chrominance[] =
- { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
-
- static const UINT8 bits_ac_luminance[17] =
- { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
- static const UINT8 val_ac_luminance[] =
- { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
- 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
- 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
- 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
- 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
- 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
- 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
- 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
- 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
- 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
- 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
- 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
- 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
- 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
- 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
- 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
- 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
- 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
- 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
- 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
- 0xf9, 0xfa };
-
- static const UINT8 bits_ac_chrominance[17] =
- { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
- static const UINT8 val_ac_chrominance[] =
- { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
- 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
- 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
- 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
- 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
- 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
- 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
- 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
- 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
- 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
- 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
- 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
- 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
- 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
- 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
- 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
- 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
- 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
- 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
- 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
- 0xf9, 0xfa };
-
- add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
- bits_dc_luminance, val_dc_luminance);
- add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
- bits_ac_luminance, val_ac_luminance);
- add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
- bits_dc_chrominance, val_dc_chrominance);
- add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
- bits_ac_chrominance, val_ac_chrominance);
-}
-
-
-/*
- * Default parameter setup for compression.
- *
- * Applications that don't choose to use this routine must do their
- * own setup of all these parameters. Alternately, you can call this
- * to establish defaults and then alter parameters selectively. This
- * is the recommended approach since, if we add any new parameters,
- * your code will still work (they'll be set to reasonable defaults).
- */
-
-GLOBAL(void)
-jpeg_set_defaults (j_compress_ptr cinfo)
-{
- int i;
-
- /* Safety check to ensure start_compress not called yet. */
- if (cinfo->global_state != CSTATE_START)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- /* Allocate comp_info array large enough for maximum component count.
- * Array is made permanent in case application wants to compress
- * multiple images at same param settings.
- */
- if (cinfo->comp_info == NULL)
- cinfo->comp_info = (jpeg_component_info *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- MAX_COMPONENTS * SIZEOF(jpeg_component_info));
-
- /* Initialize everything not dependent on the color space */
-
- cinfo->data_precision = BITS_IN_JSAMPLE;
- /* Set up two quantization tables using default quality of 75 */
- jpeg_set_quality(cinfo, 75, TRUE);
- /* Set up two Huffman tables */
- std_huff_tables(cinfo);
-
- /* Initialize default arithmetic coding conditioning */
- for (i = 0; i < NUM_ARITH_TBLS; i++) {
- cinfo->arith_dc_L[i] = 0;
- cinfo->arith_dc_U[i] = 1;
- cinfo->arith_ac_K[i] = 5;
- }
-
- /* Default is no multiple-scan output */
- cinfo->scan_info = NULL;
- cinfo->num_scans = 0;
-
- /* Expect normal source image, not raw downsampled data */
- cinfo->raw_data_in = FALSE;
-
- /* Use Huffman coding, not arithmetic coding, by default */
- cinfo->arith_code = FALSE;
-
- /* By default, don't do extra passes to optimize entropy coding */
- cinfo->optimize_coding = FALSE;
- /* The standard Huffman tables are only valid for 8-bit data precision.
- * If the precision is higher, force optimization on so that usable
- * tables will be computed. This test can be removed if default tables
- * are supplied that are valid for the desired precision.
- */
- if (cinfo->data_precision > 8)
- cinfo->optimize_coding = TRUE;
-
- /* By default, use the simpler non-cosited sampling alignment */
- cinfo->CCIR601_sampling = FALSE;
-
- /* No input smoothing */
- cinfo->smoothing_factor = 0;
-
- /* DCT algorithm preference */
- cinfo->dct_method = JDCT_DEFAULT;
-
- /* No restart markers */
- cinfo->restart_interval = 0;
- cinfo->restart_in_rows = 0;
-
- /* Fill in default JFIF marker parameters. Note that whether the marker
- * will actually be written is determined by jpeg_set_colorspace.
- *
- * By default, the library emits JFIF version code 1.01.
- * An application that wants to emit JFIF 1.02 extension markers should set
- * JFIF_minor_version to 2. We could probably get away with just defaulting
- * to 1.02, but there may still be some decoders in use that will complain
- * about that; saying 1.01 should minimize compatibility problems.
- */
- cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
- cinfo->JFIF_minor_version = 1;
- cinfo->density_unit = 0; /* Pixel size is unknown by default */
- cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
- cinfo->Y_density = 1;
-
- /* Choose JPEG colorspace based on input space, set defaults accordingly */
-
- jpeg_default_colorspace(cinfo);
-}
-
-
-/*
- * Select an appropriate JPEG colorspace for in_color_space.
- */
-
-GLOBAL(void)
-jpeg_default_colorspace (j_compress_ptr cinfo)
-{
- switch (cinfo->in_color_space) {
- case JCS_GRAYSCALE:
- jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
- break;
- case JCS_RGB:
- jpeg_set_colorspace(cinfo, JCS_YCbCr);
- break;
- case JCS_YCbCr:
- jpeg_set_colorspace(cinfo, JCS_YCbCr);
- break;
- case JCS_CMYK:
- jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
- break;
- case JCS_YCCK:
- jpeg_set_colorspace(cinfo, JCS_YCCK);
- break;
- case JCS_UNKNOWN:
- jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
- break;
- default:
- ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
- }
-}
-
-
-/*
- * Set the JPEG colorspace, and choose colorspace-dependent default values.
- */
-
-GLOBAL(void)
-jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
-{
- jpeg_component_info * compptr;
- int ci;
-
-#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
- (compptr = &cinfo->comp_info[index], \
- compptr->component_id = (id), \
- compptr->h_samp_factor = (hsamp), \
- compptr->v_samp_factor = (vsamp), \
- compptr->quant_tbl_no = (quant), \
- compptr->dc_tbl_no = (dctbl), \
- compptr->ac_tbl_no = (actbl) )
-
- /* Safety check to ensure start_compress not called yet. */
- if (cinfo->global_state != CSTATE_START)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
- * tables 1 for chrominance components.
- */
-
- cinfo->jpeg_color_space = colorspace;
-
- cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
- cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
-
- switch (colorspace) {
- case JCS_GRAYSCALE:
- cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
- cinfo->num_components = 1;
- /* JFIF specifies component ID 1 */
- SET_COMP(0, 1, 1,1, 0, 0,0);
- break;
- case JCS_RGB:
- cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
- cinfo->num_components = 3;
- SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
- SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
- SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
- break;
- case JCS_YCbCr:
- cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
- cinfo->num_components = 3;
- /* JFIF specifies component IDs 1,2,3 */
- /* We default to 2x2 subsamples of chrominance */
- SET_COMP(0, 1, 2,2, 0, 0,0);
- SET_COMP(1, 2, 1,1, 1, 1,1);
- SET_COMP(2, 3, 1,1, 1, 1,1);
- break;
- case JCS_CMYK:
- cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
- cinfo->num_components = 4;
- SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
- SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
- SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
- SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
- break;
- case JCS_YCCK:
- cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
- cinfo->num_components = 4;
- SET_COMP(0, 1, 2,2, 0, 0,0);
- SET_COMP(1, 2, 1,1, 1, 1,1);
- SET_COMP(2, 3, 1,1, 1, 1,1);
- SET_COMP(3, 4, 2,2, 0, 0,0);
- break;
- case JCS_UNKNOWN:
- cinfo->num_components = cinfo->input_components;
- if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
- MAX_COMPONENTS);
- for (ci = 0; ci < cinfo->num_components; ci++) {
- SET_COMP(ci, ci, 1,1, 0, 0,0);
- }
- break;
- default:
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- }
-}
-
-
-#ifdef C_PROGRESSIVE_SUPPORTED
-
-LOCAL(jpeg_scan_info *)
-fill_a_scan (jpeg_scan_info * scanptr, int ci,
- int Ss, int Se, int Ah, int Al)
-/* Support routine: generate one scan for specified component */
-{
- scanptr->comps_in_scan = 1;
- scanptr->component_index[0] = ci;
- scanptr->Ss = Ss;
- scanptr->Se = Se;
- scanptr->Ah = Ah;
- scanptr->Al = Al;
- scanptr++;
- return scanptr;
-}
-
-LOCAL(jpeg_scan_info *)
-fill_scans (jpeg_scan_info * scanptr, int ncomps,
- int Ss, int Se, int Ah, int Al)
-/* Support routine: generate one scan for each component */
-{
- int ci;
-
- for (ci = 0; ci < ncomps; ci++) {
- scanptr->comps_in_scan = 1;
- scanptr->component_index[0] = ci;
- scanptr->Ss = Ss;
- scanptr->Se = Se;
- scanptr->Ah = Ah;
- scanptr->Al = Al;
- scanptr++;
- }
- return scanptr;
-}
-
-LOCAL(jpeg_scan_info *)
-fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
-/* Support routine: generate interleaved DC scan if possible, else N scans */
-{
- int ci;
-
- if (ncomps <= MAX_COMPS_IN_SCAN) {
- /* Single interleaved DC scan */
- scanptr->comps_in_scan = ncomps;
- for (ci = 0; ci < ncomps; ci++)
- scanptr->component_index[ci] = ci;
- scanptr->Ss = scanptr->Se = 0;
- scanptr->Ah = Ah;
- scanptr->Al = Al;
- scanptr++;
- } else {
- /* Noninterleaved DC scan for each component */
- scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
- }
- return scanptr;
-}
-
-
-/*
- * Create a recommended progressive-JPEG script.
- * cinfo->num_components and cinfo->jpeg_color_space must be correct.
- */
-
-GLOBAL(void)
-jpeg_simple_progression (j_compress_ptr cinfo)
-{
- int ncomps = cinfo->num_components;
- int nscans;
- jpeg_scan_info * scanptr;
-
- /* Safety check to ensure start_compress not called yet. */
- if (cinfo->global_state != CSTATE_START)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- /* Figure space needed for script. Calculation must match code below! */
- if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
- /* Custom script for YCbCr color images. */
- nscans = 10;
- } else {
- /* All-purpose script for other color spaces. */
- if (ncomps > MAX_COMPS_IN_SCAN)
- nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
- else
- nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
- }
-
- /* Allocate space for script.
- * We need to put it in the permanent pool in case the application performs
- * multiple compressions without changing the settings. To avoid a memory
- * leak if jpeg_simple_progression is called repeatedly for the same JPEG
- * object, we try to re-use previously allocated space, and we allocate
- * enough space to handle YCbCr even if initially asked for grayscale.
- */
- if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
- cinfo->script_space_size = MAX(nscans, 10);
- cinfo->script_space = (jpeg_scan_info *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- cinfo->script_space_size * SIZEOF(jpeg_scan_info));
- }
- scanptr = cinfo->script_space;
- cinfo->scan_info = scanptr;
- cinfo->num_scans = nscans;
-
- if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
- /* Custom script for YCbCr color images. */
- /* Initial DC scan */
- scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
- /* Initial AC scan: get some luma data out in a hurry */
- scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
- /* Chroma data is too small to be worth expending many scans on */
- scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
- scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
- /* Complete spectral selection for luma AC */
- scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
- /* Refine next bit of luma AC */
- scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
- /* Finish DC successive approximation */
- scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
- /* Finish AC successive approximation */
- scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
- scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
- /* Luma bottom bit comes last since it's usually largest scan */
- scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
- } else {
- /* All-purpose script for other color spaces. */
- /* Successive approximation first pass */
- scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
- scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
- scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
- /* Successive approximation second pass */
- scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
- /* Successive approximation final pass */
- scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
- scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
- }
-}
-
-#endif /* C_PROGRESSIVE_SUPPORTED */
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jcphuff.c b/core/src/fxcodec/libjpeg/fpdfapi_jcphuff.c
deleted file mode 100644
index 6d89b6b2c0..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jcphuff.c
+++ /dev/null
@@ -1,836 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jcphuff.c
- *
- * Copyright (C) 1995-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains Huffman entropy encoding routines for progressive JPEG.
- *
- * We do not support output suspension in this module, since the library
- * currently does not allow multiple-scan files to be written with output
- * suspension.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jchuff.h" /* Declarations shared with jchuff.c */
-
-#ifdef C_PROGRESSIVE_SUPPORTED
-
-/* Expanded entropy encoder object for progressive Huffman encoding. */
-
-typedef struct {
- struct jpeg_entropy_encoder pub; /* public fields */
-
- /* Mode flag: TRUE for optimization, FALSE for actual data output */
- boolean gather_statistics;
-
- /* Bit-level coding status.
- * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
- */
- JOCTET * next_output_byte; /* => next byte to write in buffer */
- size_t free_in_buffer; /* # of byte spaces remaining in buffer */
- INT32 put_buffer; /* current bit-accumulation buffer */
- int put_bits; /* # of bits now in it */
- j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
-
- /* Coding status for DC components */
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
-
- /* Coding status for AC components */
- int ac_tbl_no; /* the table number of the single component */
- unsigned int EOBRUN; /* run length of EOBs */
- unsigned int BE; /* # of buffered correction bits before MCU */
- char * bit_buffer; /* buffer for correction bits (1 per char) */
- /* packing correction bits tightly would save some space but cost time... */
-
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
- int next_restart_num; /* next restart number to write (0-7) */
-
- /* Pointers to derived tables (these workspaces have image lifespan).
- * Since any one scan codes only DC or only AC, we only need one set
- * of tables, not one for DC and one for AC.
- */
- c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
-
- /* Statistics tables for optimization; again, one set is enough */
- long * count_ptrs[NUM_HUFF_TBLS];
-} phuff_entropy_encoder;
-
-typedef phuff_entropy_encoder * phuff_entropy_ptr;
-
-/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
- * buffer can hold. Larger sizes may slightly improve compression, but
- * 1000 is already well into the realm of overkill.
- * The minimum safe size is 64 bits.
- */
-
-#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
-
-/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
- * We assume that int right shift is unsigned if INT32 right shift is,
- * which should be safe.
- */
-
-#ifdef RIGHT_SHIFT_IS_UNSIGNED
-#define ISHIFT_TEMPS int ishift_temp;
-#define IRIGHT_SHIFT(x,shft) \
- ((ishift_temp = (x)) < 0 ? \
- (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
- (ishift_temp >> (shft)))
-#else
-#define ISHIFT_TEMPS
-#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
-#endif
-
-/* Forward declarations */
-METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
- JBLOCKROW *MCU_data));
-METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
- JBLOCKROW *MCU_data));
-METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
- JBLOCKROW *MCU_data));
-METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
- JBLOCKROW *MCU_data));
-METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
-METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
-
-
-/*
- * Initialize for a Huffman-compressed scan using progressive JPEG.
- */
-
-METHODDEF(void)
-start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
-{
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
- boolean is_DC_band;
- int ci, tbl;
- jpeg_component_info * compptr;
-
- entropy->cinfo = cinfo;
- entropy->gather_statistics = gather_statistics;
-
- is_DC_band = (cinfo->Ss == 0);
-
- /* We assume jcmaster.c already validated the scan parameters. */
-
- /* Select execution routines */
- if (cinfo->Ah == 0) {
- if (is_DC_band)
- entropy->pub.encode_mcu = encode_mcu_DC_first;
- else
- entropy->pub.encode_mcu = encode_mcu_AC_first;
- } else {
- if (is_DC_band)
- entropy->pub.encode_mcu = encode_mcu_DC_refine;
- else {
- entropy->pub.encode_mcu = encode_mcu_AC_refine;
- /* AC refinement needs a correction bit buffer */
- if (entropy->bit_buffer == NULL)
- entropy->bit_buffer = (char *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- MAX_CORR_BITS * SIZEOF(char));
- }
- }
- if (gather_statistics)
- entropy->pub.finish_pass = finish_pass_gather_phuff;
- else
- entropy->pub.finish_pass = finish_pass_phuff;
-
- /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
- * for AC coefficients.
- */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Initialize DC predictions to 0 */
- entropy->last_dc_val[ci] = 0;
- /* Get table index */
- if (is_DC_band) {
- if (cinfo->Ah != 0) /* DC refinement needs no table */
- continue;
- tbl = compptr->dc_tbl_no;
- } else {
- entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
- }
- if (gather_statistics) {
- /* Check for invalid table index */
- /* (make_c_derived_tbl does this in the other path) */
- if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
- /* Allocate and zero the statistics tables */
- /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
- if (entropy->count_ptrs[tbl] == NULL)
- entropy->count_ptrs[tbl] = (long *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- 257 * SIZEOF(long));
- MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
- } else {
- /* Compute derived values for Huffman table */
- /* We may do this more than once for a table, but it's not expensive */
- jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
- & entropy->derived_tbls[tbl]);
- }
- }
-
- /* Initialize AC stuff */
- entropy->EOBRUN = 0;
- entropy->BE = 0;
-
- /* Initialize bit buffer to empty */
- entropy->put_buffer = 0;
- entropy->put_bits = 0;
-
- /* Initialize restart stuff */
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num = 0;
-}
-
-
-/* Outputting bytes to the file.
- * NB: these must be called only when actually outputting,
- * that is, entropy->gather_statistics == FALSE.
- */
-
-/* Emit a byte */
-#define emit_byte(entropy,val) \
- { *(entropy)->next_output_byte++ = (JOCTET) (val); \
- if (--(entropy)->free_in_buffer == 0) \
- dump_buffer(entropy); }
-
-
-LOCAL(void)
-dump_buffer (phuff_entropy_ptr entropy)
-/* Empty the output buffer; we do not support suspension in this module. */
-{
- struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
-
- if (! (*dest->empty_output_buffer) (entropy->cinfo))
- ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
- /* After a successful buffer dump, must reset buffer pointers */
- entropy->next_output_byte = dest->next_output_byte;
- entropy->free_in_buffer = dest->free_in_buffer;
-}
-
-
-/* Outputting bits to the file */
-
-/* Only the right 24 bits of put_buffer are used; the valid bits are
- * left-justified in this part. At most 16 bits can be passed to emit_bits
- * in one call, and we never retain more than 7 bits in put_buffer
- * between calls, so 24 bits are sufficient.
- */
-
-INLINE
-LOCAL(void)
-emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
-/* Emit some bits, unless we are in gather mode */
-{
- /* This routine is heavily used, so it's worth coding tightly. */
- register INT32 put_buffer = (INT32) code;
- register int put_bits = entropy->put_bits;
-
- /* if size is 0, caller used an invalid Huffman table entry */
- if (size == 0)
- ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
-
- if (entropy->gather_statistics)
- return; /* do nothing if we're only getting stats */
-
- put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
-
- put_bits += size; /* new number of bits in buffer */
-
- put_buffer <<= 24 - put_bits; /* align incoming bits */
-
- put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
-
- while (put_bits >= 8) {
- int c = (int) ((put_buffer >> 16) & 0xFF);
-
- emit_byte(entropy, c);
- if (c == 0xFF) { /* need to stuff a zero byte? */
- emit_byte(entropy, 0);
- }
- put_buffer <<= 8;
- put_bits -= 8;
- }
-
- entropy->put_buffer = put_buffer; /* update variables */
- entropy->put_bits = put_bits;
-}
-
-
-LOCAL(void)
-flush_bits (phuff_entropy_ptr entropy)
-{
- emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
- entropy->put_buffer = 0; /* and reset bit-buffer to empty */
- entropy->put_bits = 0;
-}
-
-
-/*
- * Emit (or just count) a Huffman symbol.
- */
-
-INLINE
-LOCAL(void)
-emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
-{
- if (entropy->gather_statistics)
- entropy->count_ptrs[tbl_no][symbol]++;
- else {
- c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
- emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
- }
-}
-
-
-/*
- * Emit bits from a correction bit buffer.
- */
-
-LOCAL(void)
-emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
- unsigned int nbits)
-{
- if (entropy->gather_statistics)
- return; /* no real work */
-
- while (nbits > 0) {
- emit_bits(entropy, (unsigned int) (*bufstart), 1);
- bufstart++;
- nbits--;
- }
-}
-
-
-/*
- * Emit any pending EOBRUN symbol.
- */
-
-LOCAL(void)
-emit_eobrun (phuff_entropy_ptr entropy)
-{
- register int temp, nbits;
-
- if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
- temp = entropy->EOBRUN;
- nbits = 0;
- while ((temp >>= 1))
- nbits++;
- /* safety check: shouldn't happen given limited correction-bit buffer */
- if (nbits > 14)
- ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
-
- emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
- if (nbits)
- emit_bits(entropy, entropy->EOBRUN, nbits);
-
- entropy->EOBRUN = 0;
-
- /* Emit any buffered correction bits */
- emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
- entropy->BE = 0;
- }
-}
-
-
-/*
- * Emit a restart marker & resynchronize predictions.
- */
-
-LOCAL(void)
-emit_restart (phuff_entropy_ptr entropy, int restart_num)
-{
- int ci;
-
- emit_eobrun(entropy);
-
- if (! entropy->gather_statistics) {
- flush_bits(entropy);
- emit_byte(entropy, 0xFF);
- emit_byte(entropy, JPEG_RST0 + restart_num);
- }
-
- if (entropy->cinfo->Ss == 0) {
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
- entropy->last_dc_val[ci] = 0;
- } else {
- /* Re-initialize all AC-related fields to 0 */
- entropy->EOBRUN = 0;
- entropy->BE = 0;
- }
-}
-
-
-/*
- * MCU encoding for DC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
-
-METHODDEF(boolean)
-encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
- register int temp, temp2;
- register int nbits;
- int blkn, ci;
- int Al = cinfo->Al;
- JBLOCKROW block;
- jpeg_component_info * compptr;
- ISHIFT_TEMPS
-
- entropy->next_output_byte = cinfo->dest->next_output_byte;
- entropy->free_in_buffer = cinfo->dest->free_in_buffer;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval)
- if (entropy->restarts_to_go == 0)
- emit_restart(entropy, entropy->next_restart_num);
-
- /* Encode the MCU data blocks */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
-
- /* Compute the DC value after the required point transform by Al.
- * This is simply an arithmetic right shift.
- */
- temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
-
- /* DC differences are figured on the point-transformed values. */
- temp = temp2 - entropy->last_dc_val[ci];
- entropy->last_dc_val[ci] = temp2;
-
- /* Encode the DC coefficient difference per section G.1.2.1 */
- temp2 = temp;
- if (temp < 0) {
- temp = -temp; /* temp is abs value of input */
- /* For a negative input, want temp2 = bitwise complement of abs(input) */
- /* This code assumes we are on a two's complement machine */
- temp2--;
- }
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 0;
- while (temp) {
- nbits++;
- temp >>= 1;
- }
- /* Check for out-of-range coefficient values.
- * Since we're encoding a difference, the range limit is twice as much.
- */
- if (nbits > MAX_COEF_BITS+1)
- ERREXIT(cinfo, JERR_BAD_DCT_COEF);
-
- /* Count/emit the Huffman-coded symbol for the number of bits */
- emit_symbol(entropy, compptr->dc_tbl_no, nbits);
-
- /* Emit that number of bits of the value, if positive, */
- /* or the complement of its magnitude, if negative. */
- if (nbits) /* emit_bits rejects calls with size 0 */
- emit_bits(entropy, (unsigned int) temp2, nbits);
- }
-
- cinfo->dest->next_output_byte = entropy->next_output_byte;
- cinfo->dest->free_in_buffer = entropy->free_in_buffer;
-
- /* Update restart-interval state too */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- return TRUE;
-}
-
-
-/*
- * MCU encoding for AC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
-
-METHODDEF(boolean)
-encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
- register int temp, temp2;
- register int nbits;
- register int r, k;
- int Se = cinfo->Se;
- int Al = cinfo->Al;
- JBLOCKROW block;
-
- entropy->next_output_byte = cinfo->dest->next_output_byte;
- entropy->free_in_buffer = cinfo->dest->free_in_buffer;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval)
- if (entropy->restarts_to_go == 0)
- emit_restart(entropy, entropy->next_restart_num);
-
- /* Encode the MCU data block */
- block = MCU_data[0];
-
- /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
-
- r = 0; /* r = run length of zeros */
-
- for (k = cinfo->Ss; k <= Se; k++) {
- if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
- r++;
- continue;
- }
- /* We must apply the point transform by Al. For AC coefficients this
- * is an integer division with rounding towards 0. To do this portably
- * in C, we shift after obtaining the absolute value; so the code is
- * interwoven with finding the abs value (temp) and output bits (temp2).
- */
- if (temp < 0) {
- temp = -temp; /* temp is abs value of input */
- temp >>= Al; /* apply the point transform */
- /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
- temp2 = ~temp;
- } else {
- temp >>= Al; /* apply the point transform */
- temp2 = temp;
- }
- /* Watch out for case that nonzero coef is zero after point transform */
- if (temp == 0) {
- r++;
- continue;
- }
-
- /* Emit any pending EOBRUN */
- if (entropy->EOBRUN > 0)
- emit_eobrun(entropy);
- /* if run length > 15, must emit special run-length-16 codes (0xF0) */
- while (r > 15) {
- emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
- r -= 16;
- }
-
- /* Find the number of bits needed for the magnitude of the coefficient */
- nbits = 1; /* there must be at least one 1 bit */
- while ((temp >>= 1))
- nbits++;
- /* Check for out-of-range coefficient values */
- if (nbits > MAX_COEF_BITS)
- ERREXIT(cinfo, JERR_BAD_DCT_COEF);
-
- /* Count/emit Huffman symbol for run length / number of bits */
- emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
-
- /* Emit that number of bits of the value, if positive, */
- /* or the complement of its magnitude, if negative. */
- emit_bits(entropy, (unsigned int) temp2, nbits);
-
- r = 0; /* reset zero run length */
- }
-
- if (r > 0) { /* If there are trailing zeroes, */
- entropy->EOBRUN++; /* count an EOB */
- if (entropy->EOBRUN == 0x7FFF)
- emit_eobrun(entropy); /* force it out to avoid overflow */
- }
-
- cinfo->dest->next_output_byte = entropy->next_output_byte;
- cinfo->dest->free_in_buffer = entropy->free_in_buffer;
-
- /* Update restart-interval state too */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- return TRUE;
-}
-
-
-/*
- * MCU encoding for DC successive approximation refinement scan.
- * Note: we assume such scans can be multi-component, although the spec
- * is not very clear on the point.
- */
-
-METHODDEF(boolean)
-encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
- register int temp;
- int blkn;
- int Al = cinfo->Al;
- JBLOCKROW block;
-
- entropy->next_output_byte = cinfo->dest->next_output_byte;
- entropy->free_in_buffer = cinfo->dest->free_in_buffer;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval)
- if (entropy->restarts_to_go == 0)
- emit_restart(entropy, entropy->next_restart_num);
-
- /* Encode the MCU data blocks */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
-
- /* We simply emit the Al'th bit of the DC coefficient value. */
- temp = (*block)[0];
- emit_bits(entropy, (unsigned int) (temp >> Al), 1);
- }
-
- cinfo->dest->next_output_byte = entropy->next_output_byte;
- cinfo->dest->free_in_buffer = entropy->free_in_buffer;
-
- /* Update restart-interval state too */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- return TRUE;
-}
-
-
-/*
- * MCU encoding for AC successive approximation refinement scan.
- */
-
-METHODDEF(boolean)
-encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
- register int temp;
- register int r, k;
- int EOB;
- char *BR_buffer;
- unsigned int BR;
- int Se = cinfo->Se;
- int Al = cinfo->Al;
- JBLOCKROW block;
- int absvalues[DCTSIZE2];
-
- entropy->next_output_byte = cinfo->dest->next_output_byte;
- entropy->free_in_buffer = cinfo->dest->free_in_buffer;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval)
- if (entropy->restarts_to_go == 0)
- emit_restart(entropy, entropy->next_restart_num);
-
- /* Encode the MCU data block */
- block = MCU_data[0];
-
- /* It is convenient to make a pre-pass to determine the transformed
- * coefficients' absolute values and the EOB position.
- */
- EOB = 0;
- for (k = cinfo->Ss; k <= Se; k++) {
- temp = (*block)[jpeg_natural_order[k]];
- /* We must apply the point transform by Al. For AC coefficients this
- * is an integer division with rounding towards 0. To do this portably
- * in C, we shift after obtaining the absolute value.
- */
- if (temp < 0)
- temp = -temp; /* temp is abs value of input */
- temp >>= Al; /* apply the point transform */
- absvalues[k] = temp; /* save abs value for main pass */
- if (temp == 1)
- EOB = k; /* EOB = index of last newly-nonzero coef */
- }
-
- /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
-
- r = 0; /* r = run length of zeros */
- BR = 0; /* BR = count of buffered bits added now */
- BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
-
- for (k = cinfo->Ss; k <= Se; k++) {
- if ((temp = absvalues[k]) == 0) {
- r++;
- continue;
- }
-
- /* Emit any required ZRLs, but not if they can be folded into EOB */
- while (r > 15 && k <= EOB) {
- /* emit any pending EOBRUN and the BE correction bits */
- emit_eobrun(entropy);
- /* Emit ZRL */
- emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
- r -= 16;
- /* Emit buffered correction bits that must be associated with ZRL */
- emit_buffered_bits(entropy, BR_buffer, BR);
- BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
- BR = 0;
- }
-
- /* If the coef was previously nonzero, it only needs a correction bit.
- * NOTE: a straight translation of the spec's figure G.7 would suggest
- * that we also need to test r > 15. But if r > 15, we can only get here
- * if k > EOB, which implies that this coefficient is not 1.
- */
- if (temp > 1) {
- /* The correction bit is the next bit of the absolute value. */
- BR_buffer[BR++] = (char) (temp & 1);
- continue;
- }
-
- /* Emit any pending EOBRUN and the BE correction bits */
- emit_eobrun(entropy);
-
- /* Count/emit Huffman symbol for run length / number of bits */
- emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
-
- /* Emit output bit for newly-nonzero coef */
- temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
- emit_bits(entropy, (unsigned int) temp, 1);
-
- /* Emit buffered correction bits that must be associated with this code */
- emit_buffered_bits(entropy, BR_buffer, BR);
- BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
- BR = 0;
- r = 0; /* reset zero run length */
- }
-
- if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
- entropy->EOBRUN++; /* count an EOB */
- entropy->BE += BR; /* concat my correction bits to older ones */
- /* We force out the EOB if we risk either:
- * 1. overflow of the EOB counter;
- * 2. overflow of the correction bit buffer during the next MCU.
- */
- if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
- emit_eobrun(entropy);
- }
-
- cinfo->dest->next_output_byte = entropy->next_output_byte;
- cinfo->dest->free_in_buffer = entropy->free_in_buffer;
-
- /* Update restart-interval state too */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- return TRUE;
-}
-
-
-/*
- * Finish up at the end of a Huffman-compressed progressive scan.
- */
-
-METHODDEF(void)
-finish_pass_phuff (j_compress_ptr cinfo)
-{
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
-
- entropy->next_output_byte = cinfo->dest->next_output_byte;
- entropy->free_in_buffer = cinfo->dest->free_in_buffer;
-
- /* Flush out any buffered data */
- emit_eobrun(entropy);
- flush_bits(entropy);
-
- cinfo->dest->next_output_byte = entropy->next_output_byte;
- cinfo->dest->free_in_buffer = entropy->free_in_buffer;
-}
-
-
-/*
- * Finish up a statistics-gathering pass and create the new Huffman tables.
- */
-
-METHODDEF(void)
-finish_pass_gather_phuff (j_compress_ptr cinfo)
-{
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
- boolean is_DC_band;
- int ci, tbl;
- jpeg_component_info * compptr;
- JHUFF_TBL **htblptr;
- boolean did[NUM_HUFF_TBLS];
-
- /* Flush out buffered data (all we care about is counting the EOB symbol) */
- emit_eobrun(entropy);
-
- is_DC_band = (cinfo->Ss == 0);
-
- /* It's important not to apply jpeg_gen_optimal_table more than once
- * per table, because it clobbers the input frequency counts!
- */
- MEMZERO(did, SIZEOF(did));
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- if (is_DC_band) {
- if (cinfo->Ah != 0) /* DC refinement needs no table */
- continue;
- tbl = compptr->dc_tbl_no;
- } else {
- tbl = compptr->ac_tbl_no;
- }
- if (! did[tbl]) {
- if (is_DC_band)
- htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
- else
- htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
- if (*htblptr == NULL)
- *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
- jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
- did[tbl] = TRUE;
- }
- }
-}
-
-
-/*
- * Module initialization routine for progressive Huffman entropy encoding.
- */
-
-GLOBAL(void)
-jinit_phuff_encoder (j_compress_ptr cinfo)
-{
- phuff_entropy_ptr entropy;
- int i;
-
- entropy = (phuff_entropy_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(phuff_entropy_encoder));
- cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
- entropy->pub.start_pass = start_pass_phuff;
-
- /* Mark tables unallocated */
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- entropy->derived_tbls[i] = NULL;
- entropy->count_ptrs[i] = NULL;
- }
- entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
-}
-
-#endif /* C_PROGRESSIVE_SUPPORTED */
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jcprepct.c b/core/src/fxcodec/libjpeg/fpdfapi_jcprepct.c
deleted file mode 100644
index 57f3fc1108..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jcprepct.c
+++ /dev/null
@@ -1,357 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jcprepct.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the compression preprocessing controller.
- * This controller manages the color conversion, downsampling,
- * and edge expansion steps.
- *
- * Most of the complexity here is associated with buffering input rows
- * as required by the downsampler. See the comments at the head of
- * jcsample.c for the downsampler's needs.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* At present, jcsample.c can request context rows only for smoothing.
- * In the future, we might also need context rows for CCIR601 sampling
- * or other more-complex downsampling procedures. The code to support
- * context rows should be compiled only if needed.
- */
-#ifdef INPUT_SMOOTHING_SUPPORTED
-#define CONTEXT_ROWS_SUPPORTED
-#endif
-
-
-/*
- * For the simple (no-context-row) case, we just need to buffer one
- * row group's worth of pixels for the downsampling step. At the bottom of
- * the image, we pad to a full row group by replicating the last pixel row.
- * The downsampler's last output row is then replicated if needed to pad
- * out to a full iMCU row.
- *
- * When providing context rows, we must buffer three row groups' worth of
- * pixels. Three row groups are physically allocated, but the row pointer
- * arrays are made five row groups high, with the extra pointers above and
- * below "wrapping around" to point to the last and first real row groups.
- * This allows the downsampler to access the proper context rows.
- * At the top and bottom of the image, we create dummy context rows by
- * copying the first or last real pixel row. This copying could be avoided
- * by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the
- * trouble on the compression side.
- */
-
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_c_prep_controller pub; /* public fields */
-
- /* Downsampling input buffer. This buffer holds color-converted data
- * until we have enough to do a downsample step.
- */
- JSAMPARRAY color_buf[MAX_COMPONENTS];
-
- JDIMENSION rows_to_go; /* counts rows remaining in source image */
- int next_buf_row; /* index of next row to store in color_buf */
-
-#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */
- int this_row_group; /* starting row index of group to process */
- int next_buf_stop; /* downsample when we reach this index */
-#endif
-} my_prep_controller;
-
-typedef my_prep_controller * my_prep_ptr;
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF(void)
-start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
-{
- my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
-
- if (pass_mode != JBUF_PASS_THRU)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-
- /* Initialize total-height counter for detecting bottom of image */
- prep->rows_to_go = cinfo->image_height;
- /* Mark the conversion buffer empty */
- prep->next_buf_row = 0;
-#ifdef CONTEXT_ROWS_SUPPORTED
- /* Preset additional state variables for context mode.
- * These aren't used in non-context mode, so we needn't test which mode.
- */
- prep->this_row_group = 0;
- /* Set next_buf_stop to stop after two row groups have been read in. */
- prep->next_buf_stop = 2 * cinfo->max_v_samp_factor;
-#endif
-}
-
-
-/*
- * Expand an image vertically from height input_rows to height output_rows,
- * by duplicating the bottom row.
- */
-
-LOCAL(void)
-expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
- int input_rows, int output_rows)
-{
- register int row;
-
- for (row = input_rows; row < output_rows; row++) {
- jcopy_sample_rows(image_data, input_rows-1, image_data, row,
- 1, num_cols);
- }
-}
-
-
-/*
- * Process some data in the simple no-context case.
- *
- * Preprocessor output data is counted in "row groups". A row group
- * is defined to be v_samp_factor sample rows of each component.
- * Downsampling will produce this much data from each max_v_samp_factor
- * input rows.
- */
-
-METHODDEF(void)
-pre_process_data (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail,
- JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
- JDIMENSION out_row_groups_avail)
-{
- my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
- int numrows, ci;
- JDIMENSION inrows;
- jpeg_component_info * compptr;
-
- while (*in_row_ctr < in_rows_avail &&
- *out_row_group_ctr < out_row_groups_avail) {
- /* Do color conversion to fill the conversion buffer. */
- inrows = in_rows_avail - *in_row_ctr;
- numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
- numrows = (int) MIN((JDIMENSION) numrows, inrows);
- (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
- prep->color_buf,
- (JDIMENSION) prep->next_buf_row,
- numrows);
- *in_row_ctr += numrows;
- prep->next_buf_row += numrows;
- prep->rows_to_go -= numrows;
- /* If at bottom of image, pad to fill the conversion buffer. */
- if (prep->rows_to_go == 0 &&
- prep->next_buf_row < cinfo->max_v_samp_factor) {
- for (ci = 0; ci < cinfo->num_components; ci++) {
- expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
- prep->next_buf_row, cinfo->max_v_samp_factor);
- }
- prep->next_buf_row = cinfo->max_v_samp_factor;
- }
- /* If we've filled the conversion buffer, empty it. */
- if (prep->next_buf_row == cinfo->max_v_samp_factor) {
- (*cinfo->downsample->downsample) (cinfo,
- prep->color_buf, (JDIMENSION) 0,
- output_buf, *out_row_group_ctr);
- prep->next_buf_row = 0;
- (*out_row_group_ctr)++;
- }
- /* If at bottom of image, pad the output to a full iMCU height.
- * Note we assume the caller is providing a one-iMCU-height output buffer!
- */
- if (prep->rows_to_go == 0 &&
- *out_row_group_ctr < out_row_groups_avail) {
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- expand_bottom_edge(output_buf[ci],
- compptr->width_in_blocks * DCTSIZE,
- (int) (*out_row_group_ctr * compptr->v_samp_factor),
- (int) (out_row_groups_avail * compptr->v_samp_factor));
- }
- *out_row_group_ctr = out_row_groups_avail;
- break; /* can exit outer loop without test */
- }
- }
-}
-
-
-#ifdef CONTEXT_ROWS_SUPPORTED
-
-/*
- * Process some data in the context case.
- */
-
-METHODDEF(void)
-pre_process_context (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail,
- JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
- JDIMENSION out_row_groups_avail)
-{
- my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
- int numrows, ci;
- int buf_height = cinfo->max_v_samp_factor * 3;
- JDIMENSION inrows;
-
- while (*out_row_group_ctr < out_row_groups_avail) {
- if (*in_row_ctr < in_rows_avail) {
- /* Do color conversion to fill the conversion buffer. */
- inrows = in_rows_avail - *in_row_ctr;
- numrows = prep->next_buf_stop - prep->next_buf_row;
- numrows = (int) MIN((JDIMENSION) numrows, inrows);
- (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
- prep->color_buf,
- (JDIMENSION) prep->next_buf_row,
- numrows);
- /* Pad at top of image, if first time through */
- if (prep->rows_to_go == cinfo->image_height) {
- for (ci = 0; ci < cinfo->num_components; ci++) {
- int row;
- for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
- jcopy_sample_rows(prep->color_buf[ci], 0,
- prep->color_buf[ci], -row,
- 1, cinfo->image_width);
- }
- }
- }
- *in_row_ctr += numrows;
- prep->next_buf_row += numrows;
- prep->rows_to_go -= numrows;
- } else {
- /* Return for more data, unless we are at the bottom of the image. */
- if (prep->rows_to_go != 0)
- break;
- /* When at bottom of image, pad to fill the conversion buffer. */
- if (prep->next_buf_row < prep->next_buf_stop) {
- for (ci = 0; ci < cinfo->num_components; ci++) {
- expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
- prep->next_buf_row, prep->next_buf_stop);
- }
- prep->next_buf_row = prep->next_buf_stop;
- }
- }
- /* If we've gotten enough data, downsample a row group. */
- if (prep->next_buf_row == prep->next_buf_stop) {
- (*cinfo->downsample->downsample) (cinfo,
- prep->color_buf,
- (JDIMENSION) prep->this_row_group,
- output_buf, *out_row_group_ctr);
- (*out_row_group_ctr)++;
- /* Advance pointers with wraparound as necessary. */
- prep->this_row_group += cinfo->max_v_samp_factor;
- if (prep->this_row_group >= buf_height)
- prep->this_row_group = 0;
- if (prep->next_buf_row >= buf_height)
- prep->next_buf_row = 0;
- prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
- }
- }
-}
-
-
-/*
- * Create the wrapped-around downsampling input buffer needed for context mode.
- */
-
-LOCAL(void)
-create_context_buffer (j_compress_ptr cinfo)
-{
- my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
- int rgroup_height = cinfo->max_v_samp_factor;
- int ci, i;
- jpeg_component_info * compptr;
- JSAMPARRAY true_buffer, fake_buffer;
-
- /* Grab enough space for fake row pointers for all the components;
- * we need five row groups' worth of pointers for each component.
- */
- fake_buffer = (JSAMPARRAY)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (cinfo->num_components * 5 * rgroup_height) *
- SIZEOF(JSAMPROW));
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Allocate the actual buffer space (3 row groups) for this component.
- * We make the buffer wide enough to allow the downsampler to edge-expand
- * horizontally within the buffer, if it so chooses.
- */
- true_buffer = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
- cinfo->max_h_samp_factor) / compptr->h_samp_factor),
- (JDIMENSION) (3 * rgroup_height));
- /* Copy true buffer row pointers into the middle of the fake row array */
- MEMCOPY(fake_buffer + rgroup_height, true_buffer,
- 3 * rgroup_height * SIZEOF(JSAMPROW));
- /* Fill in the above and below wraparound pointers */
- for (i = 0; i < rgroup_height; i++) {
- fake_buffer[i] = true_buffer[2 * rgroup_height + i];
- fake_buffer[4 * rgroup_height + i] = true_buffer[i];
- }
- prep->color_buf[ci] = fake_buffer + rgroup_height;
- fake_buffer += 5 * rgroup_height; /* point to space for next component */
- }
-}
-
-#endif /* CONTEXT_ROWS_SUPPORTED */
-
-
-/*
- * Initialize preprocessing controller.
- */
-
-GLOBAL(void)
-jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
-{
- my_prep_ptr prep;
- int ci;
- jpeg_component_info * compptr;
-
- if (need_full_buffer) /* safety check */
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-
- prep = (my_prep_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_prep_controller));
- cinfo->prep = (struct jpeg_c_prep_controller *) prep;
- prep->pub.start_pass = start_pass_prep;
-
- /* Allocate the color conversion buffer.
- * We make the buffer wide enough to allow the downsampler to edge-expand
- * horizontally within the buffer, if it so chooses.
- */
- if (cinfo->downsample->need_context_rows) {
- /* Set up to provide context rows */
-#ifdef CONTEXT_ROWS_SUPPORTED
- prep->pub.pre_process_data = pre_process_context;
- create_context_buffer(cinfo);
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else {
- /* No context, just make it tall enough for one row group */
- prep->pub.pre_process_data = pre_process_data;
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- prep->color_buf[ci] = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
- cinfo->max_h_samp_factor) / compptr->h_samp_factor),
- (JDIMENSION) cinfo->max_v_samp_factor);
- }
- }
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jcsample.c b/core/src/fxcodec/libjpeg/fpdfapi_jcsample.c
deleted file mode 100644
index 5e1e828740..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jcsample.c
+++ /dev/null
@@ -1,522 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jcsample.c
- *
- * Copyright (C) 1991-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains downsampling routines.
- *
- * Downsampling input data is counted in "row groups". A row group
- * is defined to be max_v_samp_factor pixel rows of each component,
- * from which the downsampler produces v_samp_factor sample rows.
- * A single row group is processed in each call to the downsampler module.
- *
- * The downsampler is responsible for edge-expansion of its output data
- * to fill an integral number of DCT blocks horizontally. The source buffer
- * may be modified if it is helpful for this purpose (the source buffer is
- * allocated wide enough to correspond to the desired output width).
- * The caller (the prep controller) is responsible for vertical padding.
- *
- * The downsampler may request "context rows" by setting need_context_rows
- * during startup. In this case, the input arrays will contain at least
- * one row group's worth of pixels above and below the passed-in data;
- * the caller will create dummy rows at image top and bottom by replicating
- * the first or last real pixel row.
- *
- * An excellent reference for image resampling is
- * Digital Image Warping, George Wolberg, 1990.
- * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
- *
- * The downsampling algorithm used here is a simple average of the source
- * pixels covered by the output pixel. The hi-falutin sampling literature
- * refers to this as a "box filter". In general the characteristics of a box
- * filter are not very good, but for the specific cases we normally use (1:1
- * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
- * nearly so bad. If you intend to use other sampling ratios, you'd be well
- * advised to improve this code.
- *
- * A simple input-smoothing capability is provided. This is mainly intended
- * for cleaning up color-dithered GIF input files (if you find it inadequate,
- * we suggest using an external filtering program such as pnmconvol). When
- * enabled, each input pixel P is replaced by a weighted sum of itself and its
- * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
- * where SF = (smoothing_factor / 1024).
- * Currently, smoothing is only supported for 2h2v sampling factors.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Pointer to routine to downsample a single component */
-typedef JMETHOD(void, downsample1_ptr,
- (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY output_data));
-
-/* Private subobject */
-
-typedef struct {
- struct jpeg_downsampler pub; /* public fields */
-
- /* Downsampling method pointers, one per component */
- downsample1_ptr methods[MAX_COMPONENTS];
-} my_downsampler;
-
-typedef my_downsampler * my_downsample_ptr;
-
-
-/*
- * Initialize for a downsampling pass.
- */
-
-METHODDEF(void)
-start_pass_downsample (j_compress_ptr cinfo)
-{
- /* no work for now */
-}
-
-
-/*
- * Expand a component horizontally from width input_cols to width output_cols,
- * by duplicating the rightmost samples.
- */
-
-LOCAL(void)
-expand_right_edge (JSAMPARRAY image_data, int num_rows,
- JDIMENSION input_cols, JDIMENSION output_cols)
-{
- register JSAMPROW ptr;
- register JSAMPLE pixval;
- register int count;
- int row;
- int numcols = (int) (output_cols - input_cols);
-
- if (numcols > 0) {
- for (row = 0; row < num_rows; row++) {
- ptr = image_data[row] + input_cols;
- pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
- for (count = numcols; count > 0; count--)
- *ptr++ = pixval;
- }
- }
-}
-
-
-/*
- * Do downsampling for a whole row group (all components).
- *
- * In this version we simply downsample each component independently.
- */
-
-METHODDEF(void)
-sep_downsample (j_compress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION in_row_index,
- JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
-{
- my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
- int ci;
- jpeg_component_info * compptr;
- JSAMPARRAY in_ptr, out_ptr;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- in_ptr = input_buf[ci] + in_row_index;
- out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
- (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
- }
-}
-
-
-/*
- * Downsample pixel values of a single component.
- * One row group is processed per call.
- * This version handles arbitrary integral sampling ratios, without smoothing.
- * Note that this version is not actually used for customary sampling ratios.
- */
-
-METHODDEF(void)
-int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY output_data)
-{
- int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
- JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
- JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
- JSAMPROW inptr, outptr;
- INT32 outvalue;
-
- h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
- v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
- numpix = h_expand * v_expand;
- numpix2 = numpix/2;
-
- /* Expand input data enough to let all the output samples be generated
- * by the standard loop. Special-casing padded output would be more
- * efficient.
- */
- expand_right_edge(input_data, cinfo->max_v_samp_factor,
- cinfo->image_width, output_cols * h_expand);
-
- inrow = 0;
- for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
- outptr = output_data[outrow];
- for (outcol = 0, outcol_h = 0; outcol < output_cols;
- outcol++, outcol_h += h_expand) {
- outvalue = 0;
- for (v = 0; v < v_expand; v++) {
- inptr = input_data[inrow+v] + outcol_h;
- for (h = 0; h < h_expand; h++) {
- outvalue += (INT32) GETJSAMPLE(*inptr++);
- }
- }
- *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
- }
- inrow += v_expand;
- }
-}
-
-
-/*
- * Downsample pixel values of a single component.
- * This version handles the special case of a full-size component,
- * without smoothing.
- */
-
-METHODDEF(void)
-fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY output_data)
-{
- /* Copy the data */
- jcopy_sample_rows(input_data, 0, output_data, 0,
- cinfo->max_v_samp_factor, cinfo->image_width);
- /* Edge-expand */
- expand_right_edge(output_data, cinfo->max_v_samp_factor,
- cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
-}
-
-
-/*
- * Downsample pixel values of a single component.
- * This version handles the common case of 2:1 horizontal and 1:1 vertical,
- * without smoothing.
- *
- * A note about the "bias" calculations: when rounding fractional values to
- * integer, we do not want to always round 0.5 up to the next integer.
- * If we did that, we'd introduce a noticeable bias towards larger values.
- * Instead, this code is arranged so that 0.5 will be rounded up or down at
- * alternate pixel locations (a simple ordered dither pattern).
- */
-
-METHODDEF(void)
-h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY output_data)
-{
- int outrow;
- JDIMENSION outcol;
- JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
- register JSAMPROW inptr, outptr;
- register int bias;
-
- /* Expand input data enough to let all the output samples be generated
- * by the standard loop. Special-casing padded output would be more
- * efficient.
- */
- expand_right_edge(input_data, cinfo->max_v_samp_factor,
- cinfo->image_width, output_cols * 2);
-
- for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
- outptr = output_data[outrow];
- inptr = input_data[outrow];
- bias = 0; /* bias = 0,1,0,1,... for successive samples */
- for (outcol = 0; outcol < output_cols; outcol++) {
- *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
- + bias) >> 1);
- bias ^= 1; /* 0=>1, 1=>0 */
- inptr += 2;
- }
- }
-}
-
-
-/*
- * Downsample pixel values of a single component.
- * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
- * without smoothing.
- */
-
-METHODDEF(void)
-h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY output_data)
-{
- int inrow, outrow;
- JDIMENSION outcol;
- JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
- register JSAMPROW inptr0, inptr1, outptr;
- register int bias;
-
- /* Expand input data enough to let all the output samples be generated
- * by the standard loop. Special-casing padded output would be more
- * efficient.
- */
- expand_right_edge(input_data, cinfo->max_v_samp_factor,
- cinfo->image_width, output_cols * 2);
-
- inrow = 0;
- for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
- outptr = output_data[outrow];
- inptr0 = input_data[inrow];
- inptr1 = input_data[inrow+1];
- bias = 1; /* bias = 1,2,1,2,... for successive samples */
- for (outcol = 0; outcol < output_cols; outcol++) {
- *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
- GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
- + bias) >> 2);
- bias ^= 3; /* 1=>2, 2=>1 */
- inptr0 += 2; inptr1 += 2;
- }
- inrow += 2;
- }
-}
-
-
-#ifdef INPUT_SMOOTHING_SUPPORTED
-
-/*
- * Downsample pixel values of a single component.
- * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
- * with smoothing. One row of context is required.
- */
-
-METHODDEF(void)
-h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY output_data)
-{
- int inrow, outrow;
- JDIMENSION colctr;
- JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
- register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
- INT32 membersum, neighsum, memberscale, neighscale;
-
- /* Expand input data enough to let all the output samples be generated
- * by the standard loop. Special-casing padded output would be more
- * efficient.
- */
- expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
- cinfo->image_width, output_cols * 2);
-
- /* We don't bother to form the individual "smoothed" input pixel values;
- * we can directly compute the output which is the average of the four
- * smoothed values. Each of the four member pixels contributes a fraction
- * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
- * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
- * output. The four corner-adjacent neighbor pixels contribute a fraction
- * SF to just one smoothed pixel, or SF/4 to the final output; while the
- * eight edge-adjacent neighbors contribute SF to each of two smoothed
- * pixels, or SF/2 overall. In order to use integer arithmetic, these
- * factors are scaled by 2^16 = 65536.
- * Also recall that SF = smoothing_factor / 1024.
- */
-
- memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
- neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
-
- inrow = 0;
- for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
- outptr = output_data[outrow];
- inptr0 = input_data[inrow];
- inptr1 = input_data[inrow+1];
- above_ptr = input_data[inrow-1];
- below_ptr = input_data[inrow+2];
-
- /* Special case for first column: pretend column -1 is same as column 0 */
- membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
- GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
- neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
- GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
- GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
- GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
- neighsum += neighsum;
- neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
- GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
- membersum = membersum * memberscale + neighsum * neighscale;
- *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
- inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
-
- for (colctr = output_cols - 2; colctr > 0; colctr--) {
- /* sum of pixels directly mapped to this output element */
- membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
- GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
- /* sum of edge-neighbor pixels */
- neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
- GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
- GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
- GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
- /* The edge-neighbors count twice as much as corner-neighbors */
- neighsum += neighsum;
- /* Add in the corner-neighbors */
- neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
- GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
- /* form final output scaled up by 2^16 */
- membersum = membersum * memberscale + neighsum * neighscale;
- /* round, descale and output it */
- *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
- inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
- }
-
- /* Special case for last column */
- membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
- GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
- neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
- GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
- GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
- GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
- neighsum += neighsum;
- neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
- GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
- membersum = membersum * memberscale + neighsum * neighscale;
- *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
-
- inrow += 2;
- }
-}
-
-
-/*
- * Downsample pixel values of a single component.
- * This version handles the special case of a full-size component,
- * with smoothing. One row of context is required.
- */
-
-METHODDEF(void)
-fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
- JSAMPARRAY input_data, JSAMPARRAY output_data)
-{
- int outrow;
- JDIMENSION colctr;
- JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
- register JSAMPROW inptr, above_ptr, below_ptr, outptr;
- INT32 membersum, neighsum, memberscale, neighscale;
- int colsum, lastcolsum, nextcolsum;
-
- /* Expand input data enough to let all the output samples be generated
- * by the standard loop. Special-casing padded output would be more
- * efficient.
- */
- expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
- cinfo->image_width, output_cols);
-
- /* Each of the eight neighbor pixels contributes a fraction SF to the
- * smoothed pixel, while the main pixel contributes (1-8*SF). In order
- * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
- * Also recall that SF = smoothing_factor / 1024.
- */
-
- memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
- neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
-
- for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
- outptr = output_data[outrow];
- inptr = input_data[outrow];
- above_ptr = input_data[outrow-1];
- below_ptr = input_data[outrow+1];
-
- /* Special case for first column */
- colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
- GETJSAMPLE(*inptr);
- membersum = GETJSAMPLE(*inptr++);
- nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
- GETJSAMPLE(*inptr);
- neighsum = colsum + (colsum - membersum) + nextcolsum;
- membersum = membersum * memberscale + neighsum * neighscale;
- *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
- lastcolsum = colsum; colsum = nextcolsum;
-
- for (colctr = output_cols - 2; colctr > 0; colctr--) {
- membersum = GETJSAMPLE(*inptr++);
- above_ptr++; below_ptr++;
- nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
- GETJSAMPLE(*inptr);
- neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
- membersum = membersum * memberscale + neighsum * neighscale;
- *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
- lastcolsum = colsum; colsum = nextcolsum;
- }
-
- /* Special case for last column */
- membersum = GETJSAMPLE(*inptr);
- neighsum = lastcolsum + (colsum - membersum) + colsum;
- membersum = membersum * memberscale + neighsum * neighscale;
- *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
-
- }
-}
-
-#endif /* INPUT_SMOOTHING_SUPPORTED */
-
-
-/*
- * Module initialization routine for downsampling.
- * Note that we must select a routine for each component.
- */
-
-GLOBAL(void)
-jinit_downsampler (j_compress_ptr cinfo)
-{
- my_downsample_ptr downsample;
- int ci;
- jpeg_component_info * compptr;
- boolean smoothok = TRUE;
-
- downsample = (my_downsample_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_downsampler));
- cinfo->downsample = (struct jpeg_downsampler *) downsample;
- downsample->pub.start_pass = start_pass_downsample;
- downsample->pub.downsample = sep_downsample;
- downsample->pub.need_context_rows = FALSE;
-
- if (cinfo->CCIR601_sampling)
- ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
-
- /* Verify we can handle the sampling factors, and set up method pointers */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
- compptr->v_samp_factor == cinfo->max_v_samp_factor) {
-#ifdef INPUT_SMOOTHING_SUPPORTED
- if (cinfo->smoothing_factor) {
- downsample->methods[ci] = fullsize_smooth_downsample;
- downsample->pub.need_context_rows = TRUE;
- } else
-#endif
- downsample->methods[ci] = fullsize_downsample;
- } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
- compptr->v_samp_factor == cinfo->max_v_samp_factor) {
- smoothok = FALSE;
- downsample->methods[ci] = h2v1_downsample;
- } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
- compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
-#ifdef INPUT_SMOOTHING_SUPPORTED
- if (cinfo->smoothing_factor) {
- downsample->methods[ci] = h2v2_smooth_downsample;
- downsample->pub.need_context_rows = TRUE;
- } else
-#endif
- downsample->methods[ci] = h2v2_downsample;
- } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
- (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
- smoothok = FALSE;
- downsample->methods[ci] = int_downsample;
- } else
- ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
- }
-
-#ifdef INPUT_SMOOTHING_SUPPORTED
- if (cinfo->smoothing_factor && !smoothok)
- TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
-#endif
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jctrans.c b/core/src/fxcodec/libjpeg/fpdfapi_jctrans.c
deleted file mode 100644
index 40d166736b..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jctrans.c
+++ /dev/null
@@ -1,391 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jctrans.c
- *
- * Copyright (C) 1995-1998, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains library routines for transcoding compression,
- * that is, writing raw DCT coefficient arrays to an output JPEG file.
- * The routines in jcapimin.c will also be needed by a transcoder.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Forward declarations */
-LOCAL(void) transencode_master_selection
- JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
-LOCAL(void) transencode_coef_controller
- JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
-
-
-/*
- * Compression initialization for writing raw-coefficient data.
- * Before calling this, all parameters and a data destination must be set up.
- * Call jpeg_finish_compress() to actually write the data.
- *
- * The number of passed virtual arrays must match cinfo->num_components.
- * Note that the virtual arrays need not be filled or even realized at
- * the time write_coefficients is called; indeed, if the virtual arrays
- * were requested from this compression object's memory manager, they
- * typically will be realized during this routine and filled afterwards.
- */
-
-GLOBAL(void)
-jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
-{
- if (cinfo->global_state != CSTATE_START)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- /* Mark all tables to be written */
- jpeg_suppress_tables(cinfo, FALSE);
- /* (Re)initialize error mgr and destination modules */
- (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
- (*cinfo->dest->init_destination) (cinfo);
- /* Perform master selection of active modules */
- transencode_master_selection(cinfo, coef_arrays);
- /* Wait for jpeg_finish_compress() call */
- cinfo->next_scanline = 0; /* so jpeg_write_marker works */
- cinfo->global_state = CSTATE_WRCOEFS;
-}
-
-
-/*
- * Initialize the compression object with default parameters,
- * then copy from the source object all parameters needed for lossless
- * transcoding. Parameters that can be varied without loss (such as
- * scan script and Huffman optimization) are left in their default states.
- */
-
-GLOBAL(void)
-jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
- j_compress_ptr dstinfo)
-{
- JQUANT_TBL ** qtblptr;
- jpeg_component_info *incomp, *outcomp;
- JQUANT_TBL *c_quant, *slot_quant;
- int tblno, ci, coefi;
-
- /* Safety check to ensure start_compress not called yet. */
- if (dstinfo->global_state != CSTATE_START)
- ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
- /* Copy fundamental image dimensions */
- dstinfo->image_width = srcinfo->image_width;
- dstinfo->image_height = srcinfo->image_height;
- dstinfo->input_components = srcinfo->num_components;
- dstinfo->in_color_space = srcinfo->jpeg_color_space;
- /* Initialize all parameters to default values */
- jpeg_set_defaults(dstinfo);
- /* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
- * Fix it to get the right header markers for the image colorspace.
- */
- jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
- dstinfo->data_precision = srcinfo->data_precision;
- dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
- /* Copy the source's quantization tables. */
- for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
- if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
- qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
- if (*qtblptr == NULL)
- *qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
- MEMCOPY((*qtblptr)->quantval,
- srcinfo->quant_tbl_ptrs[tblno]->quantval,
- SIZEOF((*qtblptr)->quantval));
- (*qtblptr)->sent_table = FALSE;
- }
- }
- /* Copy the source's per-component info.
- * Note we assume jpeg_set_defaults has allocated the dest comp_info array.
- */
- dstinfo->num_components = srcinfo->num_components;
- if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
- ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
- MAX_COMPONENTS);
- for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
- ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
- outcomp->component_id = incomp->component_id;
- outcomp->h_samp_factor = incomp->h_samp_factor;
- outcomp->v_samp_factor = incomp->v_samp_factor;
- outcomp->quant_tbl_no = incomp->quant_tbl_no;
- /* Make sure saved quantization table for component matches the qtable
- * slot. If not, the input file re-used this qtable slot.
- * IJG encoder currently cannot duplicate this.
- */
- tblno = outcomp->quant_tbl_no;
- if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
- srcinfo->quant_tbl_ptrs[tblno] == NULL)
- ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
- slot_quant = srcinfo->quant_tbl_ptrs[tblno];
- c_quant = incomp->quant_table;
- if (c_quant != NULL) {
- for (coefi = 0; coefi < DCTSIZE2; coefi++) {
- if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
- ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
- }
- }
- /* Note: we do not copy the source's Huffman table assignments;
- * instead we rely on jpeg_set_colorspace to have made a suitable choice.
- */
- }
- /* Also copy JFIF version and resolution information, if available.
- * Strictly speaking this isn't "critical" info, but it's nearly
- * always appropriate to copy it if available. In particular,
- * if the application chooses to copy JFIF 1.02 extension markers from
- * the source file, we need to copy the version to make sure we don't
- * emit a file that has 1.02 extensions but a claimed version of 1.01.
- * We will *not*, however, copy version info from mislabeled "2.01" files.
- */
- if (srcinfo->saw_JFIF_marker) {
- if (srcinfo->JFIF_major_version == 1) {
- dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
- dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
- }
- dstinfo->density_unit = srcinfo->density_unit;
- dstinfo->X_density = srcinfo->X_density;
- dstinfo->Y_density = srcinfo->Y_density;
- }
-}
-
-
-/*
- * Master selection of compression modules for transcoding.
- * This substitutes for jcinit.c's initialization of the full compressor.
- */
-
-LOCAL(void)
-transencode_master_selection (j_compress_ptr cinfo,
- jvirt_barray_ptr * coef_arrays)
-{
- /* Although we don't actually use input_components for transcoding,
- * jcmaster.c's initial_setup will complain if input_components is 0.
- */
- cinfo->input_components = 1;
- /* Initialize master control (includes parameter checking/processing) */
- jinit_c_master_control(cinfo, TRUE /* transcode only */);
-
- /* Entropy encoding: either Huffman or arithmetic coding. */
- if (cinfo->arith_code) {
- ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
- } else {
- if (cinfo->progressive_mode) {
-#ifdef C_PROGRESSIVE_SUPPORTED
- jinit_phuff_encoder(cinfo);
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else
- jinit_huff_encoder(cinfo);
- }
-
- /* We need a special coefficient buffer controller. */
- transencode_coef_controller(cinfo, coef_arrays);
-
- jinit_marker_writer(cinfo);
-
- /* We can now tell the memory manager to allocate virtual arrays. */
- (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
-
- /* Write the datastream header (SOI, JFIF) immediately.
- * Frame and scan headers are postponed till later.
- * This lets application insert special markers after the SOI.
- */
- (*cinfo->marker->write_file_header) (cinfo);
-}
-
-
-/*
- * The rest of this file is a special implementation of the coefficient
- * buffer controller. This is similar to jccoefct.c, but it handles only
- * output from presupplied virtual arrays. Furthermore, we generate any
- * dummy padding blocks on-the-fly rather than expecting them to be present
- * in the arrays.
- */
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_c_coef_controller pub; /* public fields */
-
- JDIMENSION iMCU_row_num; /* iMCU row # within image */
- JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
- int MCU_vert_offset; /* counts MCU rows within iMCU row */
- int MCU_rows_per_iMCU_row; /* number of such rows needed */
-
- /* Virtual block array for each component. */
- jvirt_barray_ptr * whole_image;
-
- /* Workspace for constructing dummy blocks at right/bottom edges. */
- JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU];
-} my_coef_controller;
-
-typedef my_coef_controller * my_coef_ptr;
-
-
-LOCAL(void)
-start_iMCU_row (j_compress_ptr cinfo)
-/* Reset within-iMCU-row counters for a new row */
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-
- /* In an interleaved scan, an MCU row is the same as an iMCU row.
- * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
- * But at the bottom of the image, process only what's left.
- */
- if (cinfo->comps_in_scan > 1) {
- coef->MCU_rows_per_iMCU_row = 1;
- } else {
- if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
- else
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
- }
-
- coef->mcu_ctr = 0;
- coef->MCU_vert_offset = 0;
-}
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF(void)
-start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-
- if (pass_mode != JBUF_CRANK_DEST)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-
- coef->iMCU_row_num = 0;
- start_iMCU_row(cinfo);
-}
-
-
-/*
- * Process some data.
- * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
- * per call, ie, v_samp_factor block rows for each component in the scan.
- * The data is obtained from the virtual arrays and fed to the entropy coder.
- * Returns TRUE if the iMCU row is completed, FALSE if suspended.
- *
- * NB: input_buf is ignored; it is likely to be a NULL pointer.
- */
-
-METHODDEF(boolean)
-compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION MCU_col_num; /* index of current MCU within row */
- JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
- int blkn, ci, xindex, yindex, yoffset, blockcnt;
- JDIMENSION start_col;
- JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
- JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
- JBLOCKROW buffer_ptr;
- jpeg_component_info *compptr;
-
- /* Align the virtual buffers for the components used in this scan. */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- buffer[ci] = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
- coef->iMCU_row_num * compptr->v_samp_factor,
- (JDIMENSION) compptr->v_samp_factor, FALSE);
- }
-
- /* Loop to process one whole iMCU row */
- for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
- yoffset++) {
- for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
- MCU_col_num++) {
- /* Construct list of pointers to DCT blocks belonging to this MCU */
- blkn = 0; /* index of current DCT block within MCU */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- start_col = MCU_col_num * compptr->MCU_width;
- blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
- : compptr->last_col_width;
- for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
- if (coef->iMCU_row_num < last_iMCU_row ||
- yindex+yoffset < compptr->last_row_height) {
- /* Fill in pointers to real blocks in this row */
- buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
- for (xindex = 0; xindex < blockcnt; xindex++)
- MCU_buffer[blkn++] = buffer_ptr++;
- } else {
- /* At bottom of image, need a whole row of dummy blocks */
- xindex = 0;
- }
- /* Fill in any dummy blocks needed in this row.
- * Dummy blocks are filled in the same way as in jccoefct.c:
- * all zeroes in the AC entries, DC entries equal to previous
- * block's DC value. The init routine has already zeroed the
- * AC entries, so we need only set the DC entries correctly.
- */
- for (; xindex < compptr->MCU_width; xindex++) {
- MCU_buffer[blkn] = coef->dummy_buffer[blkn];
- MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0];
- blkn++;
- }
- }
- }
- /* Try to write the MCU. */
- if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
- /* Suspension forced; update state counters and exit */
- coef->MCU_vert_offset = yoffset;
- coef->mcu_ctr = MCU_col_num;
- return FALSE;
- }
- }
- /* Completed an MCU row, but perhaps not an iMCU row */
- coef->mcu_ctr = 0;
- }
- /* Completed the iMCU row, advance counters for next one */
- coef->iMCU_row_num++;
- start_iMCU_row(cinfo);
- return TRUE;
-}
-
-
-/*
- * Initialize coefficient buffer controller.
- *
- * Each passed coefficient array must be the right size for that
- * coefficient: width_in_blocks wide and height_in_blocks high,
- * with unitheight at least v_samp_factor.
- */
-
-LOCAL(void)
-transencode_coef_controller (j_compress_ptr cinfo,
- jvirt_barray_ptr * coef_arrays)
-{
- my_coef_ptr coef;
- JBLOCKROW buffer;
- int i;
-
- coef = (my_coef_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_coef_controller));
- cinfo->coef = (struct jpeg_c_coef_controller *) coef;
- coef->pub.start_pass = start_pass_coef;
- coef->pub.compress_data = compress_output;
-
- /* Save pointer to virtual arrays */
- coef->whole_image = coef_arrays;
-
- /* Allocate and pre-zero space for dummy DCT blocks. */
- buffer = (JBLOCKROW)
- (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
- jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
- for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
- coef->dummy_buffer[i] = buffer + i;
- }
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jdapimin.c b/core/src/fxcodec/libjpeg/fpdfapi_jdapimin.c
deleted file mode 100644
index 80c52cd29f..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jdapimin.c
+++ /dev/null
@@ -1,398 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jdapimin.c
- *
- * Copyright (C) 1994-1998, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains application interface code for the decompression half
- * of the JPEG library. These are the "minimum" API routines that may be
- * needed in either the normal full-decompression case or the
- * transcoding-only case.
- *
- * Most of the routines intended to be called directly by an application
- * are in this file or in jdapistd.c. But also see jcomapi.c for routines
- * shared by compression and decompression, and jdtrans.c for the transcoding
- * case.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * Initialization of a JPEG decompression object.
- * The error manager must already be set up (in case memory manager fails).
- */
-
-GLOBAL(void)
-jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)
-{
- int i;
-
- /* Guard against version mismatches between library and caller. */
- cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
- if (version != JPEG_LIB_VERSION)
- ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
- if (structsize != SIZEOF(struct jpeg_decompress_struct))
- ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
- (int) SIZEOF(struct jpeg_decompress_struct), (int) structsize);
-
- /* For debugging purposes, we zero the whole master structure.
- * But the application has already set the err pointer, and may have set
- * client_data, so we have to save and restore those fields.
- * Note: if application hasn't set client_data, tools like Purify may
- * complain here.
- */
- {
- struct jpeg_error_mgr * err = cinfo->err;
- void * client_data = cinfo->client_data; /* ignore Purify complaint here */
- MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
- cinfo->err = err;
- cinfo->client_data = client_data;
- }
- cinfo->is_decompressor = TRUE;
-
- /* Initialize a memory manager instance for this object */
- jinit_memory_mgr((j_common_ptr) cinfo);
-
- /* Zero out pointers to permanent structures. */
- cinfo->progress = NULL;
- cinfo->src = NULL;
-
- for (i = 0; i < NUM_QUANT_TBLS; i++)
- cinfo->quant_tbl_ptrs[i] = NULL;
-
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- cinfo->dc_huff_tbl_ptrs[i] = NULL;
- cinfo->ac_huff_tbl_ptrs[i] = NULL;
- }
-
- /* Initialize marker processor so application can override methods
- * for COM, APPn markers before calling jpeg_read_header.
- */
- cinfo->marker_list = NULL;
- jinit_marker_reader(cinfo);
-
- /* And initialize the overall input controller. */
- jinit_input_controller(cinfo);
-
- /* OK, I'm ready */
- cinfo->global_state = DSTATE_START;
-}
-
-
-/*
- * Destruction of a JPEG decompression object
- */
-
-GLOBAL(void)
-jpeg_destroy_decompress (j_decompress_ptr cinfo)
-{
- jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
-}
-
-
-/*
- * Abort processing of a JPEG decompression operation,
- * but don't destroy the object itself.
- */
-
-GLOBAL(void)
-jpeg_abort_decompress (j_decompress_ptr cinfo)
-{
- jpeg_abort((j_common_ptr) cinfo); /* use common routine */
-}
-
-
-/*
- * Set default decompression parameters.
- */
-
-LOCAL(void)
-default_decompress_parms (j_decompress_ptr cinfo)
-{
- /* Guess the input colorspace, and set output colorspace accordingly. */
- /* (Wish JPEG committee had provided a real way to specify this...) */
- /* Note application may override our guesses. */
- switch (cinfo->num_components) {
- case 1:
- cinfo->jpeg_color_space = JCS_GRAYSCALE;
- cinfo->out_color_space = JCS_GRAYSCALE;
- break;
-
- case 3:
- if (cinfo->saw_JFIF_marker) {
- cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
- } else if (cinfo->saw_Adobe_marker) {
- switch (cinfo->Adobe_transform) {
- case 0:
- cinfo->jpeg_color_space = JCS_RGB;
- break;
- case 1:
- cinfo->jpeg_color_space = JCS_YCbCr;
- break;
- default:
- WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
- cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
- break;
- }
- } else {
- /* Saw no special markers, try to guess from the component IDs */
- int cid0 = cinfo->comp_info[0].component_id;
- int cid1 = cinfo->comp_info[1].component_id;
- int cid2 = cinfo->comp_info[2].component_id;
-
- if (cid0 == 1 && cid1 == 2 && cid2 == 3)
- cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
- else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
- cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
- else {
- TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
- cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
- }
- }
- /* Always guess RGB is proper output colorspace. */
- cinfo->out_color_space = JCS_RGB;
- break;
-
- case 4:
- if (cinfo->saw_Adobe_marker) {
- switch (cinfo->Adobe_transform) {
- case 0:
- cinfo->jpeg_color_space = JCS_CMYK;
- break;
- case 2:
- cinfo->jpeg_color_space = JCS_YCCK;
- break;
- default:
- WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
- cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
- break;
- }
- } else {
- /* No special markers, assume straight CMYK. */
- cinfo->jpeg_color_space = JCS_CMYK;
- }
- cinfo->out_color_space = JCS_CMYK;
- break;
-
- default:
- cinfo->jpeg_color_space = JCS_UNKNOWN;
- cinfo->out_color_space = JCS_UNKNOWN;
- break;
- }
-
- /* Set defaults for other decompression parameters. */
- cinfo->scale_num = 1; /* 1:1 scaling */
- cinfo->scale_denom = 1;
- cinfo->output_gamma = 1.0;
- cinfo->buffered_image = FALSE;
- cinfo->raw_data_out = FALSE;
- cinfo->dct_method = JDCT_DEFAULT;
- cinfo->do_fancy_upsampling = TRUE;
- cinfo->do_block_smoothing = TRUE;
- cinfo->quantize_colors = FALSE;
- /* We set these in case application only sets quantize_colors. */
- cinfo->dither_mode = JDITHER_FS;
-#ifdef QUANT_2PASS_SUPPORTED
- cinfo->two_pass_quantize = TRUE;
-#else
- cinfo->two_pass_quantize = FALSE;
-#endif
- cinfo->desired_number_of_colors = 256;
- cinfo->colormap = NULL;
- /* Initialize for no mode change in buffered-image mode. */
- cinfo->enable_1pass_quant = FALSE;
- cinfo->enable_external_quant = FALSE;
- cinfo->enable_2pass_quant = FALSE;
-}
-
-
-/*
- * Decompression startup: read start of JPEG datastream to see what's there.
- * Need only initialize JPEG object and supply a data source before calling.
- *
- * This routine will read as far as the first SOS marker (ie, actual start of
- * compressed data), and will save all tables and parameters in the JPEG
- * object. It will also initialize the decompression parameters to default
- * values, and finally return JPEG_HEADER_OK. On return, the application may
- * adjust the decompression parameters and then call jpeg_start_decompress.
- * (Or, if the application only wanted to determine the image parameters,
- * the data need not be decompressed. In that case, call jpeg_abort or
- * jpeg_destroy to release any temporary space.)
- * If an abbreviated (tables only) datastream is presented, the routine will
- * return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then
- * re-use the JPEG object to read the abbreviated image datastream(s).
- * It is unnecessary (but OK) to call jpeg_abort in this case.
- * The JPEG_SUSPENDED return code only occurs if the data source module
- * requests suspension of the decompressor. In this case the application
- * should load more source data and then re-call jpeg_read_header to resume
- * processing.
- * If a non-suspending data source is used and require_image is TRUE, then the
- * return code need not be inspected since only JPEG_HEADER_OK is possible.
- *
- * This routine is now just a front end to jpeg_consume_input, with some
- * extra error checking.
- */
-
-GLOBAL(int)
-jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
-{
- int retcode;
-
- if (cinfo->global_state != DSTATE_START &&
- cinfo->global_state != DSTATE_INHEADER)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- retcode = jpeg_consume_input(cinfo);
-
- switch (retcode) {
- case JPEG_REACHED_SOS:
- retcode = JPEG_HEADER_OK;
- break;
- case JPEG_REACHED_EOI:
- if (require_image) /* Complain if application wanted an image */
- ERREXIT(cinfo, JERR_NO_IMAGE);
- /* Reset to start state; it would be safer to require the application to
- * call jpeg_abort, but we can't change it now for compatibility reasons.
- * A side effect is to free any temporary memory (there shouldn't be any).
- */
- jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */
- retcode = JPEG_HEADER_TABLES_ONLY;
- break;
- case JPEG_SUSPENDED:
- /* no work */
- break;
- }
-
- return retcode;
-}
-
-
-/*
- * Consume data in advance of what the decompressor requires.
- * This can be called at any time once the decompressor object has
- * been created and a data source has been set up.
- *
- * This routine is essentially a state machine that handles a couple
- * of critical state-transition actions, namely initial setup and
- * transition from header scanning to ready-for-start_decompress.
- * All the actual input is done via the input controller's consume_input
- * method.
- */
-
-GLOBAL(int)
-jpeg_consume_input (j_decompress_ptr cinfo)
-{
- int retcode = JPEG_SUSPENDED;
-
- /* NB: every possible DSTATE value should be listed in this switch */
- switch (cinfo->global_state) {
- case DSTATE_START:
- /* Start-of-datastream actions: reset appropriate modules */
- (*cinfo->inputctl->reset_input_controller) (cinfo);
- /* Initialize application's data source module */
- (*cinfo->src->init_source) (cinfo);
- cinfo->global_state = DSTATE_INHEADER;
- /*FALLTHROUGH*/
- case DSTATE_INHEADER:
- retcode = (*cinfo->inputctl->consume_input) (cinfo);
- if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
- /* Set up default parameters based on header data */
- default_decompress_parms(cinfo);
- /* Set global state: ready for start_decompress */
- cinfo->global_state = DSTATE_READY;
- }
- break;
- case DSTATE_READY:
- /* Can't advance past first SOS until start_decompress is called */
- retcode = JPEG_REACHED_SOS;
- break;
- case DSTATE_PRELOAD:
- case DSTATE_PRESCAN:
- case DSTATE_SCANNING:
- case DSTATE_RAW_OK:
- case DSTATE_BUFIMAGE:
- case DSTATE_BUFPOST:
- case DSTATE_STOPPING:
- retcode = (*cinfo->inputctl->consume_input) (cinfo);
- break;
- default:
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- }
- return retcode;
-}
-
-
-/*
- * Have we finished reading the input file?
- */
-
-GLOBAL(boolean)
-jpeg_input_complete (j_decompress_ptr cinfo)
-{
- /* Check for valid jpeg object */
- if (cinfo->global_state < DSTATE_START ||
- cinfo->global_state > DSTATE_STOPPING)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- return cinfo->inputctl->eoi_reached;
-}
-
-
-/*
- * Is there more than one scan?
- */
-
-GLOBAL(boolean)
-jpeg_has_multiple_scans (j_decompress_ptr cinfo)
-{
- /* Only valid after jpeg_read_header completes */
- if (cinfo->global_state < DSTATE_READY ||
- cinfo->global_state > DSTATE_STOPPING)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- return cinfo->inputctl->has_multiple_scans;
-}
-
-
-/*
- * Finish JPEG decompression.
- *
- * This will normally just verify the file trailer and release temp storage.
- *
- * Returns FALSE if suspended. The return value need be inspected only if
- * a suspending data source is used.
- */
-
-GLOBAL(boolean)
-jpeg_finish_decompress (j_decompress_ptr cinfo)
-{
- if ((cinfo->global_state == DSTATE_SCANNING ||
- cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) {
- /* Terminate final pass of non-buffered mode */
- if (cinfo->output_scanline < cinfo->output_height)
- ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
- (*cinfo->master->finish_output_pass) (cinfo);
- cinfo->global_state = DSTATE_STOPPING;
- } else if (cinfo->global_state == DSTATE_BUFIMAGE) {
- /* Finishing after a buffered-image operation */
- cinfo->global_state = DSTATE_STOPPING;
- } else if (cinfo->global_state != DSTATE_STOPPING) {
- /* STOPPING = repeat call after a suspension, anything else is error */
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- }
- /* Read until EOI */
- while (! cinfo->inputctl->eoi_reached) {
- if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
- return FALSE; /* Suspend, come back later */
- }
- /* Do final cleanup */
- (*cinfo->src->term_source) (cinfo);
- /* We can use jpeg_abort to release memory and reset global_state */
- jpeg_abort((j_common_ptr) cinfo);
- return TRUE;
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jdapistd.c b/core/src/fxcodec/libjpeg/fpdfapi_jdapistd.c
deleted file mode 100644
index 4c31f7640c..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jdapistd.c
+++ /dev/null
@@ -1,279 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jdapistd.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains application interface code for the decompression half
- * of the JPEG library. These are the "standard" API routines that are
- * used in the normal full-decompression case. They are not used by a
- * transcoding-only application. Note that if an application links in
- * jpeg_start_decompress, it will end up linking in the entire decompressor.
- * We thus must separate this file from jdapimin.c to avoid linking the
- * whole decompression library into a transcoder.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Forward declarations */
-LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo));
-
-
-/*
- * Decompression initialization.
- * jpeg_read_header must be completed before calling this.
- *
- * If a multipass operating mode was selected, this will do all but the
- * last pass, and thus may take a great deal of time.
- *
- * Returns FALSE if suspended. The return value need be inspected only if
- * a suspending data source is used.
- */
-
-GLOBAL(boolean)
-jpeg_start_decompress (j_decompress_ptr cinfo)
-{
- if (cinfo->global_state == DSTATE_READY) {
- /* First call: initialize master control, select active modules */
- jinit_master_decompress(cinfo);
- if (cinfo->buffered_image) {
- /* No more work here; expecting jpeg_start_output next */
- cinfo->global_state = DSTATE_BUFIMAGE;
- return TRUE;
- }
- cinfo->global_state = DSTATE_PRELOAD;
- }
- if (cinfo->global_state == DSTATE_PRELOAD) {
- /* If file has multiple scans, absorb them all into the coef buffer */
- if (cinfo->inputctl->has_multiple_scans) {
-#ifdef D_MULTISCAN_FILES_SUPPORTED
- for (;;) {
- int retcode;
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL)
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- /* Absorb some more input */
- retcode = (*cinfo->inputctl->consume_input) (cinfo);
- if (retcode == JPEG_SUSPENDED)
- return FALSE;
- if (retcode == JPEG_REACHED_EOI)
- break;
- /* Advance progress counter if appropriate */
- if (cinfo->progress != NULL &&
- (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
- if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
- /* jdmaster underestimated number of scans; ratchet up one scan */
- cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
- }
- }
- }
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
- }
- cinfo->output_scan_number = cinfo->input_scan_number;
- } else if (cinfo->global_state != DSTATE_PRESCAN)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- /* Perform any dummy output passes, and set up for the final pass */
- return output_pass_setup(cinfo);
-}
-
-
-/*
- * Set up for an output pass, and perform any dummy pass(es) needed.
- * Common subroutine for jpeg_start_decompress and jpeg_start_output.
- * Entry: global_state = DSTATE_PRESCAN only if previously suspended.
- * Exit: If done, returns TRUE and sets global_state for proper output mode.
- * If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
- */
-
-LOCAL(boolean)
-output_pass_setup (j_decompress_ptr cinfo)
-{
- if (cinfo->global_state != DSTATE_PRESCAN) {
- /* First call: do pass setup */
- (*cinfo->master->prepare_for_output_pass) (cinfo);
- cinfo->output_scanline = 0;
- cinfo->global_state = DSTATE_PRESCAN;
- }
- /* Loop over any required dummy passes */
- while (cinfo->master->is_dummy_pass) {
-#ifdef QUANT_2PASS_SUPPORTED
- /* Crank through the dummy pass */
- while (cinfo->output_scanline < cinfo->output_height) {
- JDIMENSION last_scanline;
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->pass_counter = (long) cinfo->output_scanline;
- cinfo->progress->pass_limit = (long) cinfo->output_height;
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- }
- /* Process some data */
- last_scanline = cinfo->output_scanline;
- (*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
- &cinfo->output_scanline, (JDIMENSION) 0);
- if (cinfo->output_scanline == last_scanline)
- return FALSE; /* No progress made, must suspend */
- }
- /* Finish up dummy pass, and set up for another one */
- (*cinfo->master->finish_output_pass) (cinfo);
- (*cinfo->master->prepare_for_output_pass) (cinfo);
- cinfo->output_scanline = 0;
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif /* QUANT_2PASS_SUPPORTED */
- }
- /* Ready for application to drive output pass through
- * jpeg_read_scanlines or jpeg_read_raw_data.
- */
- cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
- return TRUE;
-}
-
-
-/*
- * Read some scanlines of data from the JPEG decompressor.
- *
- * The return value will be the number of lines actually read.
- * This may be less than the number requested in several cases,
- * including bottom of image, data source suspension, and operating
- * modes that emit multiple scanlines at a time.
- *
- * Note: we warn about excess calls to jpeg_read_scanlines() since
- * this likely signals an application programmer error. However,
- * an oversize buffer (max_lines > scanlines remaining) is not an error.
- */
-
-GLOBAL(JDIMENSION)
-jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
- JDIMENSION max_lines)
-{
- JDIMENSION row_ctr;
-
- if (cinfo->global_state != DSTATE_SCANNING)
- return 0; /* XYQ 2010-6-27: don't throw exception here */
-/* ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); */
- if (cinfo->output_scanline >= cinfo->output_height) {
- WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
- return 0;
- }
-
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->pass_counter = (long) cinfo->output_scanline;
- cinfo->progress->pass_limit = (long) cinfo->output_height;
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- }
-
- /* Process some data */
- row_ctr = 0;
- (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
- cinfo->output_scanline += row_ctr;
- return row_ctr;
-}
-
-
-/*
- * Alternate entry point to read raw data.
- * Processes exactly one iMCU row per call, unless suspended.
- */
-
-GLOBAL(JDIMENSION)
-jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
- JDIMENSION max_lines)
-{
- JDIMENSION lines_per_iMCU_row;
-
- if (cinfo->global_state != DSTATE_RAW_OK)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- if (cinfo->output_scanline >= cinfo->output_height) {
- WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
- return 0;
- }
-
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->pass_counter = (long) cinfo->output_scanline;
- cinfo->progress->pass_limit = (long) cinfo->output_height;
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- }
-
- /* Verify that at least one iMCU row can be returned. */
- lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size;
- if (max_lines < lines_per_iMCU_row)
- ERREXIT(cinfo, JERR_BUFFER_SIZE);
-
- /* Decompress directly into user's buffer. */
- if (! (*cinfo->coef->decompress_data) (cinfo, data))
- return 0; /* suspension forced, can do nothing more */
-
- /* OK, we processed one iMCU row. */
- cinfo->output_scanline += lines_per_iMCU_row;
- return lines_per_iMCU_row;
-}
-
-
-/* Additional entry points for buffered-image mode. */
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-
-/*
- * Initialize for an output pass in buffered-image mode.
- */
-
-GLOBAL(boolean)
-jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
-{
- if (cinfo->global_state != DSTATE_BUFIMAGE &&
- cinfo->global_state != DSTATE_PRESCAN)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- /* Limit scan number to valid range */
- if (scan_number <= 0)
- scan_number = 1;
- if (cinfo->inputctl->eoi_reached &&
- scan_number > cinfo->input_scan_number)
- scan_number = cinfo->input_scan_number;
- cinfo->output_scan_number = scan_number;
- /* Perform any dummy output passes, and set up for the real pass */
- return output_pass_setup(cinfo);
-}
-
-
-/*
- * Finish up after an output pass in buffered-image mode.
- *
- * Returns FALSE if suspended. The return value need be inspected only if
- * a suspending data source is used.
- */
-
-GLOBAL(boolean)
-jpeg_finish_output (j_decompress_ptr cinfo)
-{
- if ((cinfo->global_state == DSTATE_SCANNING ||
- cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
- /* Terminate this pass. */
- /* We do not require the whole pass to have been completed. */
- (*cinfo->master->finish_output_pass) (cinfo);
- cinfo->global_state = DSTATE_BUFPOST;
- } else if (cinfo->global_state != DSTATE_BUFPOST) {
- /* BUFPOST = repeat call after a suspension, anything else is error */
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- }
- /* Read markers looking for SOS or EOI */
- while (cinfo->input_scan_number <= cinfo->output_scan_number &&
- ! cinfo->inputctl->eoi_reached) {
- if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
- return FALSE; /* Suspend, come back later */
- }
- cinfo->global_state = DSTATE_BUFIMAGE;
- return TRUE;
-}
-
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jdcoefct.c b/core/src/fxcodec/libjpeg/fpdfapi_jdcoefct.c
deleted file mode 100644
index 099833a8d6..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jdcoefct.c
+++ /dev/null
@@ -1,739 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jdcoefct.c
- *
- * Copyright (C) 1994-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the coefficient buffer controller for decompression.
- * This controller is the top level of the JPEG decompressor proper.
- * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
- *
- * In buffered-image mode, this controller is the interface between
- * input-oriented processing and output-oriented processing.
- * Also, the input side (only) is used when reading a file for transcoding.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-/* Block smoothing is only applicable for progressive JPEG, so: */
-#ifndef D_PROGRESSIVE_SUPPORTED
-#undef BLOCK_SMOOTHING_SUPPORTED
-#endif
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_d_coef_controller pub; /* public fields */
-
- /* These variables keep track of the current location of the input side. */
- /* cinfo->input_iMCU_row is also used for this. */
- JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
- int MCU_vert_offset; /* counts MCU rows within iMCU row */
- int MCU_rows_per_iMCU_row; /* number of such rows needed */
-
- /* The output side's location is represented by cinfo->output_iMCU_row. */
-
- /* In single-pass modes, it's sufficient to buffer just one MCU.
- * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
- * and let the entropy decoder write into that workspace each time.
- * (On 80x86, the workspace is FAR even though it's not really very big;
- * this is to keep the module interfaces unchanged when a large coefficient
- * buffer is necessary.)
- * In multi-pass modes, this array points to the current MCU's blocks
- * within the virtual arrays; it is used only by the input side.
- */
- JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
- /* In multi-pass modes, we need a virtual block array for each component. */
- jvirt_barray_ptr whole_image[MAX_COMPONENTS];
-#endif
-
-#ifdef BLOCK_SMOOTHING_SUPPORTED
- /* When doing block smoothing, we latch coefficient Al values here */
- int * coef_bits_latch;
-#define SAVED_COEFS 6 /* we save coef_bits[0..5] */
-#endif
-} my_coef_controller;
-
-typedef my_coef_controller * my_coef_ptr;
-
-/* Forward declarations */
-METHODDEF(int) decompress_onepass
- JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-METHODDEF(int) decompress_data
- JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
-#endif
-#ifdef BLOCK_SMOOTHING_SUPPORTED
-LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
-METHODDEF(int) decompress_smooth_data
- JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
-#endif
-
-
-LOCAL(void)
-start_iMCU_row (j_decompress_ptr cinfo)
-/* Reset within-iMCU-row counters for a new row (input side) */
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-
- /* In an interleaved scan, an MCU row is the same as an iMCU row.
- * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
- * But at the bottom of the image, process only what's left.
- */
- if (cinfo->comps_in_scan > 1) {
- coef->MCU_rows_per_iMCU_row = 1;
- } else {
- if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
- else
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
- }
-
- coef->MCU_ctr = 0;
- coef->MCU_vert_offset = 0;
-}
-
-
-/*
- * Initialize for an input processing pass.
- */
-
-METHODDEF(void)
-start_input_pass (j_decompress_ptr cinfo)
-{
- cinfo->input_iMCU_row = 0;
- start_iMCU_row(cinfo);
-}
-
-
-/*
- * Initialize for an output processing pass.
- */
-
-METHODDEF(void)
-start_output_pass (j_decompress_ptr cinfo)
-{
-#ifdef BLOCK_SMOOTHING_SUPPORTED
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-
- /* If multipass, check to see whether to use block smoothing on this pass */
- if (coef->pub.coef_arrays != NULL) {
- if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
- coef->pub.decompress_data = decompress_smooth_data;
- else
- coef->pub.decompress_data = decompress_data;
- }
-#endif
- cinfo->output_iMCU_row = 0;
-}
-
-
-/*
- * Decompress and return some data in the single-pass case.
- * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
- * Input and output must run in lockstep since we have only a one-MCU buffer.
- * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
- *
- * NB: output_buf contains a plane for each component in image,
- * which we index according to the component's SOF position.
- */
-
-METHODDEF(int)
-decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION MCU_col_num; /* index of current MCU within row */
- JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
- int blkn, ci, xindex, yindex, yoffset, useful_width;
- JSAMPARRAY output_ptr;
- JDIMENSION start_col, output_col;
- jpeg_component_info *compptr;
- inverse_DCT_method_ptr inverse_DCT;
-
- /* Loop to process as much as one whole iMCU row */
- for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
- yoffset++) {
- for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
- MCU_col_num++) {
- /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
- jzero_far((void FAR *) coef->MCU_buffer[0],
- (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
- if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
- /* Suspension forced; update state counters and exit */
- coef->MCU_vert_offset = yoffset;
- coef->MCU_ctr = MCU_col_num;
- return JPEG_SUSPENDED;
- }
- /* Determine where data should go in output_buf and do the IDCT thing.
- * We skip dummy blocks at the right and bottom edges (but blkn gets
- * incremented past them!). Note the inner loop relies on having
- * allocated the MCU_buffer[] blocks sequentially.
- */
- blkn = 0; /* index of current DCT block within MCU */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Don't bother to IDCT an uninteresting component. */
- if (! compptr->component_needed) {
- blkn += compptr->MCU_blocks;
- continue;
- }
- inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
- useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
- : compptr->last_col_width;
- output_ptr = output_buf[compptr->component_index] +
- yoffset * compptr->DCT_scaled_size;
- start_col = MCU_col_num * compptr->MCU_sample_width;
- for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
- if (cinfo->input_iMCU_row < last_iMCU_row ||
- yoffset+yindex < compptr->last_row_height) {
- output_col = start_col;
- for (xindex = 0; xindex < useful_width; xindex++) {
- (*inverse_DCT) (cinfo, compptr,
- (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
- output_ptr, output_col);
- output_col += compptr->DCT_scaled_size;
- }
- }
- blkn += compptr->MCU_width;
- output_ptr += compptr->DCT_scaled_size;
- }
- }
- }
- /* Completed an MCU row, but perhaps not an iMCU row */
- coef->MCU_ctr = 0;
- }
- /* Completed the iMCU row, advance counters for next one */
- cinfo->output_iMCU_row++;
- if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
- start_iMCU_row(cinfo);
- return JPEG_ROW_COMPLETED;
- }
- /* Completed the scan */
- (*cinfo->inputctl->finish_input_pass) (cinfo);
- return JPEG_SCAN_COMPLETED;
-}
-
-
-/*
- * Dummy consume-input routine for single-pass operation.
- */
-
-METHODDEF(int)
-dummy_consume_data (j_decompress_ptr cinfo)
-{
- return JPEG_SUSPENDED; /* Always indicate nothing was done */
-}
-
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-
-/*
- * Consume input data and store it in the full-image coefficient buffer.
- * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
- * ie, v_samp_factor block rows for each component in the scan.
- * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
- */
-
-METHODDEF(int)
-consume_data (j_decompress_ptr cinfo)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION MCU_col_num; /* index of current MCU within row */
- int blkn, ci, xindex, yindex, yoffset;
- JDIMENSION start_col;
- JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
- JBLOCKROW buffer_ptr;
- jpeg_component_info *compptr;
-
- /* Align the virtual buffers for the components used in this scan. */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- buffer[ci] = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
- cinfo->input_iMCU_row * compptr->v_samp_factor,
- (JDIMENSION) compptr->v_samp_factor, TRUE);
- /* Note: entropy decoder expects buffer to be zeroed,
- * but this is handled automatically by the memory manager
- * because we requested a pre-zeroed array.
- */
- }
-
- /* Loop to process one whole iMCU row */
- for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
- yoffset++) {
- for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
- MCU_col_num++) {
- /* Construct list of pointers to DCT blocks belonging to this MCU */
- blkn = 0; /* index of current DCT block within MCU */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- start_col = MCU_col_num * compptr->MCU_width;
- for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
- buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
- for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
- coef->MCU_buffer[blkn++] = buffer_ptr++;
- }
- }
- }
- /* Try to fetch the MCU. */
- if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
- /* Suspension forced; update state counters and exit */
- coef->MCU_vert_offset = yoffset;
- coef->MCU_ctr = MCU_col_num;
- return JPEG_SUSPENDED;
- }
- }
- /* Completed an MCU row, but perhaps not an iMCU row */
- coef->MCU_ctr = 0;
- }
- /* Completed the iMCU row, advance counters for next one */
- if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
- start_iMCU_row(cinfo);
- return JPEG_ROW_COMPLETED;
- }
- /* Completed the scan */
- (*cinfo->inputctl->finish_input_pass) (cinfo);
- return JPEG_SCAN_COMPLETED;
-}
-
-
-/*
- * Decompress and return some data in the multi-pass case.
- * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
- * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
- *
- * NB: output_buf contains a plane for each component in image.
- */
-
-METHODDEF(int)
-decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
- JDIMENSION block_num;
- int ci, block_row, block_rows;
- JBLOCKARRAY buffer;
- JBLOCKROW buffer_ptr;
- JSAMPARRAY output_ptr;
- JDIMENSION output_col;
- jpeg_component_info *compptr;
- inverse_DCT_method_ptr inverse_DCT;
-
- /* Force some input to be done if we are getting ahead of the input. */
- while (cinfo->input_scan_number < cinfo->output_scan_number ||
- (cinfo->input_scan_number == cinfo->output_scan_number &&
- cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
- if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
- return JPEG_SUSPENDED;
- }
-
- /* OK, output from the virtual arrays. */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Don't bother to IDCT an uninteresting component. */
- if (! compptr->component_needed)
- continue;
- /* Align the virtual buffer for this component. */
- buffer = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[ci],
- cinfo->output_iMCU_row * compptr->v_samp_factor,
- (JDIMENSION) compptr->v_samp_factor, FALSE);
- /* Count non-dummy DCT block rows in this iMCU row. */
- if (cinfo->output_iMCU_row < last_iMCU_row)
- block_rows = compptr->v_samp_factor;
- else {
- /* NB: can't use last_row_height here; it is input-side-dependent! */
- block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
- if (block_rows == 0) block_rows = compptr->v_samp_factor;
- }
- inverse_DCT = cinfo->idct->inverse_DCT[ci];
- output_ptr = output_buf[ci];
- /* Loop over all DCT blocks to be processed. */
- for (block_row = 0; block_row < block_rows; block_row++) {
- buffer_ptr = buffer[block_row];
- output_col = 0;
- for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
- (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
- output_ptr, output_col);
- buffer_ptr++;
- output_col += compptr->DCT_scaled_size;
- }
- output_ptr += compptr->DCT_scaled_size;
- }
- }
-
- if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
- return JPEG_ROW_COMPLETED;
- return JPEG_SCAN_COMPLETED;
-}
-
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
-
-
-#ifdef BLOCK_SMOOTHING_SUPPORTED
-
-/*
- * This code applies interblock smoothing as described by section K.8
- * of the JPEG standard: the first 5 AC coefficients are estimated from
- * the DC values of a DCT block and its 8 neighboring blocks.
- * We apply smoothing only for progressive JPEG decoding, and only if
- * the coefficients it can estimate are not yet known to full precision.
- */
-
-/* Natural-order array positions of the first 5 zigzag-order coefficients */
-#define Q01_POS 1
-#define Q10_POS 8
-#define Q20_POS 16
-#define Q11_POS 9
-#define Q02_POS 2
-
-/*
- * Determine whether block smoothing is applicable and safe.
- * We also latch the current states of the coef_bits[] entries for the
- * AC coefficients; otherwise, if the input side of the decompressor
- * advances into a new scan, we might think the coefficients are known
- * more accurately than they really are.
- */
-
-LOCAL(boolean)
-smoothing_ok (j_decompress_ptr cinfo)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- boolean smoothing_useful = FALSE;
- int ci, coefi;
- jpeg_component_info *compptr;
- JQUANT_TBL * qtable;
- int * coef_bits;
- int * coef_bits_latch;
-
- if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
- return FALSE;
-
- /* Allocate latch area if not already done */
- if (coef->coef_bits_latch == NULL)
- coef->coef_bits_latch = (int *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->num_components *
- (SAVED_COEFS * SIZEOF(int)));
- coef_bits_latch = coef->coef_bits_latch;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* All components' quantization values must already be latched. */
- if ((qtable = compptr->quant_table) == NULL)
- return FALSE;
- /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
- if (qtable->quantval[0] == 0 ||
- qtable->quantval[Q01_POS] == 0 ||
- qtable->quantval[Q10_POS] == 0 ||
- qtable->quantval[Q20_POS] == 0 ||
- qtable->quantval[Q11_POS] == 0 ||
- qtable->quantval[Q02_POS] == 0)
- return FALSE;
- /* DC values must be at least partly known for all components. */
- coef_bits = cinfo->coef_bits[ci];
- if (coef_bits[0] < 0)
- return FALSE;
- /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
- for (coefi = 1; coefi <= 5; coefi++) {
- coef_bits_latch[coefi] = coef_bits[coefi];
- if (coef_bits[coefi] != 0)
- smoothing_useful = TRUE;
- }
- coef_bits_latch += SAVED_COEFS;
- }
-
- return smoothing_useful;
-}
-
-
-/*
- * Variant of decompress_data for use when doing block smoothing.
- */
-
-METHODDEF(int)
-decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
- JDIMENSION block_num, last_block_column;
- int ci, block_row, block_rows, access_rows;
- JBLOCKARRAY buffer;
- JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
- JSAMPARRAY output_ptr;
- JDIMENSION output_col;
- jpeg_component_info *compptr;
- inverse_DCT_method_ptr inverse_DCT;
- boolean first_row, last_row;
- JBLOCK workspace;
- int *coef_bits;
- JQUANT_TBL *quanttbl;
- INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
- int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
- int Al, pred;
-
- /* Force some input to be done if we are getting ahead of the input. */
- while (cinfo->input_scan_number <= cinfo->output_scan_number &&
- ! cinfo->inputctl->eoi_reached) {
- if (cinfo->input_scan_number == cinfo->output_scan_number) {
- /* If input is working on current scan, we ordinarily want it to
- * have completed the current row. But if input scan is DC,
- * we want it to keep one row ahead so that next block row's DC
- * values are up to date.
- */
- JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
- if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
- break;
- }
- if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
- return JPEG_SUSPENDED;
- }
-
- /* OK, output from the virtual arrays. */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Don't bother to IDCT an uninteresting component. */
- if (! compptr->component_needed)
- continue;
- /* Count non-dummy DCT block rows in this iMCU row. */
- if (cinfo->output_iMCU_row < last_iMCU_row) {
- block_rows = compptr->v_samp_factor;
- access_rows = block_rows * 2; /* this and next iMCU row */
- last_row = FALSE;
- } else {
- /* NB: can't use last_row_height here; it is input-side-dependent! */
- block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
- if (block_rows == 0) block_rows = compptr->v_samp_factor;
- access_rows = block_rows; /* this iMCU row only */
- last_row = TRUE;
- }
- /* Align the virtual buffer for this component. */
- if (cinfo->output_iMCU_row > 0) {
- access_rows += compptr->v_samp_factor; /* prior iMCU row too */
- buffer = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[ci],
- (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
- (JDIMENSION) access_rows, FALSE);
- buffer += compptr->v_samp_factor; /* point to current iMCU row */
- first_row = FALSE;
- } else {
- buffer = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[ci],
- (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
- first_row = TRUE;
- }
- /* Fetch component-dependent info */
- coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
- quanttbl = compptr->quant_table;
- Q00 = quanttbl->quantval[0];
- Q01 = quanttbl->quantval[Q01_POS];
- Q10 = quanttbl->quantval[Q10_POS];
- Q20 = quanttbl->quantval[Q20_POS];
- Q11 = quanttbl->quantval[Q11_POS];
- Q02 = quanttbl->quantval[Q02_POS];
- inverse_DCT = cinfo->idct->inverse_DCT[ci];
- output_ptr = output_buf[ci];
- /* Loop over all DCT blocks to be processed. */
- for (block_row = 0; block_row < block_rows; block_row++) {
- buffer_ptr = buffer[block_row];
- if (first_row && block_row == 0)
- prev_block_row = buffer_ptr;
- else
- prev_block_row = buffer[block_row-1];
- if (last_row && block_row == block_rows-1)
- next_block_row = buffer_ptr;
- else
- next_block_row = buffer[block_row+1];
- /* We fetch the surrounding DC values using a sliding-register approach.
- * Initialize all nine here so as to do the right thing on narrow pics.
- */
- DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
- DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
- DC7 = DC8 = DC9 = (int) next_block_row[0][0];
- output_col = 0;
- last_block_column = compptr->width_in_blocks - 1;
- for (block_num = 0; block_num <= last_block_column; block_num++) {
- /* Fetch current DCT block into workspace so we can modify it. */
- jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
- /* Update DC values */
- if (block_num < last_block_column) {
- DC3 = (int) prev_block_row[1][0];
- DC6 = (int) buffer_ptr[1][0];
- DC9 = (int) next_block_row[1][0];
- }
- /* Compute coefficient estimates per K.8.
- * An estimate is applied only if coefficient is still zero,
- * and is not known to be fully accurate.
- */
- /* AC01 */
- if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
- num = 36 * Q00 * (DC4 - DC6);
- if (num >= 0) {
- pred = (int) (((Q01<<7) + num) / (Q01<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- } else {
- pred = (int) (((Q01<<7) - num) / (Q01<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- pred = -pred;
- }
- workspace[1] = (JCOEF) pred;
- }
- /* AC10 */
- if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
- num = 36 * Q00 * (DC2 - DC8);
- if (num >= 0) {
- pred = (int) (((Q10<<7) + num) / (Q10<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- } else {
- pred = (int) (((Q10<<7) - num) / (Q10<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- pred = -pred;
- }
- workspace[8] = (JCOEF) pred;
- }
- /* AC20 */
- if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
- num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
- if (num >= 0) {
- pred = (int) (((Q20<<7) + num) / (Q20<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- } else {
- pred = (int) (((Q20<<7) - num) / (Q20<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- pred = -pred;
- }
- workspace[16] = (JCOEF) pred;
- }
- /* AC11 */
- if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
- num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
- if (num >= 0) {
- pred = (int) (((Q11<<7) + num) / (Q11<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- } else {
- pred = (int) (((Q11<<7) - num) / (Q11<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- pred = -pred;
- }
- workspace[9] = (JCOEF) pred;
- }
- /* AC02 */
- if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
- num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
- if (num >= 0) {
- pred = (int) (((Q02<<7) + num) / (Q02<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- } else {
- pred = (int) (((Q02<<7) - num) / (Q02<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- pred = -pred;
- }
- workspace[2] = (JCOEF) pred;
- }
- /* OK, do the IDCT */
- (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
- output_ptr, output_col);
- /* Advance for next column */
- DC1 = DC2; DC2 = DC3;
- DC4 = DC5; DC5 = DC6;
- DC7 = DC8; DC8 = DC9;
- buffer_ptr++, prev_block_row++, next_block_row++;
- output_col += compptr->DCT_scaled_size;
- }
- output_ptr += compptr->DCT_scaled_size;
- }
- }
-
- if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
- return JPEG_ROW_COMPLETED;
- return JPEG_SCAN_COMPLETED;
-}
-
-#endif /* BLOCK_SMOOTHING_SUPPORTED */
-
-
-/*
- * Initialize coefficient buffer controller.
- */
-
-GLOBAL(void)
-jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
-{
- my_coef_ptr coef;
-
- coef = (my_coef_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_coef_controller));
- cinfo->coef = (struct jpeg_d_coef_controller *) coef;
- coef->pub.start_input_pass = start_input_pass;
- coef->pub.start_output_pass = start_output_pass;
-#ifdef BLOCK_SMOOTHING_SUPPORTED
- coef->coef_bits_latch = NULL;
-#endif
-
- /* Create the coefficient buffer. */
- if (need_full_buffer) {
-#ifdef D_MULTISCAN_FILES_SUPPORTED
- /* Allocate a full-image virtual array for each component, */
- /* padded to a multiple of samp_factor DCT blocks in each direction. */
- /* Note we ask for a pre-zeroed array. */
- int ci, access_rows;
- jpeg_component_info *compptr;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- access_rows = compptr->v_samp_factor;
-#ifdef BLOCK_SMOOTHING_SUPPORTED
- /* If block smoothing could be used, need a bigger window */
- if (cinfo->progressive_mode)
- access_rows *= 3;
-#endif
- coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
- (JDIMENSION) jround_up((long) compptr->width_in_blocks,
- (long) compptr->h_samp_factor),
- (JDIMENSION) jround_up((long) compptr->height_in_blocks,
- (long) compptr->v_samp_factor),
- (JDIMENSION) access_rows);
- }
- coef->pub.consume_data = consume_data;
- coef->pub.decompress_data = decompress_data;
- coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else {
- /* We only need a single-MCU buffer. */
- JBLOCKROW buffer;
- int i;
-
- buffer = (JBLOCKROW)
- (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
- for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
- coef->MCU_buffer[i] = buffer + i;
- }
- coef->pub.consume_data = dummy_consume_data;
- coef->pub.decompress_data = decompress_onepass;
- coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
- }
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jdcolor.c b/core/src/fxcodec/libjpeg/fpdfapi_jdcolor.c
deleted file mode 100644
index c17329b86d..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jdcolor.c
+++ /dev/null
@@ -1,399 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jdcolor.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains output colorspace conversion routines.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private subobject */
-
-typedef struct {
- struct jpeg_color_deconverter pub; /* public fields */
-
- /* Private state for YCC->RGB conversion */
- int * Cr_r_tab; /* => table for Cr to R conversion */
- int * Cb_b_tab; /* => table for Cb to B conversion */
- INT32 * Cr_g_tab; /* => table for Cr to G conversion */
- INT32 * Cb_g_tab; /* => table for Cb to G conversion */
-} my_color_deconverter;
-
-typedef my_color_deconverter * my_cconvert_ptr;
-
-
-/**************** YCbCr -> RGB conversion: most common case **************/
-
-/*
- * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
- * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
- * The conversion equations to be implemented are therefore
- * R = Y + 1.40200 * Cr
- * G = Y - 0.34414 * Cb - 0.71414 * Cr
- * B = Y + 1.77200 * Cb
- * where Cb and Cr represent the incoming values less CENTERJSAMPLE.
- * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
- *
- * To avoid floating-point arithmetic, we represent the fractional constants
- * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
- * the products by 2^16, with appropriate rounding, to get the correct answer.
- * Notice that Y, being an integral input, does not contribute any fraction
- * so it need not participate in the rounding.
- *
- * For even more speed, we avoid doing any multiplications in the inner loop
- * by precalculating the constants times Cb and Cr for all possible values.
- * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
- * for 12-bit samples it is still acceptable. It's not very reasonable for
- * 16-bit samples, but if you want lossless storage you shouldn't be changing
- * colorspace anyway.
- * The Cr=>R and Cb=>B values can be rounded to integers in advance; the
- * values for the G calculation are left scaled up, since we must add them
- * together before rounding.
- */
-
-#define SCALEBITS 16 /* speediest right-shift on some machines */
-#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
-#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
-
-
-/*
- * Initialize tables for YCC->RGB colorspace conversion.
- */
-
-LOCAL(void)
-build_ycc_rgb_table (j_decompress_ptr cinfo)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- int i;
- INT32 x;
- SHIFT_TEMPS
-
- cconvert->Cr_r_tab = (int *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(int));
- cconvert->Cb_b_tab = (int *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(int));
- cconvert->Cr_g_tab = (INT32 *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(INT32));
- cconvert->Cb_g_tab = (INT32 *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(INT32));
-
- for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
- /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
- /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
- /* Cr=>R value is nearest int to 1.40200 * x */
- cconvert->Cr_r_tab[i] = (int)
- RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
- /* Cb=>B value is nearest int to 1.77200 * x */
- cconvert->Cb_b_tab[i] = (int)
- RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
- /* Cr=>G value is scaled-up -0.71414 * x */
- cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x;
- /* Cb=>G value is scaled-up -0.34414 * x */
- /* We also add in ONE_HALF so that need not do it in inner loop */
- cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
- }
-}
-
-
-/*
- * Convert some rows of samples to the output colorspace.
- *
- * Note that we change from noninterleaved, one-plane-per-component format
- * to interleaved-pixel format. The output buffer is therefore three times
- * as wide as the input buffer.
- * A starting row offset is provided only for the input buffer. The caller
- * can easily adjust the passed output_buf value to accommodate any row
- * offset required on that side.
- */
-
-METHODDEF(void)
-ycc_rgb_convert (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- register int y, cb, cr;
- register JSAMPROW outptr;
- register JSAMPROW inptr0, inptr1, inptr2;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->output_width;
- /* copy these pointers into registers if possible */
- register JSAMPLE * range_limit = cinfo->sample_range_limit;
- register int * Crrtab = cconvert->Cr_r_tab;
- register int * Cbbtab = cconvert->Cb_b_tab;
- register INT32 * Crgtab = cconvert->Cr_g_tab;
- register INT32 * Cbgtab = cconvert->Cb_g_tab;
- SHIFT_TEMPS
-
- while (--num_rows >= 0) {
- inptr0 = input_buf[0][input_row];
- inptr1 = input_buf[1][input_row];
- inptr2 = input_buf[2][input_row];
- input_row++;
- outptr = *output_buf++;
- for (col = 0; col < num_cols; col++) {
- y = GETJSAMPLE(inptr0[col]);
- cb = GETJSAMPLE(inptr1[col]);
- cr = GETJSAMPLE(inptr2[col]);
- /* Range-limiting is essential due to noise introduced by DCT losses. */
- outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
- outptr[RGB_GREEN] = range_limit[y +
- ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
- SCALEBITS))];
- outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
- outptr += RGB_PIXELSIZE;
- }
- }
-}
-
-
-/**************** Cases other than YCbCr -> RGB **************/
-
-
-/*
- * Color conversion for no colorspace change: just copy the data,
- * converting from separate-planes to interleaved representation.
- */
-
-METHODDEF(void)
-null_convert (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows)
-{
- register JSAMPROW inptr, outptr;
- register JDIMENSION count;
- register int num_components = cinfo->num_components;
- JDIMENSION num_cols = cinfo->output_width;
- int ci;
-
- while (--num_rows >= 0) {
- for (ci = 0; ci < num_components; ci++) {
- inptr = input_buf[ci][input_row];
- outptr = output_buf[0] + ci;
- for (count = num_cols; count > 0; count--) {
- *outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */
- outptr += num_components;
- }
- }
- input_row++;
- output_buf++;
- }
-}
-
-
-/*
- * Color conversion for grayscale: just copy the data.
- * This also works for YCbCr -> grayscale conversion, in which
- * we just copy the Y (luminance) component and ignore chrominance.
- */
-
-METHODDEF(void)
-grayscale_convert (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows)
-{
- jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
- num_rows, cinfo->output_width);
-}
-
-
-/*
- * Convert grayscale to RGB: just duplicate the graylevel three times.
- * This is provided to support applications that don't want to cope
- * with grayscale as a separate case.
- */
-
-METHODDEF(void)
-gray_rgb_convert (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows)
-{
- register JSAMPROW inptr, outptr;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->output_width;
-
- while (--num_rows >= 0) {
- inptr = input_buf[0][input_row++];
- outptr = *output_buf++;
- for (col = 0; col < num_cols; col++) {
- /* We can dispense with GETJSAMPLE() here */
- outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col];
- outptr += RGB_PIXELSIZE;
- }
- }
-}
-
-
-/*
- * Adobe-style YCCK->CMYK conversion.
- * We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
- * conversion as above, while passing K (black) unchanged.
- * We assume build_ycc_rgb_table has been called.
- */
-
-METHODDEF(void)
-ycck_cmyk_convert (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- register int y, cb, cr;
- register JSAMPROW outptr;
- register JSAMPROW inptr0, inptr1, inptr2, inptr3;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->output_width;
- /* copy these pointers into registers if possible */
- register JSAMPLE * range_limit = cinfo->sample_range_limit;
- register int * Crrtab = cconvert->Cr_r_tab;
- register int * Cbbtab = cconvert->Cb_b_tab;
- register INT32 * Crgtab = cconvert->Cr_g_tab;
- register INT32 * Cbgtab = cconvert->Cb_g_tab;
- SHIFT_TEMPS
-
- while (--num_rows >= 0) {
- inptr0 = input_buf[0][input_row];
- inptr1 = input_buf[1][input_row];
- inptr2 = input_buf[2][input_row];
- inptr3 = input_buf[3][input_row];
- input_row++;
- outptr = *output_buf++;
- for (col = 0; col < num_cols; col++) {
- y = GETJSAMPLE(inptr0[col]);
- cb = GETJSAMPLE(inptr1[col]);
- cr = GETJSAMPLE(inptr2[col]);
- /* Range-limiting is essential due to noise introduced by DCT losses. */
- outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
- outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
- ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
- SCALEBITS)))];
- outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
- /* K passes through unchanged */
- outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
- outptr += 4;
- }
- }
-}
-
-
-/*
- * Empty method for start_pass.
- */
-
-METHODDEF(void)
-start_pass_dcolor (j_decompress_ptr cinfo)
-{
- /* no work needed */
-}
-
-
-/*
- * Module initialization routine for output colorspace conversion.
- */
-
-GLOBAL(void)
-jinit_color_deconverter (j_decompress_ptr cinfo)
-{
- my_cconvert_ptr cconvert;
- int ci;
-
- cconvert = (my_cconvert_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_color_deconverter));
- cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
- cconvert->pub.start_pass = start_pass_dcolor;
-
- /* Make sure num_components agrees with jpeg_color_space */
- switch (cinfo->jpeg_color_space) {
- case JCS_GRAYSCALE:
- if (cinfo->num_components != 1)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- break;
-
- case JCS_RGB:
- case JCS_YCbCr:
- if (cinfo->num_components != 3)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- break;
-
- case JCS_CMYK:
- case JCS_YCCK:
- if (cinfo->num_components != 4)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- break;
-
- default: /* JCS_UNKNOWN can be anything */
- if (cinfo->num_components < 1)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- break;
- }
-
- /* Set out_color_components and conversion method based on requested space.
- * Also clear the component_needed flags for any unused components,
- * so that earlier pipeline stages can avoid useless computation.
- */
-
- switch (cinfo->out_color_space) {
- case JCS_GRAYSCALE:
- cinfo->out_color_components = 1;
- if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
- cinfo->jpeg_color_space == JCS_YCbCr) {
- cconvert->pub.color_convert = grayscale_convert;
- /* For color->grayscale conversion, only the Y (0) component is needed */
- for (ci = 1; ci < cinfo->num_components; ci++)
- cinfo->comp_info[ci].component_needed = FALSE;
- } else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- case JCS_RGB:
- cinfo->out_color_components = RGB_PIXELSIZE;
- if (cinfo->jpeg_color_space == JCS_YCbCr) {
- cconvert->pub.color_convert = ycc_rgb_convert;
- build_ycc_rgb_table(cinfo);
- } else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
- cconvert->pub.color_convert = gray_rgb_convert;
- } else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) {
- cconvert->pub.color_convert = null_convert;
- } else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- case JCS_CMYK:
- cinfo->out_color_components = 4;
- if (cinfo->jpeg_color_space == JCS_YCCK) {
- cconvert->pub.color_convert = ycck_cmyk_convert;
- build_ycc_rgb_table(cinfo);
- } else if (cinfo->jpeg_color_space == JCS_CMYK) {
- cconvert->pub.color_convert = null_convert;
- } else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- default:
- /* Permit null conversion to same output space */
- if (cinfo->out_color_space == cinfo->jpeg_color_space) {
- cinfo->out_color_components = cinfo->num_components;
- cconvert->pub.color_convert = null_convert;
- } else /* unsupported non-null conversion */
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
- }
-
- if (cinfo->quantize_colors)
- cinfo->output_components = 1; /* single colormapped output component */
- else
- cinfo->output_components = cinfo->out_color_components;
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jddctmgr.c b/core/src/fxcodec/libjpeg/fpdfapi_jddctmgr.c
deleted file mode 100644
index 5226456414..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jddctmgr.c
+++ /dev/null
@@ -1,272 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jddctmgr.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the inverse-DCT management logic.
- * This code selects a particular IDCT implementation to be used,
- * and it performs related housekeeping chores. No code in this file
- * is executed per IDCT step, only during output pass setup.
- *
- * Note that the IDCT routines are responsible for performing coefficient
- * dequantization as well as the IDCT proper. This module sets up the
- * dequantization multiplier table needed by the IDCT routine.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-
-/*
- * The decompressor input side (jdinput.c) saves away the appropriate
- * quantization table for each component at the start of the first scan
- * involving that component. (This is necessary in order to correctly
- * decode files that reuse Q-table slots.)
- * When we are ready to make an output pass, the saved Q-table is converted
- * to a multiplier table that will actually be used by the IDCT routine.
- * The multiplier table contents are IDCT-method-dependent. To support
- * application changes in IDCT method between scans, we can remake the
- * multiplier tables if necessary.
- * In buffered-image mode, the first output pass may occur before any data
- * has been seen for some components, and thus before their Q-tables have
- * been saved away. To handle this case, multiplier tables are preset
- * to zeroes; the result of the IDCT will be a neutral gray level.
- */
-
-
-/* Private subobject for this module */
-
-typedef struct {
- struct jpeg_inverse_dct pub; /* public fields */
-
- /* This array contains the IDCT method code that each multiplier table
- * is currently set up for, or -1 if it's not yet set up.
- * The actual multiplier tables are pointed to by dct_table in the
- * per-component comp_info structures.
- */
- int cur_method[MAX_COMPONENTS];
-} my_idct_controller;
-
-typedef my_idct_controller * my_idct_ptr;
-
-
-/* Allocated multiplier tables: big enough for any supported variant */
-
-typedef union {
- ISLOW_MULT_TYPE islow_array[DCTSIZE2];
-#ifdef DCT_IFAST_SUPPORTED
- IFAST_MULT_TYPE ifast_array[DCTSIZE2];
-#endif
-#ifdef DCT_FLOAT_SUPPORTED
- FLOAT_MULT_TYPE float_array[DCTSIZE2];
-#endif
-} multiplier_table;
-
-
-/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
- * so be sure to compile that code if either ISLOW or SCALING is requested.
- */
-#ifdef DCT_ISLOW_SUPPORTED
-#define PROVIDE_ISLOW_TABLES
-#else
-#ifdef IDCT_SCALING_SUPPORTED
-#define PROVIDE_ISLOW_TABLES
-#endif
-#endif
-
-
-/*
- * Prepare for an output pass.
- * Here we select the proper IDCT routine for each component and build
- * a matching multiplier table.
- */
-
-METHODDEF(void)
-start_pass (j_decompress_ptr cinfo)
-{
- my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
- int ci, i;
- jpeg_component_info *compptr;
- int method = 0;
- inverse_DCT_method_ptr method_ptr = NULL;
- JQUANT_TBL * qtbl;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Select the proper IDCT routine for this component's scaling */
- switch (compptr->DCT_scaled_size) {
-#ifdef IDCT_SCALING_SUPPORTED
- case 1:
- method_ptr = jpeg_idct_1x1;
- method = JDCT_ISLOW; /* jidctred uses islow-style table */
- break;
- case 2:
- method_ptr = jpeg_idct_2x2;
- method = JDCT_ISLOW; /* jidctred uses islow-style table */
- break;
- case 4:
- method_ptr = jpeg_idct_4x4;
- method = JDCT_ISLOW; /* jidctred uses islow-style table */
- break;
-#endif
- case DCTSIZE:
- switch (cinfo->dct_method) {
-#ifdef DCT_ISLOW_SUPPORTED
- case JDCT_ISLOW:
- method_ptr = jpeg_idct_islow;
- method = JDCT_ISLOW;
- break;
-#endif
-#ifdef DCT_IFAST_SUPPORTED
- case JDCT_IFAST:
- method_ptr = jpeg_idct_ifast;
- method = JDCT_IFAST;
- break;
-#endif
-#ifdef DCT_FLOAT_SUPPORTED
- case JDCT_FLOAT:
- method_ptr = jpeg_idct_float;
- method = JDCT_FLOAT;
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- break;
- }
- break;
- default:
- ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
- break;
- }
- idct->pub.inverse_DCT[ci] = method_ptr;
- /* Create multiplier table from quant table.
- * However, we can skip this if the component is uninteresting
- * or if we already built the table. Also, if no quant table
- * has yet been saved for the component, we leave the
- * multiplier table all-zero; we'll be reading zeroes from the
- * coefficient controller's buffer anyway.
- */
- if (! compptr->component_needed || idct->cur_method[ci] == method)
- continue;
- qtbl = compptr->quant_table;
- if (qtbl == NULL) /* happens if no data yet for component */
- continue;
- idct->cur_method[ci] = method;
- switch (method) {
-#ifdef PROVIDE_ISLOW_TABLES
- case JDCT_ISLOW:
- {
- /* For LL&M IDCT method, multipliers are equal to raw quantization
- * coefficients, but are stored as ints to ensure access efficiency.
- */
- ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
- for (i = 0; i < DCTSIZE2; i++) {
- ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
- }
- }
- break;
-#endif
-#ifdef DCT_IFAST_SUPPORTED
- case JDCT_IFAST:
- {
- /* For AA&N IDCT method, multipliers are equal to quantization
- * coefficients scaled by scalefactor[row]*scalefactor[col], where
- * scalefactor[0] = 1
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
- * For integer operation, the multiplier table is to be scaled by
- * IFAST_SCALE_BITS.
- */
- IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
-#define CONST_BITS 14
- static const INT16 aanscales[DCTSIZE2] = {
- /* precomputed values scaled up by 14 bits */
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
- 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
- 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
- 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
- 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
- 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
- 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
- };
- SHIFT_TEMPS
-
- for (i = 0; i < DCTSIZE2; i++) {
- ifmtbl[i] = (IFAST_MULT_TYPE)
- DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
- (INT32) aanscales[i]),
- CONST_BITS-IFAST_SCALE_BITS);
- }
- }
- break;
-#endif
-#ifdef DCT_FLOAT_SUPPORTED
- case JDCT_FLOAT:
- {
- /* For float AA&N IDCT method, multipliers are equal to quantization
- * coefficients scaled by scalefactor[row]*scalefactor[col], where
- * scalefactor[0] = 1
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
- */
- FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
- int row, col;
- static const double aanscalefactor[DCTSIZE] = {
- 1.0, 1.387039845, 1.306562965, 1.175875602,
- 1.0, 0.785694958, 0.541196100, 0.275899379
- };
-
- i = 0;
- for (row = 0; row < DCTSIZE; row++) {
- for (col = 0; col < DCTSIZE; col++) {
- fmtbl[i] = (FLOAT_MULT_TYPE)
- ((double) qtbl->quantval[i] *
- aanscalefactor[row] * aanscalefactor[col]);
- i++;
- }
- }
- }
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- break;
- }
- }
-}
-
-
-/*
- * Initialize IDCT manager.
- */
-
-GLOBAL(void)
-jinit_inverse_dct (j_decompress_ptr cinfo)
-{
- my_idct_ptr idct;
- int ci;
- jpeg_component_info *compptr;
-
- idct = (my_idct_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_idct_controller));
- cinfo->idct = (struct jpeg_inverse_dct *) idct;
- idct->pub.start_pass = start_pass;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Allocate and pre-zero a multiplier table for each component */
- compptr->dct_table =
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(multiplier_table));
- MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
- /* Mark multiplier table not yet set up for any method */
- idct->cur_method[ci] = -1;
- }
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jdhuff.c b/core/src/fxcodec/libjpeg/fpdfapi_jdhuff.c
deleted file mode 100644
index dc37db58a9..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jdhuff.c
+++ /dev/null
@@ -1,657 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jdhuff.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains Huffman entropy decoding routines.
- *
- * Much of the complexity here has to do with supporting input suspension.
- * If the data source module demands suspension, we want to be able to back
- * up to the start of the current MCU. To do this, we copy state variables
- * into local working storage, and update them back to the permanent
- * storage only upon successful completion of an MCU.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdhuff.h" /* Declarations shared with jdphuff.c */
-
-#ifdef _FX_MANAGED_CODE_
-#define savable_state savable_state_d
-#endif
-
-/*
- * Expanded entropy decoder object for Huffman decoding.
- *
- * The savable_state subrecord contains fields that change within an MCU,
- * but must not be updated permanently until we complete the MCU.
- */
-
-typedef struct {
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
-} savable_state;
-
-/* This macro is to work around compilers with missing or broken
- * structure assignment. You'll need to fix this code if you have
- * such a compiler and you change MAX_COMPS_IN_SCAN.
- */
-
-#ifndef NO_STRUCT_ASSIGN
-#define ASSIGN_STATE(dest,src) ((dest) = (src))
-#else
-#if MAX_COMPS_IN_SCAN == 4
-#define ASSIGN_STATE(dest,src) \
- ((dest).last_dc_val[0] = (src).last_dc_val[0], \
- (dest).last_dc_val[1] = (src).last_dc_val[1], \
- (dest).last_dc_val[2] = (src).last_dc_val[2], \
- (dest).last_dc_val[3] = (src).last_dc_val[3])
-#endif
-#endif
-
-
-typedef struct {
- struct jpeg_entropy_decoder pub; /* public fields */
-
- /* These fields are loaded into local variables at start of each MCU.
- * In case of suspension, we exit WITHOUT updating them.
- */
- bitread_perm_state bitstate; /* Bit buffer at start of MCU */
- savable_state saved; /* Other state at start of MCU */
-
- /* These fields are NOT loaded into local working state. */
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
-
- /* Pointers to derived tables (these workspaces have image lifespan) */
- d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
- d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
-
- /* Precalculated info set up by start_pass for use in decode_mcu: */
-
- /* Pointers to derived tables to be used for each block within an MCU */
- d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
- d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
- /* Whether we care about the DC and AC coefficient values for each block */
- boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
- boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
-} huff_entropy_decoder;
-
-typedef huff_entropy_decoder * huff_entropy_ptr;
-
-
-/*
- * Initialize for a Huffman-compressed scan.
- */
-
-METHODDEF(void)
-start_pass_huff_decoder (j_decompress_ptr cinfo)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci, blkn, dctbl, actbl;
- jpeg_component_info * compptr;
-
- /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
- * This ought to be an error condition, but we make it a warning because
- * there are some baseline files out there with all zeroes in these bytes.
- */
- if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
- cinfo->Ah != 0 || cinfo->Al != 0)
- WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- dctbl = compptr->dc_tbl_no;
- actbl = compptr->ac_tbl_no;
- /* Compute derived values for Huffman tables */
- /* We may do this more than once for a table, but it's not expensive */
- jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
- & entropy->dc_derived_tbls[dctbl]);
- jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
- & entropy->ac_derived_tbls[actbl]);
- /* Initialize DC predictions to 0 */
- entropy->saved.last_dc_val[ci] = 0;
- }
-
- /* Precalculate decoding info for each block in an MCU of this scan */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- /* Precalculate which table to use for each block */
- entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
- entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
- /* Decide whether we really care about the coefficient values */
- if (compptr->component_needed) {
- entropy->dc_needed[blkn] = TRUE;
- /* we don't need the ACs if producing a 1/8th-size image */
- entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
- } else {
- entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
- }
- }
-
- /* Initialize bitread state variables */
- entropy->bitstate.bits_left = 0;
- entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
- entropy->pub.insufficient_data = FALSE;
-
- /* Initialize restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
-}
-
-
-/*
- * Compute the derived values for a Huffman table.
- * This routine also performs some validation checks on the table.
- *
- * Note this is also used by jdphuff.c.
- */
-
-GLOBAL(void)
-jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
- d_derived_tbl ** pdtbl)
-{
- JHUFF_TBL *htbl;
- d_derived_tbl *dtbl;
- int p, i, l, _si, numsymbols;
- int lookbits, ctr;
- char huffsize[257];
- unsigned int huffcode[257];
- unsigned int code;
-
- /* Note that huffsize[] and huffcode[] are filled in code-length order,
- * paralleling the order of the symbols themselves in htbl->huffval[].
- */
-
- /* Find the input Huffman table */
- if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
- htbl =
- isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
- if (htbl == NULL)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
-
- /* Allocate a workspace if we haven't already done so. */
- if (*pdtbl == NULL)
- *pdtbl = (d_derived_tbl *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(d_derived_tbl));
- dtbl = *pdtbl;
- dtbl->pub = htbl; /* fill in back link */
-
- /* Figure C.1: make table of Huffman code length for each symbol */
-
- p = 0;
- for (l = 1; l <= 16; l++) {
- i = (int) htbl->bits[l];
- if (i < 0 || p + i > 256) /* protect against table overrun */
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- while (i--)
- huffsize[p++] = (char) l;
- }
- huffsize[p] = 0;
- numsymbols = p;
-
- /* Figure C.2: generate the codes themselves */
- /* We also validate that the counts represent a legal Huffman code tree. */
-
- code = 0;
- _si = huffsize[0];
- p = 0;
- while (huffsize[p]) {
- while (((int) huffsize[p]) == _si) {
- huffcode[p++] = code;
- code++;
- }
- /* code is now 1 more than the last code used for codelength si; but
- * it must still fit in si bits, since no code is allowed to be all ones.
- */
- if (((INT32) code) >= (((INT32) 1) << _si))
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- code <<= 1;
- _si++;
- }
-
- /* Figure F.15: generate decoding tables for bit-sequential decoding */
-
- p = 0;
- for (l = 1; l <= 16; l++) {
- if (htbl->bits[l]) {
- /* valoffset[l] = huffval[] index of 1st symbol of code length l,
- * minus the minimum code of length l
- */
- dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
- p += htbl->bits[l];
- dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
- } else {
- dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
- }
- }
- dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
-
- /* Compute lookahead tables to speed up decoding.
- * First we set all the table entries to 0, indicating "too long";
- * then we iterate through the Huffman codes that are short enough and
- * fill in all the entries that correspond to bit sequences starting
- * with that code.
- */
-
- MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
-
- p = 0;
- for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
- for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
- /* l = current code's length, p = its index in huffcode[] & huffval[]. */
- /* Generate left-justified code followed by all possible bit sequences */
- lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
- for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
- dtbl->look_nbits[lookbits] = l;
- dtbl->look_sym[lookbits] = htbl->huffval[p];
- lookbits++;
- }
- }
- }
-
- /* Validate symbols as being reasonable.
- * For AC tables, we make no check, but accept all byte values 0..255.
- * For DC tables, we require the symbols to be in range 0..15.
- * (Tighter bounds could be applied depending on the data depth and mode,
- * but this is sufficient to ensure safe decoding.)
- */
- if (isDC) {
- for (i = 0; i < numsymbols; i++) {
- int sym = htbl->huffval[i];
- if (sym < 0 || sym > 15)
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
- }
- }
-}
-
-
-/*
- * Out-of-line code for bit fetching (shared with jdphuff.c).
- * See jdhuff.h for info about usage.
- * Note: current values of get_buffer and bits_left are passed as parameters,
- * but are returned in the corresponding fields of the state struct.
- *
- * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
- * of get_buffer to be used. (On machines with wider words, an even larger
- * buffer could be used.) However, on some machines 32-bit shifts are
- * quite slow and take time proportional to the number of places shifted.
- * (This is true with most PC compilers, for instance.) In this case it may
- * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
- * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
- */
-
-#ifdef SLOW_SHIFT_32
-#define MIN_GET_BITS 15 /* minimum allowable value */
-#else
-#define MIN_GET_BITS (BIT_BUF_SIZE-7)
-#endif
-
-
-GLOBAL(boolean)
-jpeg_fill_bit_buffer (bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- int nbits)
-/* Load up the bit buffer to a depth of at least nbits */
-{
- /* Copy heavily used state fields into locals (hopefully registers) */
- register const JOCTET * next_input_byte = state->next_input_byte;
- register size_t bytes_in_buffer = state->bytes_in_buffer;
- j_decompress_ptr cinfo = state->cinfo;
-
- /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
- /* (It is assumed that no request will be for more than that many bits.) */
- /* We fail to do so only if we hit a marker or are forced to suspend. */
-
- if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
- while (bits_left < MIN_GET_BITS) {
- register int c;
-
- /* Attempt to read a byte */
- if (bytes_in_buffer == 0) {
- if (! (*cinfo->src->fill_input_buffer) (cinfo))
- return FALSE;
- next_input_byte = cinfo->src->next_input_byte;
- bytes_in_buffer = cinfo->src->bytes_in_buffer;
- }
- bytes_in_buffer--;
- c = GETJOCTET(*next_input_byte++);
-
- /* If it's 0xFF, check and discard stuffed zero byte */
- if (c == 0xFF) {
- /* Loop here to discard any padding FF's on terminating marker,
- * so that we can save a valid unread_marker value. NOTE: we will
- * accept multiple FF's followed by a 0 as meaning a single FF data
- * byte. This data pattern is not valid according to the standard.
- */
- do {
- if (bytes_in_buffer == 0) {
- if (! (*cinfo->src->fill_input_buffer) (cinfo))
- return FALSE;
- next_input_byte = cinfo->src->next_input_byte;
- bytes_in_buffer = cinfo->src->bytes_in_buffer;
- }
- bytes_in_buffer--;
- c = GETJOCTET(*next_input_byte++);
- } while (c == 0xFF);
-
- if (c == 0) {
- /* Found FF/00, which represents an FF data byte */
- c = 0xFF;
- } else {
- /* Oops, it's actually a marker indicating end of compressed data.
- * Save the marker code for later use.
- * Fine point: it might appear that we should save the marker into
- * bitread working state, not straight into permanent state. But
- * once we have hit a marker, we cannot need to suspend within the
- * current MCU, because we will read no more bytes from the data
- * source. So it is OK to update permanent state right away.
- */
- cinfo->unread_marker = c;
- /* See if we need to insert some fake zero bits. */
- goto no_more_bytes;
- }
- }
-
- /* OK, load c into get_buffer */
- get_buffer = (get_buffer << 8) | c;
- bits_left += 8;
- } /* end while */
- } else {
- no_more_bytes:
- /* We get here if we've read the marker that terminates the compressed
- * data segment. There should be enough bits in the buffer register
- * to satisfy the request; if so, no problem.
- */
- if (nbits > bits_left) {
- /* Uh-oh. Report corrupted data to user and stuff zeroes into
- * the data stream, so that we can produce some kind of image.
- * We use a nonvolatile flag to ensure that only one warning message
- * appears per data segment.
- */
- if (! cinfo->entropy->insufficient_data) {
- WARNMS(cinfo, JWRN_HIT_MARKER);
- cinfo->entropy->insufficient_data = TRUE;
- }
- /* Fill the buffer with zero bits */
- get_buffer <<= MIN_GET_BITS - bits_left;
- bits_left = MIN_GET_BITS;
- }
- }
-
- /* Unload the local registers */
- state->next_input_byte = next_input_byte;
- state->bytes_in_buffer = bytes_in_buffer;
- state->get_buffer = get_buffer;
- state->bits_left = bits_left;
-
- return TRUE;
-}
-
-
-/*
- * Out-of-line code for Huffman code decoding.
- * See jdhuff.h for info about usage.
- */
-
-GLOBAL(int)
-jpeg_huff_decode (bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- d_derived_tbl * htbl, int min_bits)
-{
- register int l = min_bits;
- register INT32 code;
-
- /* HUFF_DECODE has determined that the code is at least min_bits */
- /* bits long, so fetch that many bits in one swoop. */
-
- CHECK_BIT_BUFFER(*state, l, return -1);
- code = GET_BITS(l);
-
- /* Collect the rest of the Huffman code one bit at a time. */
- /* This is per Figure F.16 in the JPEG spec. */
-
- while (code > htbl->maxcode[l]) {
- code <<= 1;
- CHECK_BIT_BUFFER(*state, 1, return -1);
- code |= GET_BITS(1);
- l++;
- }
-
- /* Unload the local registers */
- state->get_buffer = get_buffer;
- state->bits_left = bits_left;
-
- /* With garbage input we may reach the sentinel value l = 17. */
-
- if (l > 16) {
- WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
- return 0; /* fake a zero as the safest result */
- }
-
- return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
-}
-
-
-/*
- * Figure F.12: extend sign bit.
- * On some machines, a shift and add will be faster than a table lookup.
- */
-
-#ifdef AVOID_TABLES
-
-#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
-
-#else
-
-#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
-
-static const int extend_test[16] = /* entry n is 2**(n-1) */
- { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
- 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
-
-static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
- { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
- ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
- ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
- ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
-
-#endif /* AVOID_TABLES */
-
-
-/*
- * Check for a restart marker & resynchronize decoder.
- * Returns FALSE if must suspend.
- */
-
-LOCAL(boolean)
-process_restart (j_decompress_ptr cinfo)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci;
-
- /* Throw away any unused bits remaining in bit buffer; */
- /* include any full bytes in next_marker's count of discarded bytes */
- cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
- entropy->bitstate.bits_left = 0;
-
- /* Advance past the RSTn marker */
- if (! (*cinfo->marker->read_restart_marker) (cinfo))
- return FALSE;
-
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++)
- entropy->saved.last_dc_val[ci] = 0;
-
- /* Reset restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
-
- /* Reset out-of-data flag, unless read_restart_marker left us smack up
- * against a marker. In that case we will end up treating the next data
- * segment as empty, and we can avoid producing bogus output pixels by
- * leaving the flag set.
- */
- if (cinfo->unread_marker == 0)
- entropy->pub.insufficient_data = FALSE;
-
- return TRUE;
-}
-
-
-/*
- * Decode and return one MCU's worth of Huffman-compressed coefficients.
- * The coefficients are reordered from zigzag order into natural array order,
- * but are not dequantized.
- *
- * The i'th block of the MCU is stored into the block pointed to by
- * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
- * (Wholesale zeroing is usually a little faster than retail...)
- *
- * Returns FALSE if data source requested suspension. In that case no
- * changes have been made to permanent state. (Exception: some output
- * coefficients may already have been assigned. This is harmless for
- * this module, since we'll just re-assign them on the next call.)
- */
-
-METHODDEF(boolean)
-decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int blkn;
- BITREAD_STATE_VARS;
- savable_state state;
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
-
- /* If we've run out of data, just leave the MCU set to zeroes.
- * This way, we return uniform gray for the remainder of the segment.
- */
- if (! entropy->pub.insufficient_data) {
-
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(state, entropy->saved);
-
- /* Outer loop handles each block in the MCU */
-
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- JBLOCKROW block = MCU_data[blkn];
- d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
- d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
- register int s, k, r;
-
- /* Decode a single block's worth of coefficients */
-
- /* Section F.2.2.1: decode the DC coefficient difference */
- HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
- if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- }
-
- if (entropy->dc_needed[blkn]) {
- /* Convert DC difference to actual value, update last_dc_val */
- int ci = cinfo->MCU_membership[blkn];
- s += state.last_dc_val[ci];
- state.last_dc_val[ci] = s;
- /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
- (*block)[0] = (JCOEF) s;
- }
-
- if (entropy->ac_needed[blkn]) {
-
- /* Section F.2.2.2: decode the AC coefficients */
- /* Since zeroes are skipped, output area must be cleared beforehand */
- for (k = 1; k < DCTSIZE2; k++) {
- HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
-
- r = s >> 4;
- s &= 15;
-
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- /* Output coefficient in natural (dezigzagged) order.
- * Note: the extra entries in jpeg_natural_order[] will save us
- * if k >= DCTSIZE2, which could happen if the data is corrupted.
- */
- (*block)[jpeg_natural_order[k]] = (JCOEF) s;
- } else {
- if (r != 15)
- break;
- k += 15;
- }
- }
-
- } else {
-
- /* Section F.2.2.2: decode the AC coefficients */
- /* In this path we just discard the values */
- for (k = 1; k < DCTSIZE2; k++) {
- HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
-
- r = s >> 4;
- s &= 15;
-
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
- } else {
- if (r != 15)
- break;
- k += 15;
- }
- }
-
- }
- }
-
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(entropy->saved, state);
- }
-
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
-
- return TRUE;
-}
-
-
-/*
- * Module initialization routine for Huffman entropy decoding.
- */
-
-GLOBAL(void)
-jinit_huff_decoder (j_decompress_ptr cinfo)
-{
- huff_entropy_ptr entropy;
- int i;
-
- entropy = (huff_entropy_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(huff_entropy_decoder));
- cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
- entropy->pub.start_pass = start_pass_huff_decoder;
- entropy->pub.decode_mcu = decode_mcu;
-
- /* Mark tables unallocated */
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
- }
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jdinput.c b/core/src/fxcodec/libjpeg/fpdfapi_jdinput.c
deleted file mode 100644
index 6e714e928e..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jdinput.c
+++ /dev/null
@@ -1,384 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jdinput.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains input control logic for the JPEG decompressor.
- * These routines are concerned with controlling the decompressor's input
- * processing (marker reading and coefficient decoding). The actual input
- * reading is done in jdmarker.c, jdhuff.c, and jdphuff.c.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private state */
-
-typedef struct {
- struct jpeg_input_controller pub; /* public fields */
-
- boolean inheaders; /* TRUE until first SOS is reached */
-} my_input_controller;
-
-typedef my_input_controller * my_inputctl_ptr;
-
-
-/* Forward declarations */
-METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo));
-
-
-/*
- * Routines to calculate various quantities related to the size of the image.
- */
-
-LOCAL(void)
-initial_setup (j_decompress_ptr cinfo)
-/* Called once, when first SOS marker is reached */
-{
- int ci;
- jpeg_component_info *compptr;
-
- /* Make sure image isn't bigger than I can handle */
- if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
- (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
- ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
-
- /* For now, precision must match compiled-in value... */
- if (cinfo->data_precision != BITS_IN_JSAMPLE)
- ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
-
- /* Check that number of components won't exceed internal array sizes */
- if (cinfo->num_components > MAX_COMPONENTS)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
- MAX_COMPONENTS);
-
- /* Compute maximum sampling factors; check factor validity */
- cinfo->max_h_samp_factor = 1;
- cinfo->max_v_samp_factor = 1;
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
- compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
- ERREXIT(cinfo, JERR_BAD_SAMPLING);
- cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
- compptr->h_samp_factor);
- cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
- compptr->v_samp_factor);
- }
-
- /* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE.
- * In the full decompressor, this will be overridden by jdmaster.c;
- * but in the transcoder, jdmaster.c is not used, so we must do it here.
- */
- cinfo->min_DCT_scaled_size = DCTSIZE;
-
- /* Compute dimensions of components */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- compptr->DCT_scaled_size = DCTSIZE;
- /* Size in DCT blocks */
- compptr->width_in_blocks = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
- (long) (cinfo->max_h_samp_factor * DCTSIZE));
- compptr->height_in_blocks = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
- (long) (cinfo->max_v_samp_factor * DCTSIZE));
- /* downsampled_width and downsampled_height will also be overridden by
- * jdmaster.c if we are doing full decompression. The transcoder library
- * doesn't use these values, but the calling application might.
- */
- /* Size in samples */
- compptr->downsampled_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
- (long) cinfo->max_h_samp_factor);
- compptr->downsampled_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
- (long) cinfo->max_v_samp_factor);
- /* Mark component needed, until color conversion says otherwise */
- compptr->component_needed = TRUE;
- /* Mark no quantization table yet saved for component */
- compptr->quant_table = NULL;
- }
-
- /* Compute number of fully interleaved MCU rows. */
- cinfo->total_iMCU_rows = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height,
- (long) (cinfo->max_v_samp_factor*DCTSIZE));
-
- /* Decide whether file contains multiple scans */
- if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
- cinfo->inputctl->has_multiple_scans = TRUE;
- else
- cinfo->inputctl->has_multiple_scans = FALSE;
-}
-
-
-LOCAL(void)
-per_scan_setup (j_decompress_ptr cinfo)
-/* Do computations that are needed before processing a JPEG scan */
-/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
-{
- int ci, mcublks, tmp;
- jpeg_component_info *compptr;
-
- if (cinfo->comps_in_scan == 1) {
-
- /* Noninterleaved (single-component) scan */
- compptr = cinfo->cur_comp_info[0];
-
- /* Overall image size in MCUs */
- cinfo->MCUs_per_row = compptr->width_in_blocks;
- cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
-
- /* For noninterleaved scan, always one block per MCU */
- compptr->MCU_width = 1;
- compptr->MCU_height = 1;
- compptr->MCU_blocks = 1;
- compptr->MCU_sample_width = compptr->DCT_scaled_size;
- compptr->last_col_width = 1;
- /* For noninterleaved scans, it is convenient to define last_row_height
- * as the number of block rows present in the last iMCU row.
- */
- tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
- if (tmp == 0) tmp = compptr->v_samp_factor;
- compptr->last_row_height = tmp;
-
- /* Prepare array describing MCU composition */
- cinfo->blocks_in_MCU = 1;
- cinfo->MCU_membership[0] = 0;
-
- } else {
-
- /* Interleaved (multi-component) scan */
- if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
- MAX_COMPS_IN_SCAN);
-
- /* Overall image size in MCUs */
- cinfo->MCUs_per_row = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width,
- (long) (cinfo->max_h_samp_factor*DCTSIZE));
- cinfo->MCU_rows_in_scan = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height,
- (long) (cinfo->max_v_samp_factor*DCTSIZE));
-
- cinfo->blocks_in_MCU = 0;
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Sampling factors give # of blocks of component in each MCU */
- compptr->MCU_width = compptr->h_samp_factor;
- compptr->MCU_height = compptr->v_samp_factor;
- compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
- compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_scaled_size;
- /* Figure number of non-dummy blocks in last MCU column & row */
- tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
- if (tmp == 0) tmp = compptr->MCU_width;
- compptr->last_col_width = tmp;
- tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
- if (tmp == 0) tmp = compptr->MCU_height;
- compptr->last_row_height = tmp;
- /* Prepare array describing MCU composition */
- mcublks = compptr->MCU_blocks;
- if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
- ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
- while (mcublks-- > 0) {
- cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
- }
- }
-
- }
-}
-
-
-/*
- * Save away a copy of the Q-table referenced by each component present
- * in the current scan, unless already saved during a prior scan.
- *
- * In a multiple-scan JPEG file, the encoder could assign different components
- * the same Q-table slot number, but change table definitions between scans
- * so that each component uses a different Q-table. (The IJG encoder is not
- * currently capable of doing this, but other encoders might.) Since we want
- * to be able to dequantize all the components at the end of the file, this
- * means that we have to save away the table actually used for each component.
- * We do this by copying the table at the start of the first scan containing
- * the component.
- * The JPEG spec prohibits the encoder from changing the contents of a Q-table
- * slot between scans of a component using that slot. If the encoder does so
- * anyway, this decoder will simply use the Q-table values that were current
- * at the start of the first scan for the component.
- *
- * The decompressor output side looks only at the saved quant tables,
- * not at the current Q-table slots.
- */
-
-LOCAL(void)
-latch_quant_tables (j_decompress_ptr cinfo)
-{
- int ci, qtblno;
- jpeg_component_info *compptr;
- JQUANT_TBL * qtbl;
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* No work if we already saved Q-table for this component */
- if (compptr->quant_table != NULL)
- continue;
- /* Make sure specified quantization table is present */
- qtblno = compptr->quant_tbl_no;
- if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
- cinfo->quant_tbl_ptrs[qtblno] == NULL)
- ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
- /* OK, save away the quantization table */
- qtbl = (JQUANT_TBL *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(JQUANT_TBL));
- MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
- compptr->quant_table = qtbl;
- }
-}
-
-
-/*
- * Initialize the input modules to read a scan of compressed data.
- * The first call to this is done by jdmaster.c after initializing
- * the entire decompressor (during jpeg_start_decompress).
- * Subsequent calls come from consume_markers, below.
- */
-
-METHODDEF(void)
-start_input_pass (j_decompress_ptr cinfo)
-{
- per_scan_setup(cinfo);
- latch_quant_tables(cinfo);
- (*cinfo->entropy->start_pass) (cinfo);
- (*cinfo->coef->start_input_pass) (cinfo);
- cinfo->inputctl->consume_input = cinfo->coef->consume_data;
-}
-
-
-/*
- * Finish up after inputting a compressed-data scan.
- * This is called by the coefficient controller after it's read all
- * the expected data of the scan.
- */
-
-METHODDEF(void)
-finish_input_pass (j_decompress_ptr cinfo)
-{
- cinfo->inputctl->consume_input = consume_markers;
-}
-
-
-/*
- * Read JPEG markers before, between, or after compressed-data scans.
- * Change state as necessary when a new scan is reached.
- * Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
- *
- * The consume_input method pointer points either here or to the
- * coefficient controller's consume_data routine, depending on whether
- * we are reading a compressed data segment or inter-segment markers.
- */
-
-METHODDEF(int)
-consume_markers (j_decompress_ptr cinfo)
-{
- my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
- int val;
-
- if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
- return JPEG_REACHED_EOI;
-
- val = (*cinfo->marker->read_markers) (cinfo);
-
- switch (val) {
- case JPEG_REACHED_SOS: /* Found SOS */
- if (inputctl->inheaders) { /* 1st SOS */
- initial_setup(cinfo);
- inputctl->inheaders = FALSE;
- /* Note: start_input_pass must be called by jdmaster.c
- * before any more input can be consumed. jdapimin.c is
- * responsible for enforcing this sequencing.
- */
- } else { /* 2nd or later SOS marker */
- if (! inputctl->pub.has_multiple_scans)
- ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
- start_input_pass(cinfo);
- }
- break;
- case JPEG_REACHED_EOI: /* Found EOI */
- inputctl->pub.eoi_reached = TRUE;
- if (inputctl->inheaders) { /* Tables-only datastream, apparently */
- if (cinfo->marker->saw_SOF)
- ERREXIT(cinfo, JERR_SOF_NO_SOS);
- } else {
- /* Prevent infinite loop in coef ctlr's decompress_data routine
- * if user set output_scan_number larger than number of scans.
- */
- if (cinfo->output_scan_number > cinfo->input_scan_number)
- cinfo->output_scan_number = cinfo->input_scan_number;
- }
- break;
- case JPEG_SUSPENDED:
- break;
- }
-
- return val;
-}
-
-
-/*
- * Reset state to begin a fresh datastream.
- */
-
-METHODDEF(void)
-reset_input_controller (j_decompress_ptr cinfo)
-{
- my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
-
- inputctl->pub.consume_input = consume_markers;
- inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
- inputctl->pub.eoi_reached = FALSE;
- inputctl->inheaders = TRUE;
- /* Reset other modules */
- (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
- (*cinfo->marker->reset_marker_reader) (cinfo);
- /* Reset progression state -- would be cleaner if entropy decoder did this */
- cinfo->coef_bits = NULL;
-}
-
-
-/*
- * Initialize the input controller module.
- * This is called only once, when the decompression object is created.
- */
-
-GLOBAL(void)
-jinit_input_controller (j_decompress_ptr cinfo)
-{
- my_inputctl_ptr inputctl;
-
- /* Create subobject in permanent pool */
- inputctl = (my_inputctl_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- SIZEOF(my_input_controller));
- cinfo->inputctl = (struct jpeg_input_controller *) inputctl;
- /* Initialize method pointers */
- inputctl->pub.consume_input = consume_markers;
- inputctl->pub.reset_input_controller = reset_input_controller;
- inputctl->pub.start_input_pass = start_input_pass;
- inputctl->pub.finish_input_pass = finish_input_pass;
- /* Initialize state: can't use reset_input_controller since we don't
- * want to try to reset other modules yet.
- */
- inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
- inputctl->pub.eoi_reached = FALSE;
- inputctl->inheaders = TRUE;
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jdmainct.c b/core/src/fxcodec/libjpeg/fpdfapi_jdmainct.c
deleted file mode 100644
index 1483e6fff0..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jdmainct.c
+++ /dev/null
@@ -1,515 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jdmainct.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the main buffer controller for decompression.
- * The main buffer lies between the JPEG decompressor proper and the
- * post-processor; it holds downsampled data in the JPEG colorspace.
- *
- * Note that this code is bypassed in raw-data mode, since the application
- * supplies the equivalent of the main buffer in that case.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * In the current system design, the main buffer need never be a full-image
- * buffer; any full-height buffers will be found inside the coefficient or
- * postprocessing controllers. Nonetheless, the main controller is not
- * trivial. Its responsibility is to provide context rows for upsampling/
- * rescaling, and doing this in an efficient fashion is a bit tricky.
- *
- * Postprocessor input data is counted in "row groups". A row group
- * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
- * sample rows of each component. (We require DCT_scaled_size values to be
- * chosen such that these numbers are integers. In practice DCT_scaled_size
- * values will likely be powers of two, so we actually have the stronger
- * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
- * Upsampling will typically produce max_v_samp_factor pixel rows from each
- * row group (times any additional scale factor that the upsampler is
- * applying).
- *
- * The coefficient controller will deliver data to us one iMCU row at a time;
- * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
- * exactly min_DCT_scaled_size row groups. (This amount of data corresponds
- * to one row of MCUs when the image is fully interleaved.) Note that the
- * number of sample rows varies across components, but the number of row
- * groups does not. Some garbage sample rows may be included in the last iMCU
- * row at the bottom of the image.
- *
- * Depending on the vertical scaling algorithm used, the upsampler may need
- * access to the sample row(s) above and below its current input row group.
- * The upsampler is required to set need_context_rows TRUE at global selection
- * time if so. When need_context_rows is FALSE, this controller can simply
- * obtain one iMCU row at a time from the coefficient controller and dole it
- * out as row groups to the postprocessor.
- *
- * When need_context_rows is TRUE, this controller guarantees that the buffer
- * passed to postprocessing contains at least one row group's worth of samples
- * above and below the row group(s) being processed. Note that the context
- * rows "above" the first passed row group appear at negative row offsets in
- * the passed buffer. At the top and bottom of the image, the required
- * context rows are manufactured by duplicating the first or last real sample
- * row; this avoids having special cases in the upsampling inner loops.
- *
- * The amount of context is fixed at one row group just because that's a
- * convenient number for this controller to work with. The existing
- * upsamplers really only need one sample row of context. An upsampler
- * supporting arbitrary output rescaling might wish for more than one row
- * group of context when shrinking the image; tough, we don't handle that.
- * (This is justified by the assumption that downsizing will be handled mostly
- * by adjusting the DCT_scaled_size values, so that the actual scale factor at
- * the upsample step needn't be much less than one.)
- *
- * To provide the desired context, we have to retain the last two row groups
- * of one iMCU row while reading in the next iMCU row. (The last row group
- * can't be processed until we have another row group for its below-context,
- * and so we have to save the next-to-last group too for its above-context.)
- * We could do this most simply by copying data around in our buffer, but
- * that'd be very slow. We can avoid copying any data by creating a rather
- * strange pointer structure. Here's how it works. We allocate a workspace
- * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
- * of row groups per iMCU row). We create two sets of redundant pointers to
- * the workspace. Labeling the physical row groups 0 to M+1, the synthesized
- * pointer lists look like this:
- * M+1 M-1
- * master pointer --> 0 master pointer --> 0
- * 1 1
- * ... ...
- * M-3 M-3
- * M-2 M
- * M-1 M+1
- * M M-2
- * M+1 M-1
- * 0 0
- * We read alternate iMCU rows using each master pointer; thus the last two
- * row groups of the previous iMCU row remain un-overwritten in the workspace.
- * The pointer lists are set up so that the required context rows appear to
- * be adjacent to the proper places when we pass the pointer lists to the
- * upsampler.
- *
- * The above pictures describe the normal state of the pointer lists.
- * At top and bottom of the image, we diddle the pointer lists to duplicate
- * the first or last sample row as necessary (this is cheaper than copying
- * sample rows around).
- *
- * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
- * situation each iMCU row provides only one row group so the buffering logic
- * must be different (eg, we must read two iMCU rows before we can emit the
- * first row group). For now, we simply do not support providing context
- * rows when min_DCT_scaled_size is 1. That combination seems unlikely to
- * be worth providing --- if someone wants a 1/8th-size preview, they probably
- * want it quick and dirty, so a context-free upsampler is sufficient.
- */
-
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_d_main_controller pub; /* public fields */
-
- /* Pointer to allocated workspace (M or M+2 row groups). */
- JSAMPARRAY buffer[MAX_COMPONENTS];
-
- boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
- JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
-
- /* Remaining fields are only used in the context case. */
-
- /* These are the master pointers to the funny-order pointer lists. */
- JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
-
- int whichptr; /* indicates which pointer set is now in use */
- int context_state; /* process_data state machine status */
- JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
- JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
-} my_main_controller;
-
-typedef my_main_controller * my_main_ptr;
-
-/* context_state values: */
-#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
-#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
-#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
-
-
-/* Forward declarations */
-METHODDEF(void) process_data_simple_main
- JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
- JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
-METHODDEF(void) process_data_context_main
- JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
- JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
-#ifdef QUANT_2PASS_SUPPORTED
-METHODDEF(void) process_data_crank_post
- JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
- JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
-#endif
-
-
-LOCAL(void)
-alloc_funny_pointers (j_decompress_ptr cinfo)
-/* Allocate space for the funny pointer lists.
- * This is done only once, not once per pass.
- */
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
- int ci, rgroup;
- int M = cinfo->min_DCT_scaled_size;
- jpeg_component_info *compptr;
- JSAMPARRAY xbuf;
-
- /* Get top-level space for component array pointers.
- * We alloc both arrays with one call to save a few cycles.
- */
- main->xbuffer[0] = (JSAMPIMAGE)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
- main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
- cinfo->min_DCT_scaled_size; /* height of a row group of component */
- /* Get space for pointer lists --- M+4 row groups in each list.
- * We alloc both pointer lists with one call to save a few cycles.
- */
- xbuf = (JSAMPARRAY)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
- xbuf += rgroup; /* want one row group at negative offsets */
- main->xbuffer[0][ci] = xbuf;
- xbuf += rgroup * (M + 4);
- main->xbuffer[1][ci] = xbuf;
- }
-}
-
-
-LOCAL(void)
-make_funny_pointers (j_decompress_ptr cinfo)
-/* Create the funny pointer lists discussed in the comments above.
- * The actual workspace is already allocated (in main->buffer),
- * and the space for the pointer lists is allocated too.
- * This routine just fills in the curiously ordered lists.
- * This will be repeated at the beginning of each pass.
- */
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
- int ci, i, rgroup;
- int M = cinfo->min_DCT_scaled_size;
- jpeg_component_info *compptr;
- JSAMPARRAY buf, xbuf0, xbuf1;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
- cinfo->min_DCT_scaled_size; /* height of a row group of component */
- xbuf0 = main->xbuffer[0][ci];
- xbuf1 = main->xbuffer[1][ci];
- /* First copy the workspace pointers as-is */
- buf = main->buffer[ci];
- for (i = 0; i < rgroup * (M + 2); i++) {
- xbuf0[i] = xbuf1[i] = buf[i];
- }
- /* In the second list, put the last four row groups in swapped order */
- for (i = 0; i < rgroup * 2; i++) {
- xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
- xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
- }
- /* The wraparound pointers at top and bottom will be filled later
- * (see set_wraparound_pointers, below). Initially we want the "above"
- * pointers to duplicate the first actual data line. This only needs
- * to happen in xbuffer[0].
- */
- for (i = 0; i < rgroup; i++) {
- xbuf0[i - rgroup] = xbuf0[0];
- }
- }
-}
-
-
-LOCAL(void)
-set_wraparound_pointers (j_decompress_ptr cinfo)
-/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
- * This changes the pointer list state from top-of-image to the normal state.
- */
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
- int ci, i, rgroup;
- int M = cinfo->min_DCT_scaled_size;
- jpeg_component_info *compptr;
- JSAMPARRAY xbuf0, xbuf1;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
- cinfo->min_DCT_scaled_size; /* height of a row group of component */
- xbuf0 = main->xbuffer[0][ci];
- xbuf1 = main->xbuffer[1][ci];
- for (i = 0; i < rgroup; i++) {
- xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
- xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
- xbuf0[rgroup*(M+2) + i] = xbuf0[i];
- xbuf1[rgroup*(M+2) + i] = xbuf1[i];
- }
- }
-}
-
-
-LOCAL(void)
-set_bottom_pointers (j_decompress_ptr cinfo)
-/* Change the pointer lists to duplicate the last sample row at the bottom
- * of the image. whichptr indicates which xbuffer holds the final iMCU row.
- * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
- */
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
- int ci, i, rgroup, iMCUheight, rows_left;
- jpeg_component_info *compptr;
- JSAMPARRAY xbuf;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Count sample rows in one iMCU row and in one row group */
- iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size;
- rgroup = iMCUheight / cinfo->min_DCT_scaled_size;
- /* Count nondummy sample rows remaining for this component */
- rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
- if (rows_left == 0) rows_left = iMCUheight;
- /* Count nondummy row groups. Should get same answer for each component,
- * so we need only do it once.
- */
- if (ci == 0) {
- main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
- }
- /* Duplicate the last real sample row rgroup*2 times; this pads out the
- * last partial rowgroup and ensures at least one full rowgroup of context.
- */
- xbuf = main->xbuffer[main->whichptr][ci];
- for (i = 0; i < rgroup * 2; i++) {
- xbuf[rows_left + i] = xbuf[rows_left-1];
- }
- }
-}
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF(void)
-start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
-
- switch (pass_mode) {
- case JBUF_PASS_THRU:
- if (cinfo->upsample->need_context_rows) {
- main->pub.process_data = process_data_context_main;
- make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
- main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
- main->context_state = CTX_PREPARE_FOR_IMCU;
- main->iMCU_row_ctr = 0;
- } else {
- /* Simple case with no context needed */
- main->pub.process_data = process_data_simple_main;
- }
- main->buffer_full = FALSE; /* Mark buffer empty */
- main->rowgroup_ctr = 0;
- break;
-#ifdef QUANT_2PASS_SUPPORTED
- case JBUF_CRANK_DEST:
- /* For last pass of 2-pass quantization, just crank the postprocessor */
- main->pub.process_data = process_data_crank_post;
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- break;
- }
-}
-
-
-/*
- * Process some data.
- * This handles the simple case where no context is required.
- */
-
-METHODDEF(void)
-process_data_simple_main (j_decompress_ptr cinfo,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
- JDIMENSION rowgroups_avail;
-
- /* Read input data if we haven't filled the main buffer yet */
- if (! main->buffer_full) {
- if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
- return; /* suspension forced, can do nothing more */
- main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
- }
-
- /* There are always min_DCT_scaled_size row groups in an iMCU row. */
- rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size;
- /* Note: at the bottom of the image, we may pass extra garbage row groups
- * to the postprocessor. The postprocessor has to check for bottom
- * of image anyway (at row resolution), so no point in us doing it too.
- */
-
- /* Feed the postprocessor */
- (*cinfo->post->post_process_data) (cinfo, main->buffer,
- &main->rowgroup_ctr, rowgroups_avail,
- output_buf, out_row_ctr, out_rows_avail);
-
- /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
- if (main->rowgroup_ctr >= rowgroups_avail) {
- main->buffer_full = FALSE;
- main->rowgroup_ctr = 0;
- }
-}
-
-
-/*
- * Process some data.
- * This handles the case where context rows must be provided.
- */
-
-METHODDEF(void)
-process_data_context_main (j_decompress_ptr cinfo,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
-
- /* Read input data if we haven't filled the main buffer yet */
- if (! main->buffer_full) {
- if (! (*cinfo->coef->decompress_data) (cinfo,
- main->xbuffer[main->whichptr]))
- return; /* suspension forced, can do nothing more */
- main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
- main->iMCU_row_ctr++; /* count rows received */
- }
-
- /* Postprocessor typically will not swallow all the input data it is handed
- * in one call (due to filling the output buffer first). Must be prepared
- * to exit and restart. This switch lets us keep track of how far we got.
- * Note that each case falls through to the next on successful completion.
- */
- switch (main->context_state) {
- case CTX_POSTPONED_ROW:
- /* Call postprocessor using previously set pointers for postponed row */
- (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
- &main->rowgroup_ctr, main->rowgroups_avail,
- output_buf, out_row_ctr, out_rows_avail);
- if (main->rowgroup_ctr < main->rowgroups_avail)
- return; /* Need to suspend */
- main->context_state = CTX_PREPARE_FOR_IMCU;
- if (*out_row_ctr >= out_rows_avail)
- return; /* Postprocessor exactly filled output buf */
- /*FALLTHROUGH*/
- case CTX_PREPARE_FOR_IMCU:
- /* Prepare to process first M-1 row groups of this iMCU row */
- main->rowgroup_ctr = 0;
- main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size - 1);
- /* Check for bottom of image: if so, tweak pointers to "duplicate"
- * the last sample row, and adjust rowgroups_avail to ignore padding rows.
- */
- if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
- set_bottom_pointers(cinfo);
- main->context_state = CTX_PROCESS_IMCU;
- /*FALLTHROUGH*/
- case CTX_PROCESS_IMCU:
- /* Call postprocessor using previously set pointers */
- (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
- &main->rowgroup_ctr, main->rowgroups_avail,
- output_buf, out_row_ctr, out_rows_avail);
- if (main->rowgroup_ctr < main->rowgroups_avail)
- return; /* Need to suspend */
- /* After the first iMCU, change wraparound pointers to normal state */
- if (main->iMCU_row_ctr == 1)
- set_wraparound_pointers(cinfo);
- /* Prepare to load new iMCU row using other xbuffer list */
- main->whichptr ^= 1; /* 0=>1 or 1=>0 */
- main->buffer_full = FALSE;
- /* Still need to process last row group of this iMCU row, */
- /* which is saved at index M+1 of the other xbuffer */
- main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_scaled_size + 1);
- main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size + 2);
- main->context_state = CTX_POSTPONED_ROW;
- }
-}
-
-
-/*
- * Process some data.
- * Final pass of two-pass quantization: just call the postprocessor.
- * Source data will be the postprocessor controller's internal buffer.
- */
-
-#ifdef QUANT_2PASS_SUPPORTED
-
-METHODDEF(void)
-process_data_crank_post (j_decompress_ptr cinfo,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
- (JDIMENSION *) NULL, (JDIMENSION) 0,
- output_buf, out_row_ctr, out_rows_avail);
-}
-
-#endif /* QUANT_2PASS_SUPPORTED */
-
-
-/*
- * Initialize main buffer controller.
- */
-
-GLOBAL(void)
-jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
-{
- my_main_ptr main;
- int ci, rgroup, ngroups;
- jpeg_component_info *compptr;
-
- main = (my_main_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_main_controller));
- cinfo->main = (struct jpeg_d_main_controller *) main;
- main->pub.start_pass = start_pass_main;
-
- if (need_full_buffer) /* shouldn't happen */
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-
- /* Allocate the workspace.
- * ngroups is the number of row groups we need.
- */
- if (cinfo->upsample->need_context_rows) {
- if (cinfo->min_DCT_scaled_size < 2) /* unsupported, see comments above */
- ERREXIT(cinfo, JERR_NOTIMPL);
- alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
- ngroups = cinfo->min_DCT_scaled_size + 2;
- } else {
- ngroups = cinfo->min_DCT_scaled_size;
- }
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
- cinfo->min_DCT_scaled_size; /* height of a row group of component */
- main->buffer[ci] = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- compptr->width_in_blocks * compptr->DCT_scaled_size,
- (JDIMENSION) (rgroup * ngroups));
- }
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jdmarker.c b/core/src/fxcodec/libjpeg/fpdfapi_jdmarker.c
deleted file mode 100644
index bcd017f920..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jdmarker.c
+++ /dev/null
@@ -1,1396 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jdmarker.c
- *
- * Copyright (C) 1991-1998, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains routines to decode JPEG datastream markers.
- * Most of the complexity arises from our desire to support input
- * suspension: if not all of the data for a marker is available,
- * we must exit back to the application. On resumption, we reprocess
- * the marker.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-typedef enum { /* JPEG marker codes */
- M_SOF0 = 0xc0,
- M_SOF1 = 0xc1,
- M_SOF2 = 0xc2,
- M_SOF3 = 0xc3,
-
- M_SOF5 = 0xc5,
- M_SOF6 = 0xc6,
- M_SOF7 = 0xc7,
-
- M_JPG = 0xc8,
- M_SOF9 = 0xc9,
- M_SOF10 = 0xca,
- M_SOF11 = 0xcb,
-
- M_SOF13 = 0xcd,
- M_SOF14 = 0xce,
- M_SOF15 = 0xcf,
-
- M_DHT = 0xc4,
-
- M_DAC = 0xcc,
-
- M_RST0 = 0xd0,
- M_RST1 = 0xd1,
- M_RST2 = 0xd2,
- M_RST3 = 0xd3,
- M_RST4 = 0xd4,
- M_RST5 = 0xd5,
- M_RST6 = 0xd6,
- M_RST7 = 0xd7,
-
- M_SOI = 0xd8,
- M_EOI = 0xd9,
- M_SOS = 0xda,
- M_DQT = 0xdb,
- M_DNL = 0xdc,
- M_DRI = 0xdd,
- M_DHP = 0xde,
- M_EXP = 0xdf,
-
- M_APP0 = 0xe0,
- M_APP1 = 0xe1,
- M_APP2 = 0xe2,
- M_APP3 = 0xe3,
- M_APP4 = 0xe4,
- M_APP5 = 0xe5,
- M_APP6 = 0xe6,
- M_APP7 = 0xe7,
- M_APP8 = 0xe8,
- M_APP9 = 0xe9,
- M_APP10 = 0xea,
- M_APP11 = 0xeb,
- M_APP12 = 0xec,
- M_APP13 = 0xed,
- M_APP14 = 0xee,
- M_APP15 = 0xef,
-
- M_JPG0 = 0xf0,
- M_JPG13 = 0xfd,
- M_COM = 0xfe,
-
- M_TEM = 0x01,
-
- M_ERROR = 0x100
-} JPEG_MARKER;
-
-
-/* Private state */
-
-typedef struct {
- struct jpeg_marker_reader pub; /* public fields */
-
- /* Application-overridable marker processing methods */
- jpeg_marker_parser_method process_COM;
- jpeg_marker_parser_method process_APPn[16];
-
- /* Limit on marker data length to save for each marker type */
- unsigned int length_limit_COM;
- unsigned int length_limit_APPn[16];
-
- /* Status of COM/APPn marker saving */
- jpeg_saved_marker_ptr cur_marker; /* NULL if not processing a marker */
- unsigned int bytes_read; /* data bytes read so far in marker */
- /* Note: cur_marker is not linked into marker_list until it's all read. */
-} my_marker_reader;
-
-typedef my_marker_reader * my_marker_ptr;
-
-
-/*
- * Macros for fetching data from the data source module.
- *
- * At all times, cinfo->src->next_input_byte and ->bytes_in_buffer reflect
- * the current restart point; we update them only when we have reached a
- * suitable place to restart if a suspension occurs.
- */
-
-/* Declare and initialize local copies of input pointer/count */
-#define INPUT_VARS(cinfo) \
- struct jpeg_source_mgr * datasrc = (cinfo)->src; \
- const JOCTET * next_input_byte = datasrc->next_input_byte; \
- size_t bytes_in_buffer = datasrc->bytes_in_buffer
-
-/* Unload the local copies --- do this only at a restart boundary */
-#define INPUT_SYNC(cinfo) \
- ( datasrc->next_input_byte = next_input_byte, \
- datasrc->bytes_in_buffer = bytes_in_buffer )
-
-/* Reload the local copies --- used only in MAKE_BYTE_AVAIL */
-#define INPUT_RELOAD(cinfo) \
- ( next_input_byte = datasrc->next_input_byte, \
- bytes_in_buffer = datasrc->bytes_in_buffer )
-
-/* Internal macro for INPUT_BYTE and INPUT_2BYTES: make a byte available.
- * Note we do *not* do INPUT_SYNC before calling fill_input_buffer,
- * but we must reload the local copies after a successful fill.
- */
-#define MAKE_BYTE_AVAIL(cinfo,action) \
- if (bytes_in_buffer == 0) { \
- if (! (*datasrc->fill_input_buffer) (cinfo)) \
- { action; } \
- INPUT_RELOAD(cinfo); \
- }
-
-/* Read a byte into variable V.
- * If must suspend, take the specified action (typically "return FALSE").
- */
-#define INPUT_BYTE(cinfo,V,action) \
- MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
- bytes_in_buffer--; \
- V = GETJOCTET(*next_input_byte++); )
-
-/* As above, but read two bytes interpreted as an unsigned 16-bit integer.
- * V should be declared unsigned int or perhaps INT32.
- */
-#define INPUT_2BYTES(cinfo,V,action) \
- MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
- bytes_in_buffer--; \
- V = ((unsigned int) GETJOCTET(*next_input_byte++)) << 8; \
- MAKE_BYTE_AVAIL(cinfo,action); \
- bytes_in_buffer--; \
- V += GETJOCTET(*next_input_byte++); )
-
-
-/*
- * Routines to process JPEG markers.
- *
- * Entry condition: JPEG marker itself has been read and its code saved
- * in cinfo->unread_marker; input restart point is just after the marker.
- *
- * Exit: if return TRUE, have read and processed any parameters, and have
- * updated the restart point to point after the parameters.
- * If return FALSE, was forced to suspend before reaching end of
- * marker parameters; restart point has not been moved. Same routine
- * will be called again after application supplies more input data.
- *
- * This approach to suspension assumes that all of a marker's parameters
- * can fit into a single input bufferload. This should hold for "normal"
- * markers. Some COM/APPn markers might have large parameter segments
- * that might not fit. If we are simply dropping such a marker, we use
- * skip_input_data to get past it, and thereby put the problem on the
- * source manager's shoulders. If we are saving the marker's contents
- * into memory, we use a slightly different convention: when forced to
- * suspend, the marker processor updates the restart point to the end of
- * what it's consumed (ie, the end of the buffer) before returning FALSE.
- * On resumption, cinfo->unread_marker still contains the marker code,
- * but the data source will point to the next chunk of marker data.
- * The marker processor must retain internal state to deal with this.
- *
- * Note that we don't bother to avoid duplicate trace messages if a
- * suspension occurs within marker parameters. Other side effects
- * require more care.
- */
-
-
-LOCAL(boolean)
-get_soi (j_decompress_ptr cinfo)
-/* Process an SOI marker */
-{
- int i;
-
- TRACEMS(cinfo, 1, JTRC_SOI);
-
- if (cinfo->marker->saw_SOI)
- ERREXIT(cinfo, JERR_SOI_DUPLICATE);
-
- /* Reset all parameters that are defined to be reset by SOI */
-
- for (i = 0; i < NUM_ARITH_TBLS; i++) {
- cinfo->arith_dc_L[i] = 0;
- cinfo->arith_dc_U[i] = 1;
- cinfo->arith_ac_K[i] = 5;
- }
- cinfo->restart_interval = 0;
-
- /* Set initial assumptions for colorspace etc */
-
- cinfo->jpeg_color_space = JCS_UNKNOWN;
- cinfo->CCIR601_sampling = FALSE; /* Assume non-CCIR sampling??? */
-
- cinfo->saw_JFIF_marker = FALSE;
- cinfo->JFIF_major_version = 1; /* set default JFIF APP0 values */
- cinfo->JFIF_minor_version = 1;
- cinfo->density_unit = 0;
- cinfo->X_density = 1;
- cinfo->Y_density = 1;
- cinfo->saw_Adobe_marker = FALSE;
- cinfo->Adobe_transform = 0;
-
- cinfo->marker->saw_SOI = TRUE;
-
- return TRUE;
-}
-
-
-LOCAL(boolean)
-get_sof (j_decompress_ptr cinfo, boolean is_prog, boolean is_arith)
-/* Process a SOFn marker */
-{
- INT32 length;
- int c, ci;
- jpeg_component_info * compptr;
- /* LiuSunliang added 20111209 */
- JDIMENSION image_width, image_height;
- INPUT_VARS(cinfo);
-
- cinfo->progressive_mode = is_prog;
- cinfo->arith_code = is_arith;
-
- INPUT_2BYTES(cinfo, length, return FALSE);
-
- INPUT_BYTE(cinfo, cinfo->data_precision, return FALSE);
- INPUT_2BYTES(cinfo, image_height, return FALSE);
- INPUT_2BYTES(cinfo, image_width, return FALSE);
- INPUT_BYTE(cinfo, cinfo->num_components, return FALSE);
-
- if (image_width <= JPEG_MAX_DIMENSION)
- cinfo->image_width = image_width;
-
- if (image_height <= JPEG_MAX_DIMENSION)
- cinfo->image_height = image_height;
-
- length -= 8;
-
- TRACEMS4(cinfo, 1, JTRC_SOF, cinfo->unread_marker,
- (int) cinfo->image_width, (int) cinfo->image_height,
- cinfo->num_components);
-
- if (cinfo->marker->saw_SOF)
- ERREXIT(cinfo, JERR_SOF_DUPLICATE);
-
- /* We don't support files in which the image height is initially specified */
- /* as 0 and is later redefined by DNL. As long as we have to check that, */
- /* might as well have a general sanity check. */
- if (cinfo->image_height <= 0 || cinfo->image_width <= 0
- || cinfo->num_components <= 0)
- ERREXIT(cinfo, JERR_EMPTY_IMAGE);
-
- if (length != (cinfo->num_components * 3))
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- if (cinfo->comp_info == NULL) /* do only once, even if suspend */
- cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->num_components * SIZEOF(jpeg_component_info));
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- compptr->component_index = ci;
- INPUT_BYTE(cinfo, compptr->component_id, return FALSE);
- /* XYQ 2008-03-25: Adobe CMYK JPEG has serious flaw: the K channel has same component id as C channel */
- {
- int i;
- for (i = 0; i < ci; i ++)
- if (compptr->component_id == cinfo->comp_info[i].component_id) break;
- if (i < ci)
- /* Found the error! We replace the id with something unlikely used elsewhere */
- compptr->component_id += 0xf0;
- }
- /* end of modification */
- INPUT_BYTE(cinfo, c, return FALSE);
- compptr->h_samp_factor = (c >> 4) & 15;
- compptr->v_samp_factor = (c ) & 15;
- INPUT_BYTE(cinfo, compptr->quant_tbl_no, return FALSE);
-
- TRACEMS4(cinfo, 1, JTRC_SOF_COMPONENT,
- compptr->component_id, compptr->h_samp_factor,
- compptr->v_samp_factor, compptr->quant_tbl_no);
- }
-
- cinfo->marker->saw_SOF = TRUE;
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-LOCAL(boolean)
-get_sos (j_decompress_ptr cinfo)
-/* Process a SOS marker */
-{
- INT32 length;
- int i, ci, n, c, cc;
- jpeg_component_info * compptr;
- INPUT_VARS(cinfo);
-
- if (! cinfo->marker->saw_SOF)
- ERREXIT(cinfo, JERR_SOS_NO_SOF);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
-
- INPUT_BYTE(cinfo, n, return FALSE); /* Number of components */
-
- TRACEMS1(cinfo, 1, JTRC_SOS, n);
-
- if (length != (n * 2 + 6) || n < 1 || n > MAX_COMPS_IN_SCAN)
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- cinfo->comps_in_scan = n;
-
- /* Collect the component-spec parameters */
-
- for (i = 0; i < n; i++) {
- INPUT_BYTE(cinfo, cc, return FALSE);
- INPUT_BYTE(cinfo, c, return FALSE);
-
- /* XYQ 2008-03-25: Adobe CMYK JPEG has serious flaw: the K channel has same component id as C channel */
- {
- int j;
- for (j = 0; j < i; j ++)
- if (cc == cinfo->cur_comp_info[j]->component_id) break;
- if (j < i)
- /* found the error! */
- cc += 0xf0;
- }
- /* end of modification */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- if (cc == compptr->component_id)
- goto id_found;
- }
-
- ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc);
-
- id_found:
-
- cinfo->cur_comp_info[i] = compptr;
- compptr->dc_tbl_no = (c >> 4) & 15;
- compptr->ac_tbl_no = (c ) & 15;
-
- TRACEMS3(cinfo, 1, JTRC_SOS_COMPONENT, cc,
- compptr->dc_tbl_no, compptr->ac_tbl_no);
- /* This CSi (cc) should differ from the previous CSi */
- for (ci = 0; ci < i; ci++) {
- if (cinfo->cur_comp_info[ci] == compptr)
- ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc);
- }
- }
-
- /* Collect the additional scan parameters Ss, Se, Ah/Al. */
- INPUT_BYTE(cinfo, c, return FALSE);
- cinfo->Ss = c;
- INPUT_BYTE(cinfo, c, return FALSE);
- cinfo->Se = c;
- INPUT_BYTE(cinfo, c, return FALSE);
- cinfo->Ah = (c >> 4) & 15;
- cinfo->Al = (c ) & 15;
-
- TRACEMS4(cinfo, 1, JTRC_SOS_PARAMS, cinfo->Ss, cinfo->Se,
- cinfo->Ah, cinfo->Al);
-
- /* Prepare to scan data & restart markers */
- cinfo->marker->next_restart_num = 0;
-
- /* Count another SOS marker */
- cinfo->input_scan_number++;
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-#ifdef D_ARITH_CODING_SUPPORTED
-
-LOCAL(boolean)
-get_dac (j_decompress_ptr cinfo)
-/* Process a DAC marker */
-{
- INT32 length;
- int index, val;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
-
- while (length > 0) {
- INPUT_BYTE(cinfo, index, return FALSE);
- INPUT_BYTE(cinfo, val, return FALSE);
-
- length -= 2;
-
- TRACEMS2(cinfo, 1, JTRC_DAC, index, val);
-
- if (index < 0 || index >= (2*NUM_ARITH_TBLS))
- ERREXIT1(cinfo, JERR_DAC_INDEX, index);
-
- if (index >= NUM_ARITH_TBLS) { /* define AC table */
- cinfo->arith_ac_K[index-NUM_ARITH_TBLS] = (UINT8) val;
- } else { /* define DC table */
- cinfo->arith_dc_L[index] = (UINT8) (val & 0x0F);
- cinfo->arith_dc_U[index] = (UINT8) (val >> 4);
- if (cinfo->arith_dc_L[index] > cinfo->arith_dc_U[index])
- ERREXIT1(cinfo, JERR_DAC_VALUE, val);
- }
- }
-
- if (length != 0)
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-#else /* ! D_ARITH_CODING_SUPPORTED */
-
-#define get_dac(cinfo) skip_variable(cinfo)
-
-#endif /* D_ARITH_CODING_SUPPORTED */
-
-
-LOCAL(boolean)
-get_dht (j_decompress_ptr cinfo)
-/* Process a DHT marker */
-{
- INT32 length;
- UINT8 bits[17];
- UINT8 huffval[256];
- int i, index, count;
- JHUFF_TBL **htblptr;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
-
- while (length > 16) {
- INPUT_BYTE(cinfo, index, return FALSE);
-
- TRACEMS1(cinfo, 1, JTRC_DHT, index);
-
- bits[0] = 0;
- count = 0;
- for (i = 1; i <= 16; i++) {
- INPUT_BYTE(cinfo, bits[i], return FALSE);
- count += bits[i];
- }
-
- length -= 1 + 16;
-
- TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
- bits[1], bits[2], bits[3], bits[4],
- bits[5], bits[6], bits[7], bits[8]);
- TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
- bits[9], bits[10], bits[11], bits[12],
- bits[13], bits[14], bits[15], bits[16]);
-
- /* Here we just do minimal validation of the counts to avoid walking
- * off the end of our table space. jdhuff.c will check more carefully.
- */
- if (count > 256 || ((INT32) count) > length)
- ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
-
- for (i = 0; i < count; i++)
- INPUT_BYTE(cinfo, huffval[i], return FALSE);
-
- length -= count;
-
- if (index & 0x10) { /* AC table definition */
- index -= 0x10;
- htblptr = &cinfo->ac_huff_tbl_ptrs[index];
- } else { /* DC table definition */
- htblptr = &cinfo->dc_huff_tbl_ptrs[index];
- }
-
- if (index < 0 || index >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_DHT_INDEX, index);
-
- if (*htblptr == NULL)
- *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
-
- MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
- MEMCOPY((*htblptr)->huffval, huffval, SIZEOF((*htblptr)->huffval));
- }
-
- if (length != 0)
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-LOCAL(boolean)
-get_dqt (j_decompress_ptr cinfo)
-/* Process a DQT marker */
-{
- INT32 length;
- int n, i, prec;
- unsigned int tmp;
- JQUANT_TBL *quant_ptr;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
-
- while (length > 0) {
- INPUT_BYTE(cinfo, n, return FALSE);
- prec = n >> 4;
- n &= 0x0F;
-
- TRACEMS2(cinfo, 1, JTRC_DQT, n, prec);
-
- if (n >= NUM_QUANT_TBLS)
- ERREXIT1(cinfo, JERR_DQT_INDEX, n);
-
- if (cinfo->quant_tbl_ptrs[n] == NULL)
- cinfo->quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) cinfo);
- quant_ptr = cinfo->quant_tbl_ptrs[n];
-
- for (i = 0; i < DCTSIZE2; i++) {
- if (prec)
- INPUT_2BYTES(cinfo, tmp, return FALSE);
- else
- INPUT_BYTE(cinfo, tmp, return FALSE);
- /* We convert the zigzag-order table to natural array order. */
- quant_ptr->quantval[jpeg_natural_order[i]] = (UINT16) tmp;
- }
-
- if (cinfo->err->trace_level >= 2) {
- for (i = 0; i < DCTSIZE2; i += 8) {
- TRACEMS8(cinfo, 2, JTRC_QUANTVALS,
- quant_ptr->quantval[i], quant_ptr->quantval[i+1],
- quant_ptr->quantval[i+2], quant_ptr->quantval[i+3],
- quant_ptr->quantval[i+4], quant_ptr->quantval[i+5],
- quant_ptr->quantval[i+6], quant_ptr->quantval[i+7]);
- }
- }
-
- length -= DCTSIZE2+1;
- if (prec) length -= DCTSIZE2;
- }
-
- if (length != 0)
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-LOCAL(boolean)
-get_dri (j_decompress_ptr cinfo)
-/* Process a DRI marker */
-{
- INT32 length;
- unsigned int tmp;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
-
- if (length != 4)
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- INPUT_2BYTES(cinfo, tmp, return FALSE);
-
- TRACEMS1(cinfo, 1, JTRC_DRI, tmp);
-
- cinfo->restart_interval = tmp;
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-/*
- * Routines for processing APPn and COM markers.
- * These are either saved in memory or discarded, per application request.
- * APP0 and APP14 are specially checked to see if they are
- * JFIF and Adobe markers, respectively.
- */
-
-#define APP0_DATA_LEN 14 /* Length of interesting data in APP0 */
-#define APP14_DATA_LEN 12 /* Length of interesting data in APP14 */
-#define APPN_DATA_LEN 14 /* Must be the largest of the above!! */
-
-
-LOCAL(void)
-examine_app0 (j_decompress_ptr cinfo, JOCTET FAR * data,
- unsigned int datalen, INT32 remaining)
-/* Examine first few bytes from an APP0.
- * Take appropriate action if it is a JFIF marker.
- * datalen is # of bytes at data[], remaining is length of rest of marker data.
- */
-{
- INT32 totallen = (INT32) datalen + remaining;
-
- if (datalen >= APP0_DATA_LEN &&
- GETJOCTET(data[0]) == 0x4A &&
- GETJOCTET(data[1]) == 0x46 &&
- GETJOCTET(data[2]) == 0x49 &&
- GETJOCTET(data[3]) == 0x46 &&
- GETJOCTET(data[4]) == 0) {
- /* Found JFIF APP0 marker: save info */
- cinfo->saw_JFIF_marker = TRUE;
- cinfo->JFIF_major_version = GETJOCTET(data[5]);
- cinfo->JFIF_minor_version = GETJOCTET(data[6]);
- cinfo->density_unit = GETJOCTET(data[7]);
- cinfo->X_density = (GETJOCTET(data[8]) << 8) + GETJOCTET(data[9]);
- cinfo->Y_density = (GETJOCTET(data[10]) << 8) + GETJOCTET(data[11]);
- /* Check version.
- * Major version must be 1, anything else signals an incompatible change.
- * (We used to treat this as an error, but now it's a nonfatal warning,
- * because some bozo at Hijaak couldn't read the spec.)
- * Minor version should be 0..2, but process anyway if newer.
- */
- if (cinfo->JFIF_major_version != 1)
- WARNMS2(cinfo, JWRN_JFIF_MAJOR,
- cinfo->JFIF_major_version, cinfo->JFIF_minor_version);
- /* Generate trace messages */
- TRACEMS5(cinfo, 1, JTRC_JFIF,
- cinfo->JFIF_major_version, cinfo->JFIF_minor_version,
- cinfo->X_density, cinfo->Y_density, cinfo->density_unit);
- /* Validate thumbnail dimensions and issue appropriate messages */
- if (GETJOCTET(data[12]) | GETJOCTET(data[13]))
- TRACEMS2(cinfo, 1, JTRC_JFIF_THUMBNAIL,
- GETJOCTET(data[12]), GETJOCTET(data[13]));
- totallen -= APP0_DATA_LEN;
- if (totallen !=
- ((INT32)GETJOCTET(data[12]) * (INT32)GETJOCTET(data[13]) * (INT32) 3))
- TRACEMS1(cinfo, 1, JTRC_JFIF_BADTHUMBNAILSIZE, (int) totallen);
- } else if (datalen >= 6 &&
- GETJOCTET(data[0]) == 0x4A &&
- GETJOCTET(data[1]) == 0x46 &&
- GETJOCTET(data[2]) == 0x58 &&
- GETJOCTET(data[3]) == 0x58 &&
- GETJOCTET(data[4]) == 0) {
- /* Found JFIF "JFXX" extension APP0 marker */
- /* The library doesn't actually do anything with these,
- * but we try to produce a helpful trace message.
- */
- switch (GETJOCTET(data[5])) {
- case 0x10:
- TRACEMS1(cinfo, 1, JTRC_THUMB_JPEG, (int) totallen);
- break;
- case 0x11:
- TRACEMS1(cinfo, 1, JTRC_THUMB_PALETTE, (int) totallen);
- break;
- case 0x13:
- TRACEMS1(cinfo, 1, JTRC_THUMB_RGB, (int) totallen);
- break;
- default:
- TRACEMS2(cinfo, 1, JTRC_JFIF_EXTENSION,
- GETJOCTET(data[5]), (int) totallen);
- break;
- }
- } else {
- /* Start of APP0 does not match "JFIF" or "JFXX", or too short */
- TRACEMS1(cinfo, 1, JTRC_APP0, (int) totallen);
- }
-}
-
-
-LOCAL(void)
-examine_app14 (j_decompress_ptr cinfo, JOCTET FAR * data,
- unsigned int datalen, INT32 remaining)
-/* Examine first few bytes from an APP14.
- * Take appropriate action if it is an Adobe marker.
- * datalen is # of bytes at data[], remaining is length of rest of marker data.
- */
-{
- unsigned int version, flags0, flags1, transform;
-
- if (datalen >= APP14_DATA_LEN &&
- GETJOCTET(data[0]) == 0x41 &&
- GETJOCTET(data[1]) == 0x64 &&
- GETJOCTET(data[2]) == 0x6F &&
- GETJOCTET(data[3]) == 0x62 &&
- GETJOCTET(data[4]) == 0x65) {
- /* Found Adobe APP14 marker */
- version = (GETJOCTET(data[5]) << 8) + GETJOCTET(data[6]);
- flags0 = (GETJOCTET(data[7]) << 8) + GETJOCTET(data[8]);
- flags1 = (GETJOCTET(data[9]) << 8) + GETJOCTET(data[10]);
- transform = GETJOCTET(data[11]);
- TRACEMS4(cinfo, 1, JTRC_ADOBE, version, flags0, flags1, transform);
- cinfo->saw_Adobe_marker = TRUE;
- cinfo->Adobe_transform = (UINT8) transform;
- } else {
- /* Start of APP14 does not match "Adobe", or too short */
- TRACEMS1(cinfo, 1, JTRC_APP14, (int) (datalen + remaining));
- }
-}
-
-
-METHODDEF(boolean)
-get_interesting_appn (j_decompress_ptr cinfo)
-/* Process an APP0 or APP14 marker without saving it */
-{
- INT32 length;
- JOCTET b[APPN_DATA_LEN];
- unsigned int i, numtoread;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
-
- /* get the interesting part of the marker data */
- if (length >= APPN_DATA_LEN)
- numtoread = APPN_DATA_LEN;
- else if (length > 0)
- numtoread = (unsigned int) length;
- else
- numtoread = 0;
- for (i = 0; i < numtoread; i++)
- INPUT_BYTE(cinfo, b[i], return FALSE);
- length -= numtoread;
-
- /* process it */
- switch (cinfo->unread_marker) {
- case M_APP0:
- examine_app0(cinfo, (JOCTET FAR *) b, numtoread, length);
- break;
- case M_APP14:
- examine_app14(cinfo, (JOCTET FAR *) b, numtoread, length);
- break;
- default:
- /* can't get here unless jpeg_save_markers chooses wrong processor */
- ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker);
- break;
- }
-
- /* skip any remaining data -- could be lots */
- INPUT_SYNC(cinfo);
- if (length > 0)
- (*cinfo->src->skip_input_data) (cinfo, (long) length);
-
- return TRUE;
-}
-
-
-#ifdef SAVE_MARKERS_SUPPORTED
-
-METHODDEF(boolean)
-save_marker (j_decompress_ptr cinfo)
-/* Save an APPn or COM marker into the marker list */
-{
- my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
- jpeg_saved_marker_ptr cur_marker = marker->cur_marker;
- unsigned int bytes_read, data_length;
- JOCTET FAR * data;
- INT32 length = 0;
- INPUT_VARS(cinfo);
-
- if (cur_marker == NULL) {
- /* begin reading a marker */
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
- if (length >= 0) { /* watch out for bogus length word */
- /* figure out how much we want to save */
- unsigned int limit;
- if (cinfo->unread_marker == (int) M_COM)
- limit = marker->length_limit_COM;
- else
- limit = marker->length_limit_APPn[cinfo->unread_marker - (int) M_APP0];
- if ((unsigned int) length < limit)
- limit = (unsigned int) length;
- /* allocate and initialize the marker item */
- cur_marker = (jpeg_saved_marker_ptr)
- (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(struct jpeg_marker_struct) + limit);
- cur_marker->next = NULL;
- cur_marker->marker = (UINT8) cinfo->unread_marker;
- cur_marker->original_length = (unsigned int) length;
- cur_marker->data_length = limit;
- /* data area is just beyond the jpeg_marker_struct */
- data = cur_marker->data = (JOCTET FAR *) (cur_marker + 1);
- marker->cur_marker = cur_marker;
- marker->bytes_read = 0;
- bytes_read = 0;
- data_length = limit;
- } else {
- /* deal with bogus length word */
- bytes_read = data_length = 0;
- data = NULL;
- }
- } else {
- /* resume reading a marker */
- bytes_read = marker->bytes_read;
- data_length = cur_marker->data_length;
- data = cur_marker->data + bytes_read;
- }
-
- while (bytes_read < data_length) {
- INPUT_SYNC(cinfo); /* move the restart point to here */
- marker->bytes_read = bytes_read;
- /* If there's not at least one byte in buffer, suspend */
- MAKE_BYTE_AVAIL(cinfo, return FALSE);
- /* Copy bytes with reasonable rapidity */
- while (bytes_read < data_length && bytes_in_buffer > 0) {
- *data++ = *next_input_byte++;
- bytes_in_buffer--;
- bytes_read++;
- }
- }
-
- /* Done reading what we want to read */
- if (cur_marker != NULL) { /* will be NULL if bogus length word */
- /* Add new marker to end of list */
- if (cinfo->marker_list == NULL) {
- cinfo->marker_list = cur_marker;
- } else {
- jpeg_saved_marker_ptr prev = cinfo->marker_list;
- while (prev->next != NULL)
- prev = prev->next;
- prev->next = cur_marker;
- }
- /* Reset pointer & calc remaining data length */
- data = cur_marker->data;
- length = cur_marker->original_length - data_length;
- }
- /* Reset to initial state for next marker */
- marker->cur_marker = NULL;
-
- /* Process the marker if interesting; else just make a generic trace msg */
- switch (cinfo->unread_marker) {
- case M_APP0:
- examine_app0(cinfo, data, data_length, length);
- break;
- case M_APP14:
- examine_app14(cinfo, data, data_length, length);
- break;
- default:
- TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker,
- (int) (data_length + length));
- break;
- }
-
- /* skip any remaining data -- could be lots */
- INPUT_SYNC(cinfo); /* do before skip_input_data */
- if (length > 0)
- (*cinfo->src->skip_input_data) (cinfo, (long) length);
-
- return TRUE;
-}
-
-#endif /* SAVE_MARKERS_SUPPORTED */
-
-
-METHODDEF(boolean)
-skip_variable (j_decompress_ptr cinfo)
-/* Skip over an unknown or uninteresting variable-length marker */
-{
- INT32 length;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
-
- TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int) length);
-
- INPUT_SYNC(cinfo); /* do before skip_input_data */
- if (length > 0)
- (*cinfo->src->skip_input_data) (cinfo, (long) length);
-
- return TRUE;
-}
-
-
-/*
- * Find the next JPEG marker, save it in cinfo->unread_marker.
- * Returns FALSE if had to suspend before reaching a marker;
- * in that case cinfo->unread_marker is unchanged.
- *
- * Note that the result might not be a valid marker code,
- * but it will never be 0 or FF.
- */
-
-LOCAL(boolean)
-next_marker (j_decompress_ptr cinfo)
-{
- int c;
- INPUT_VARS(cinfo);
-
- for (;;) {
- INPUT_BYTE(cinfo, c, return FALSE);
- /* Skip any non-FF bytes.
- * This may look a bit inefficient, but it will not occur in a valid file.
- * We sync after each discarded byte so that a suspending data source
- * can discard the byte from its buffer.
- */
- while (c != 0xFF) {
- cinfo->marker->discarded_bytes++;
- INPUT_SYNC(cinfo);
- INPUT_BYTE(cinfo, c, return FALSE);
- }
- /* This loop swallows any duplicate FF bytes. Extra FFs are legal as
- * pad bytes, so don't count them in discarded_bytes. We assume there
- * will not be so many consecutive FF bytes as to overflow a suspending
- * data source's input buffer.
- */
- do {
- INPUT_BYTE(cinfo, c, return FALSE);
- } while (c == 0xFF);
- if (c != 0)
- break; /* found a valid marker, exit loop */
- /* Reach here if we found a stuffed-zero data sequence (FF/00).
- * Discard it and loop back to try again.
- */
- cinfo->marker->discarded_bytes += 2;
- INPUT_SYNC(cinfo);
- }
-
- if (cinfo->marker->discarded_bytes != 0) {
- WARNMS2(cinfo, JWRN_EXTRANEOUS_DATA, cinfo->marker->discarded_bytes, c);
- cinfo->marker->discarded_bytes = 0;
- }
-
- cinfo->unread_marker = c;
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-LOCAL(boolean)
-first_marker (j_decompress_ptr cinfo)
-/* Like next_marker, but used to obtain the initial SOI marker. */
-/* For this marker, we do not allow preceding garbage or fill; otherwise,
- * we might well scan an entire input file before realizing it ain't JPEG.
- * If an application wants to process non-JFIF files, it must seek to the
- * SOI before calling the JPEG library.
- */
-{
- int c, c2;
- INPUT_VARS(cinfo);
-
- INPUT_BYTE(cinfo, c, return FALSE);
- INPUT_BYTE(cinfo, c2, return FALSE);
- if (c != 0xFF || c2 != (int) M_SOI)
- ERREXIT2(cinfo, JERR_NO_SOI, c, c2);
-
- cinfo->unread_marker = c2;
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-/*
- * Read markers until SOS or EOI.
- *
- * Returns same codes as are defined for jpeg_consume_input:
- * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
- */
-
-METHODDEF(int)
-read_markers (j_decompress_ptr cinfo)
-{
- /* Outer loop repeats once for each marker. */
- for (;;) {
- /* Collect the marker proper, unless we already did. */
- /* NB: first_marker() enforces the requirement that SOI appear first. */
- if (cinfo->unread_marker == 0) {
- if (! cinfo->marker->saw_SOI) {
- if (! first_marker(cinfo))
- return JPEG_SUSPENDED;
- } else {
- if (! next_marker(cinfo))
- return JPEG_SUSPENDED;
- }
- }
- /* At this point cinfo->unread_marker contains the marker code and the
- * input point is just past the marker proper, but before any parameters.
- * A suspension will cause us to return with this state still true.
- */
- switch (cinfo->unread_marker) {
- case M_SOI:
- if (! get_soi(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_SOF0: /* Baseline */
- case M_SOF1: /* Extended sequential, Huffman */
- if (! get_sof(cinfo, FALSE, FALSE))
- return JPEG_SUSPENDED;
- break;
-
- case M_SOF2: /* Progressive, Huffman */
- if (! get_sof(cinfo, TRUE, FALSE))
- return JPEG_SUSPENDED;
- break;
-
- case M_SOF9: /* Extended sequential, arithmetic */
- if (! get_sof(cinfo, FALSE, TRUE))
- return JPEG_SUSPENDED;
- break;
-
- case M_SOF10: /* Progressive, arithmetic */
- if (! get_sof(cinfo, TRUE, TRUE))
- return JPEG_SUSPENDED;
- break;
-
- /* Currently unsupported SOFn types */
- case M_SOF3: /* Lossless, Huffman */
- case M_SOF5: /* Differential sequential, Huffman */
- case M_SOF6: /* Differential progressive, Huffman */
- case M_SOF7: /* Differential lossless, Huffman */
- case M_JPG: /* Reserved for JPEG extensions */
- case M_SOF11: /* Lossless, arithmetic */
- case M_SOF13: /* Differential sequential, arithmetic */
- case M_SOF14: /* Differential progressive, arithmetic */
- case M_SOF15: /* Differential lossless, arithmetic */
- ERREXIT1(cinfo, JERR_SOF_UNSUPPORTED, cinfo->unread_marker);
- break;
-
- case M_SOS:
- if (! get_sos(cinfo))
- return JPEG_SUSPENDED;
- cinfo->unread_marker = 0; /* processed the marker */
- return JPEG_REACHED_SOS;
-
- case M_EOI:
- TRACEMS(cinfo, 1, JTRC_EOI);
- cinfo->unread_marker = 0; /* processed the marker */
- return JPEG_REACHED_EOI;
-
- case M_DAC:
- if (! get_dac(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_DHT:
- if (! get_dht(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_DQT:
- if (! get_dqt(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_DRI:
- if (! get_dri(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_APP0:
- case M_APP1:
- case M_APP2:
- case M_APP3:
- case M_APP4:
- case M_APP5:
- case M_APP6:
- case M_APP7:
- case M_APP8:
- case M_APP9:
- case M_APP10:
- case M_APP11:
- case M_APP12:
- case M_APP13:
- case M_APP14:
- case M_APP15:
- if (! (*((my_marker_ptr) cinfo->marker)->process_APPn[
- cinfo->unread_marker - (int) M_APP0]) (cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_COM:
- if (! (*((my_marker_ptr) cinfo->marker)->process_COM) (cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_RST0: /* these are all parameterless */
- case M_RST1:
- case M_RST2:
- case M_RST3:
- case M_RST4:
- case M_RST5:
- case M_RST6:
- case M_RST7:
- case M_TEM:
- TRACEMS1(cinfo, 1, JTRC_PARMLESS_MARKER, cinfo->unread_marker);
- break;
-
- case M_DNL: /* Ignore DNL ... perhaps the wrong thing */
- if (! skip_variable(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- default: /* must be DHP, EXP, JPGn, or RESn */
- /* For now, we treat the reserved markers as fatal errors since they are
- * likely to be used to signal incompatible JPEG Part 3 extensions.
- * Once the JPEG 3 version-number marker is well defined, this code
- * ought to change!
- */
- ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker);
- break;
- }
- /* Successfully processed marker, so reset state variable */
- cinfo->unread_marker = 0;
- } /* end loop */
-}
-
-
-/*
- * Read a restart marker, which is expected to appear next in the datastream;
- * if the marker is not there, take appropriate recovery action.
- * Returns FALSE if suspension is required.
- *
- * This is called by the entropy decoder after it has read an appropriate
- * number of MCUs. cinfo->unread_marker may be nonzero if the entropy decoder
- * has already read a marker from the data source. Under normal conditions
- * cinfo->unread_marker will be reset to 0 before returning; if not reset,
- * it holds a marker which the decoder will be unable to read past.
- */
-
-METHODDEF(boolean)
-read_restart_marker (j_decompress_ptr cinfo)
-{
- /* Obtain a marker unless we already did. */
- /* Note that next_marker will complain if it skips any data. */
- if (cinfo->unread_marker == 0) {
- if (! next_marker(cinfo))
- return FALSE;
- }
-
- if (cinfo->unread_marker ==
- ((int) M_RST0 + cinfo->marker->next_restart_num)) {
- /* Normal case --- swallow the marker and let entropy decoder continue */
- TRACEMS1(cinfo, 3, JTRC_RST, cinfo->marker->next_restart_num);
- cinfo->unread_marker = 0;
- } else {
- /* Uh-oh, the restart markers have been messed up. */
- /* Let the data source manager determine how to resync. */
- if (! (*cinfo->src->resync_to_restart) (cinfo,
- cinfo->marker->next_restart_num))
- return FALSE;
- }
-
- /* Update next-restart state */
- cinfo->marker->next_restart_num = (cinfo->marker->next_restart_num + 1) & 7;
-
- return TRUE;
-}
-
-
-/*
- * This is the default resync_to_restart method for data source managers
- * to use if they don't have any better approach. Some data source managers
- * may be able to back up, or may have additional knowledge about the data
- * which permits a more intelligent recovery strategy; such managers would
- * presumably supply their own resync method.
- *
- * read_restart_marker calls resync_to_restart if it finds a marker other than
- * the restart marker it was expecting. (This code is *not* used unless
- * a nonzero restart interval has been declared.) cinfo->unread_marker is
- * the marker code actually found (might be anything, except 0 or FF).
- * The desired restart marker number (0..7) is passed as a parameter.
- * This routine is supposed to apply whatever error recovery strategy seems
- * appropriate in order to position the input stream to the next data segment.
- * Note that cinfo->unread_marker is treated as a marker appearing before
- * the current data-source input point; usually it should be reset to zero
- * before returning.
- * Returns FALSE if suspension is required.
- *
- * This implementation is substantially constrained by wanting to treat the
- * input as a data stream; this means we can't back up. Therefore, we have
- * only the following actions to work with:
- * 1. Simply discard the marker and let the entropy decoder resume at next
- * byte of file.
- * 2. Read forward until we find another marker, discarding intervening
- * data. (In theory we could look ahead within the current bufferload,
- * without having to discard data if we don't find the desired marker.
- * This idea is not implemented here, in part because it makes behavior
- * dependent on buffer size and chance buffer-boundary positions.)
- * 3. Leave the marker unread (by failing to zero cinfo->unread_marker).
- * This will cause the entropy decoder to process an empty data segment,
- * inserting dummy zeroes, and then we will reprocess the marker.
- *
- * #2 is appropriate if we think the desired marker lies ahead, while #3 is
- * appropriate if the found marker is a future restart marker (indicating
- * that we have missed the desired restart marker, probably because it got
- * corrupted).
- * We apply #2 or #3 if the found marker is a restart marker no more than
- * two counts behind or ahead of the expected one. We also apply #2 if the
- * found marker is not a legal JPEG marker code (it's certainly bogus data).
- * If the found marker is a restart marker more than 2 counts away, we do #1
- * (too much risk that the marker is erroneous; with luck we will be able to
- * resync at some future point).
- * For any valid non-restart JPEG marker, we apply #3. This keeps us from
- * overrunning the end of a scan. An implementation limited to single-scan
- * files might find it better to apply #2 for markers other than EOI, since
- * any other marker would have to be bogus data in that case.
- */
-
-GLOBAL(boolean)
-jpeg_resync_to_restart (j_decompress_ptr cinfo, int desired)
-{
- int marker = cinfo->unread_marker;
- int action = 1;
-
- /* Always put up a warning. */
- WARNMS2(cinfo, JWRN_MUST_RESYNC, marker, desired);
-
- /* Outer loop handles repeated decision after scanning forward. */
- for (;;) {
- if (marker < (int) M_SOF0)
- action = 2; /* invalid marker */
- else if (marker < (int) M_RST0 || marker > (int) M_RST7)
- action = 3; /* valid non-restart marker */
- else {
- if (marker == ((int) M_RST0 + ((desired+1) & 7)) ||
- marker == ((int) M_RST0 + ((desired+2) & 7)))
- action = 3; /* one of the next two expected restarts */
- else if (marker == ((int) M_RST0 + ((desired-1) & 7)) ||
- marker == ((int) M_RST0 + ((desired-2) & 7)))
- action = 2; /* a prior restart, so advance */
- else
- action = 1; /* desired restart or too far away */
- }
- TRACEMS2(cinfo, 4, JTRC_RECOVERY_ACTION, marker, action);
- switch (action) {
- case 1:
- /* Discard marker and let entropy decoder resume processing. */
- cinfo->unread_marker = 0;
- return TRUE;
- case 2:
- /* Scan to the next marker, and repeat the decision loop. */
- if (! next_marker(cinfo))
- return FALSE;
- marker = cinfo->unread_marker;
- break;
- case 3:
- /* Return without advancing past this marker. */
- /* Entropy decoder will be forced to process an empty segment. */
- return TRUE;
- }
- } /* end loop */
-}
-
-
-/*
- * Reset marker processing state to begin a fresh datastream.
- */
-
-METHODDEF(void)
-reset_marker_reader (j_decompress_ptr cinfo)
-{
- my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
-
- cinfo->comp_info = NULL; /* until allocated by get_sof */
- cinfo->input_scan_number = 0; /* no SOS seen yet */
- cinfo->unread_marker = 0; /* no pending marker */
- marker->pub.saw_SOI = FALSE; /* set internal state too */
- marker->pub.saw_SOF = FALSE;
- marker->pub.discarded_bytes = 0;
- marker->cur_marker = NULL;
-}
-
-
-/*
- * Initialize the marker reader module.
- * This is called only once, when the decompression object is created.
- */
-
-GLOBAL(void)
-jinit_marker_reader (j_decompress_ptr cinfo)
-{
- my_marker_ptr marker;
- int i;
-
- /* Create subobject in permanent pool */
- marker = (my_marker_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- SIZEOF(my_marker_reader));
- cinfo->marker = (struct jpeg_marker_reader *) marker;
- /* Initialize public method pointers */
- marker->pub.reset_marker_reader = reset_marker_reader;
- marker->pub.read_markers = read_markers;
- marker->pub.read_restart_marker = read_restart_marker;
- /* Initialize COM/APPn processing.
- * By default, we examine and then discard APP0 and APP14,
- * but simply discard COM and all other APPn.
- */
- marker->process_COM = skip_variable;
- marker->length_limit_COM = 0;
- for (i = 0; i < 16; i++) {
- marker->process_APPn[i] = skip_variable;
- marker->length_limit_APPn[i] = 0;
- }
- marker->process_APPn[0] = get_interesting_appn;
- marker->process_APPn[14] = get_interesting_appn;
- /* Reset marker processing state */
- reset_marker_reader(cinfo);
-}
-
-
-/*
- * Control saving of COM and APPn markers into marker_list.
- */
-
-#ifdef SAVE_MARKERS_SUPPORTED
-
-GLOBAL(void)
-jpeg_save_markers (j_decompress_ptr cinfo, int marker_code,
- unsigned int length_limit)
-{
- my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
- long maxlength;
- jpeg_marker_parser_method processor;
-
- /* Length limit mustn't be larger than what we can allocate
- * (should only be a concern in a 16-bit environment).
- */
- maxlength = cinfo->mem->max_alloc_chunk - SIZEOF(struct jpeg_marker_struct);
- if (((long) length_limit) > maxlength)
- length_limit = (unsigned int) maxlength;
-
- /* Choose processor routine to use.
- * APP0/APP14 have special requirements.
- */
- if (length_limit) {
- processor = save_marker;
- /* If saving APP0/APP14, save at least enough for our internal use. */
- if (marker_code == (int) M_APP0 && length_limit < APP0_DATA_LEN)
- length_limit = APP0_DATA_LEN;
- else if (marker_code == (int) M_APP14 && length_limit < APP14_DATA_LEN)
- length_limit = APP14_DATA_LEN;
- } else {
- processor = skip_variable;
- /* If discarding APP0/APP14, use our regular on-the-fly processor. */
- if (marker_code == (int) M_APP0 || marker_code == (int) M_APP14)
- processor = get_interesting_appn;
- }
-
- if (marker_code == (int) M_COM) {
- marker->process_COM = processor;
- marker->length_limit_COM = length_limit;
- } else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15) {
- marker->process_APPn[marker_code - (int) M_APP0] = processor;
- marker->length_limit_APPn[marker_code - (int) M_APP0] = length_limit;
- } else
- ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
-}
-
-#endif /* SAVE_MARKERS_SUPPORTED */
-
-
-/*
- * Install a special processing method for COM or APPn markers.
- */
-
-GLOBAL(void)
-jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code,
- jpeg_marker_parser_method routine)
-{
- my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
-
- if (marker_code == (int) M_COM)
- marker->process_COM = routine;
- else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15)
- marker->process_APPn[marker_code - (int) M_APP0] = routine;
- else
- ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jdmaster.c b/core/src/fxcodec/libjpeg/fpdfapi_jdmaster.c
deleted file mode 100644
index dae51e0fd2..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jdmaster.c
+++ /dev/null
@@ -1,560 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jdmaster.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains master control logic for the JPEG decompressor.
- * These routines are concerned with selecting the modules to be executed
- * and with determining the number of passes and the work to be done in each
- * pass.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private state */
-
-typedef struct {
- struct jpeg_decomp_master pub; /* public fields */
-
- int pass_number; /* # of passes completed */
-
- boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
-
- /* Saved references to initialized quantizer modules,
- * in case we need to switch modes.
- */
- struct jpeg_color_quantizer * quantizer_1pass;
- struct jpeg_color_quantizer * quantizer_2pass;
-} my_decomp_master;
-
-typedef my_decomp_master * my_master_ptr;
-
-
-/*
- * Determine whether merged upsample/color conversion should be used.
- * CRUCIAL: this must match the actual capabilities of jdmerge.c!
- */
-
-LOCAL(boolean)
-use_merged_upsample (j_decompress_ptr cinfo)
-{
-#ifdef UPSAMPLE_MERGING_SUPPORTED
- /* Merging is the equivalent of plain box-filter upsampling */
- if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
- return FALSE;
- /* jdmerge.c only supports YCC=>RGB color conversion */
- if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
- cinfo->out_color_space != JCS_RGB ||
- cinfo->out_color_components != RGB_PIXELSIZE)
- return FALSE;
- /* and it only handles 2h1v or 2h2v sampling ratios */
- if (cinfo->comp_info[0].h_samp_factor != 2 ||
- cinfo->comp_info[1].h_samp_factor != 1 ||
- cinfo->comp_info[2].h_samp_factor != 1 ||
- cinfo->comp_info[0].v_samp_factor > 2 ||
- cinfo->comp_info[1].v_samp_factor != 1 ||
- cinfo->comp_info[2].v_samp_factor != 1)
- return FALSE;
- /* furthermore, it doesn't work if we've scaled the IDCTs differently */
- if (cinfo->comp_info[0].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
- cinfo->comp_info[1].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
- cinfo->comp_info[2].DCT_scaled_size != cinfo->min_DCT_scaled_size)
- return FALSE;
- /* ??? also need to test for upsample-time rescaling, when & if supported */
- return TRUE; /* by golly, it'll work... */
-#else
- return FALSE;
-#endif
-}
-
-
-/*
- * Compute output image dimensions and related values.
- * NOTE: this is exported for possible use by application.
- * Hence it mustn't do anything that can't be done twice.
- * Also note that it may be called before the master module is initialized!
- */
-
-GLOBAL(void)
-jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
-/* Do computations that are needed before master selection phase */
-{
-#ifdef IDCT_SCALING_SUPPORTED
- int ci;
- jpeg_component_info *compptr;
-#endif
-
- /* Prevent application from calling me at wrong times */
- if (cinfo->global_state != DSTATE_READY)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
-#ifdef IDCT_SCALING_SUPPORTED
-
- /* Compute actual output image dimensions and DCT scaling choices. */
- if (cinfo->scale_num * 8 <= cinfo->scale_denom) {
- /* Provide 1/8 scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width, 8L);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height, 8L);
- cinfo->min_DCT_scaled_size = 1;
- } else if (cinfo->scale_num * 4 <= cinfo->scale_denom) {
- /* Provide 1/4 scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width, 4L);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height, 4L);
- cinfo->min_DCT_scaled_size = 2;
- } else if (cinfo->scale_num * 2 <= cinfo->scale_denom) {
- /* Provide 1/2 scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width, 2L);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height, 2L);
- cinfo->min_DCT_scaled_size = 4;
- } else {
- /* Provide 1/1 scaling */
- cinfo->output_width = cinfo->image_width;
- cinfo->output_height = cinfo->image_height;
- cinfo->min_DCT_scaled_size = DCTSIZE;
- }
- /* In selecting the actual DCT scaling for each component, we try to
- * scale up the chroma components via IDCT scaling rather than upsampling.
- * This saves time if the upsampler gets to use 1:1 scaling.
- * Note this code assumes that the supported DCT scalings are powers of 2.
- */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- int ssize = cinfo->min_DCT_scaled_size;
- while (ssize < DCTSIZE &&
- (compptr->h_samp_factor * ssize * 2 <=
- cinfo->max_h_samp_factor * cinfo->min_DCT_scaled_size) &&
- (compptr->v_samp_factor * ssize * 2 <=
- cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size)) {
- ssize = ssize * 2;
- }
- compptr->DCT_scaled_size = ssize;
- }
-
- /* Recompute downsampled dimensions of components;
- * application needs to know these if using raw downsampled data.
- */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Size in samples, after IDCT scaling */
- compptr->downsampled_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width *
- (long) (compptr->h_samp_factor * compptr->DCT_scaled_size),
- (long) (cinfo->max_h_samp_factor * DCTSIZE));
- compptr->downsampled_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height *
- (long) (compptr->v_samp_factor * compptr->DCT_scaled_size),
- (long) (cinfo->max_v_samp_factor * DCTSIZE));
- }
-
-#else /* !IDCT_SCALING_SUPPORTED */
-
- /* Hardwire it to "no scaling" */
- cinfo->output_width = cinfo->image_width;
- cinfo->output_height = cinfo->image_height;
- /* jdinput.c has already initialized DCT_scaled_size to DCTSIZE,
- * and has computed unscaled downsampled_width and downsampled_height.
- */
-
-#endif /* IDCT_SCALING_SUPPORTED */
-
- /* Report number of components in selected colorspace. */
- /* Probably this should be in the color conversion module... */
- switch (cinfo->out_color_space) {
- case JCS_GRAYSCALE:
- cinfo->out_color_components = 1;
- break;
- case JCS_RGB:
-#if RGB_PIXELSIZE != 3
- cinfo->out_color_components = RGB_PIXELSIZE;
- break;
-#endif /* else share code with YCbCr */
- case JCS_YCbCr:
- cinfo->out_color_components = 3;
- break;
- case JCS_CMYK:
- case JCS_YCCK:
- cinfo->out_color_components = 4;
- break;
- default: /* else must be same colorspace as in file */
- cinfo->out_color_components = cinfo->num_components;
- break;
- }
- cinfo->output_components = (cinfo->quantize_colors ? 1 :
- cinfo->out_color_components);
-
- /* See if upsampler will want to emit more than one row at a time */
- if (use_merged_upsample(cinfo))
- cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
- else
- cinfo->rec_outbuf_height = 1;
-}
-
-
-/*
- * Several decompression processes need to range-limit values to the range
- * 0..MAXJSAMPLE; the input value may fall somewhat outside this range
- * due to noise introduced by quantization, roundoff error, etc. These
- * processes are inner loops and need to be as fast as possible. On most
- * machines, particularly CPUs with pipelines or instruction prefetch,
- * a (subscript-check-less) C table lookup
- * x = sample_range_limit[x];
- * is faster than explicit tests
- * if (x < 0) x = 0;
- * else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
- * These processes all use a common table prepared by the routine below.
- *
- * For most steps we can mathematically guarantee that the initial value
- * of x is within MAXJSAMPLE+1 of the legal range, so a table running from
- * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial
- * limiting step (just after the IDCT), a wildly out-of-range value is
- * possible if the input data is corrupt. To avoid any chance of indexing
- * off the end of memory and getting a bad-pointer trap, we perform the
- * post-IDCT limiting thus:
- * x = range_limit[x & MASK];
- * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
- * samples. Under normal circumstances this is more than enough range and
- * a correct output will be generated; with bogus input data the mask will
- * cause wraparound, and we will safely generate a bogus-but-in-range output.
- * For the post-IDCT step, we want to convert the data from signed to unsigned
- * representation by adding CENTERJSAMPLE at the same time that we limit it.
- * So the post-IDCT limiting table ends up looking like this:
- * CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
- * MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
- * 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
- * 0,1,...,CENTERJSAMPLE-1
- * Negative inputs select values from the upper half of the table after
- * masking.
- *
- * We can save some space by overlapping the start of the post-IDCT table
- * with the simpler range limiting table. The post-IDCT table begins at
- * sample_range_limit + CENTERJSAMPLE.
- *
- * Note that the table is allocated in near data space on PCs; it's small
- * enough and used often enough to justify this.
- */
-
-LOCAL(void)
-prepare_range_limit_table (j_decompress_ptr cinfo)
-/* Allocate and fill in the sample_range_limit table */
-{
- JSAMPLE * table;
- int i;
-
- table = (JSAMPLE *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE));
- table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */
- cinfo->sample_range_limit = table;
- /* First segment of "simple" table: limit[x] = 0 for x < 0 */
- MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
- /* Main part of "simple" table: limit[x] = x */
- for (i = 0; i <= MAXJSAMPLE; i++)
- table[i] = (JSAMPLE) i;
- table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
- /* End of simple table, rest of first half of post-IDCT table */
- for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
- table[i] = MAXJSAMPLE;
- /* Second half of post-IDCT table */
- MEMZERO(table + (2 * (MAXJSAMPLE+1)),
- (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
- MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
- cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE));
-}
-
-
-/*
- * Master selection of decompression modules.
- * This is done once at jpeg_start_decompress time. We determine
- * which modules will be used and give them appropriate initialization calls.
- * We also initialize the decompressor input side to begin consuming data.
- *
- * Since jpeg_read_header has finished, we know what is in the SOF
- * and (first) SOS markers. We also have all the application parameter
- * settings.
- */
-
-LOCAL(void)
-master_selection (j_decompress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
- boolean use_c_buffer;
- long samplesperrow;
- JDIMENSION jd_samplesperrow;
-
- /* Initialize dimensions and other stuff */
- jpeg_calc_output_dimensions(cinfo);
- prepare_range_limit_table(cinfo);
-
- /* Width of an output scanline must be representable as JDIMENSION. */
- samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
- jd_samplesperrow = (JDIMENSION) samplesperrow;
- if ((long) jd_samplesperrow != samplesperrow)
- ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
-
- /* Initialize my private state */
- master->pass_number = 0;
- master->using_merged_upsample = use_merged_upsample(cinfo);
-
- /* Color quantizer selection */
- master->quantizer_1pass = NULL;
- master->quantizer_2pass = NULL;
- /* No mode changes if not using buffered-image mode. */
- if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
- cinfo->enable_1pass_quant = FALSE;
- cinfo->enable_external_quant = FALSE;
- cinfo->enable_2pass_quant = FALSE;
- }
- if (cinfo->quantize_colors) {
- if (cinfo->raw_data_out)
- ERREXIT(cinfo, JERR_NOTIMPL);
- /* 2-pass quantizer only works in 3-component color space. */
- if (cinfo->out_color_components != 3) {
- cinfo->enable_1pass_quant = TRUE;
- cinfo->enable_external_quant = FALSE;
- cinfo->enable_2pass_quant = FALSE;
- cinfo->colormap = NULL;
- } else if (cinfo->colormap != NULL) {
- cinfo->enable_external_quant = TRUE;
- } else if (cinfo->two_pass_quantize) {
- cinfo->enable_2pass_quant = TRUE;
- } else {
- cinfo->enable_1pass_quant = TRUE;
- }
-
- if (cinfo->enable_1pass_quant) {
-#ifdef QUANT_1PASS_SUPPORTED
- jinit_1pass_quantizer(cinfo);
- master->quantizer_1pass = cinfo->cquantize;
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- }
-
- /* We use the 2-pass code to map to external colormaps. */
- if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
-#ifdef QUANT_2PASS_SUPPORTED
- jinit_2pass_quantizer(cinfo);
- master->quantizer_2pass = cinfo->cquantize;
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- }
- /* If both quantizers are initialized, the 2-pass one is left active;
- * this is necessary for starting with quantization to an external map.
- */
- }
-
- /* Post-processing: in particular, color conversion first */
- if (! cinfo->raw_data_out) {
- if (master->using_merged_upsample) {
-#ifdef UPSAMPLE_MERGING_SUPPORTED
- jinit_merged_upsampler(cinfo); /* does color conversion too */
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else {
- jinit_color_deconverter(cinfo);
- jinit_upsampler(cinfo);
- }
- jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
- }
- /* Inverse DCT */
- jinit_inverse_dct(cinfo);
- /* Entropy decoding: either Huffman or arithmetic coding. */
- if (cinfo->arith_code) {
- ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
- } else {
- if (cinfo->progressive_mode) {
-#ifdef D_PROGRESSIVE_SUPPORTED
- jinit_phuff_decoder(cinfo);
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else
- jinit_huff_decoder(cinfo);
- }
-
- /* Initialize principal buffer controllers. */
- use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
- jinit_d_coef_controller(cinfo, use_c_buffer);
-
- if (! cinfo->raw_data_out)
- jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
-
- /* We can now tell the memory manager to allocate virtual arrays. */
- (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
-
- /* Initialize input side of decompressor to consume first scan. */
- (*cinfo->inputctl->start_input_pass) (cinfo);
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
- /* If jpeg_start_decompress will read the whole file, initialize
- * progress monitoring appropriately. The input step is counted
- * as one pass.
- */
- if (cinfo->progress != NULL && ! cinfo->buffered_image &&
- cinfo->inputctl->has_multiple_scans) {
- int nscans;
- /* Estimate number of scans to set pass_limit. */
- if (cinfo->progressive_mode) {
- /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
- nscans = 2 + 3 * cinfo->num_components;
- } else {
- /* For a nonprogressive multiscan file, estimate 1 scan per component. */
- nscans = cinfo->num_components;
- }
- cinfo->progress->pass_counter = 0L;
- cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
- cinfo->progress->completed_passes = 0;
- cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
- /* Count the input pass as done */
- master->pass_number++;
- }
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
-}
-
-
-/*
- * Per-pass setup.
- * This is called at the beginning of each output pass. We determine which
- * modules will be active during this pass and give them appropriate
- * start_pass calls. We also set is_dummy_pass to indicate whether this
- * is a "real" output pass or a dummy pass for color quantization.
- * (In the latter case, jdapistd.c will crank the pass to completion.)
- */
-
-METHODDEF(void)
-prepare_for_output_pass (j_decompress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
-
- if (master->pub.is_dummy_pass) {
-#ifdef QUANT_2PASS_SUPPORTED
- /* Final pass of 2-pass quantization */
- master->pub.is_dummy_pass = FALSE;
- (*cinfo->cquantize->start_pass) (cinfo, FALSE);
- (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
- (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif /* QUANT_2PASS_SUPPORTED */
- } else {
- if (cinfo->quantize_colors && cinfo->colormap == NULL) {
- /* Select new quantization method */
- if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
- cinfo->cquantize = master->quantizer_2pass;
- master->pub.is_dummy_pass = TRUE;
- } else if (cinfo->enable_1pass_quant) {
- cinfo->cquantize = master->quantizer_1pass;
- } else {
- ERREXIT(cinfo, JERR_MODE_CHANGE);
- }
- }
- (*cinfo->idct->start_pass) (cinfo);
- (*cinfo->coef->start_output_pass) (cinfo);
- if (! cinfo->raw_data_out) {
- if (! master->using_merged_upsample)
- (*cinfo->cconvert->start_pass) (cinfo);
- (*cinfo->upsample->start_pass) (cinfo);
- if (cinfo->quantize_colors)
- (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
- (*cinfo->post->start_pass) (cinfo,
- (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
- (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
- }
- }
-
- /* Set up progress monitor's pass info if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->completed_passes = master->pass_number;
- cinfo->progress->total_passes = master->pass_number +
- (master->pub.is_dummy_pass ? 2 : 1);
- /* In buffered-image mode, we assume one more output pass if EOI not
- * yet reached, but no more passes if EOI has been reached.
- */
- if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
- cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
- }
- }
-}
-
-
-/*
- * Finish up at end of an output pass.
- */
-
-METHODDEF(void)
-finish_output_pass (j_decompress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
-
- if (cinfo->quantize_colors)
- (*cinfo->cquantize->finish_pass) (cinfo);
- master->pass_number++;
-}
-
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-
-/*
- * Switch to a new external colormap between output passes.
- */
-
-GLOBAL(void)
-jpeg_new_colormap (j_decompress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
-
- /* Prevent application from calling me at wrong times */
- if (cinfo->global_state != DSTATE_BUFIMAGE)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- if (cinfo->quantize_colors && cinfo->enable_external_quant &&
- cinfo->colormap != NULL) {
- /* Select 2-pass quantizer for external colormap use */
- cinfo->cquantize = master->quantizer_2pass;
- /* Notify quantizer of colormap change */
- (*cinfo->cquantize->new_color_map) (cinfo);
- master->pub.is_dummy_pass = FALSE; /* just in case */
- } else
- ERREXIT(cinfo, JERR_MODE_CHANGE);
-}
-
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
-
-
-/*
- * Initialize master decompression control and select active modules.
- * This is performed at the start of jpeg_start_decompress.
- */
-
-GLOBAL(void)
-jinit_master_decompress (j_decompress_ptr cinfo)
-{
- my_master_ptr master;
-
- master = (my_master_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_decomp_master));
- cinfo->master = (struct jpeg_decomp_master *) master;
- master->pub.prepare_for_output_pass = prepare_for_output_pass;
- master->pub.finish_output_pass = finish_output_pass;
-
- master->pub.is_dummy_pass = FALSE;
-
- master_selection(cinfo);
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jdmerge.c b/core/src/fxcodec/libjpeg/fpdfapi_jdmerge.c
deleted file mode 100644
index c229f86aa5..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jdmerge.c
+++ /dev/null
@@ -1,406 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jdmerge.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains code for merged upsampling/color conversion.
- *
- * This file combines functions from jdsample.c and jdcolor.c;
- * read those files first to understand what's going on.
- *
- * When the chroma components are to be upsampled by simple replication
- * (ie, box filtering), we can save some work in color conversion by
- * calculating all the output pixels corresponding to a pair of chroma
- * samples at one time. In the conversion equations
- * R = Y + K1 * Cr
- * G = Y + K2 * Cb + K3 * Cr
- * B = Y + K4 * Cb
- * only the Y term varies among the group of pixels corresponding to a pair
- * of chroma samples, so the rest of the terms can be calculated just once.
- * At typical sampling ratios, this eliminates half or three-quarters of the
- * multiplications needed for color conversion.
- *
- * This file currently provides implementations for the following cases:
- * YCbCr => RGB color conversion only.
- * Sampling ratios of 2h1v or 2h2v.
- * No scaling needed at upsample time.
- * Corner-aligned (non-CCIR601) sampling alignment.
- * Other special cases could be added, but in most applications these are
- * the only common cases. (For uncommon cases we fall back on the more
- * general code in jdsample.c and jdcolor.c.)
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-#ifdef UPSAMPLE_MERGING_SUPPORTED
-
-#ifdef _FX_MANAGED_CODE_
-#define my_upsampler my_upsampler_m
-#endif
-
-/* Private subobject */
-
-typedef struct {
- struct jpeg_upsampler pub; /* public fields */
-
- /* Pointer to routine to do actual upsampling/conversion of one row group */
- JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
- JSAMPARRAY output_buf));
-
- /* Private state for YCC->RGB conversion */
- int * Cr_r_tab; /* => table for Cr to R conversion */
- int * Cb_b_tab; /* => table for Cb to B conversion */
- INT32 * Cr_g_tab; /* => table for Cr to G conversion */
- INT32 * Cb_g_tab; /* => table for Cb to G conversion */
-
- /* For 2:1 vertical sampling, we produce two output rows at a time.
- * We need a "spare" row buffer to hold the second output row if the
- * application provides just a one-row buffer; we also use the spare
- * to discard the dummy last row if the image height is odd.
- */
- JSAMPROW spare_row;
- boolean spare_full; /* T if spare buffer is occupied */
-
- JDIMENSION out_row_width; /* samples per output row */
- JDIMENSION rows_to_go; /* counts rows remaining in image */
-} my_upsampler;
-
-typedef my_upsampler * my_upsample_ptr;
-
-#define SCALEBITS 16 /* speediest right-shift on some machines */
-#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
-#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
-
-
-/*
- * Initialize tables for YCC->RGB colorspace conversion.
- * This is taken directly from jdcolor.c; see that file for more info.
- */
-
-LOCAL(void)
-build_ycc_rgb_table (j_decompress_ptr cinfo)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
- int i;
- INT32 x;
- SHIFT_TEMPS
-
- upsample->Cr_r_tab = (int *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(int));
- upsample->Cb_b_tab = (int *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(int));
- upsample->Cr_g_tab = (INT32 *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(INT32));
- upsample->Cb_g_tab = (INT32 *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(INT32));
-
- for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
- /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
- /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
- /* Cr=>R value is nearest int to 1.40200 * x */
- upsample->Cr_r_tab[i] = (int)
- RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
- /* Cb=>B value is nearest int to 1.77200 * x */
- upsample->Cb_b_tab[i] = (int)
- RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
- /* Cr=>G value is scaled-up -0.71414 * x */
- upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x;
- /* Cb=>G value is scaled-up -0.34414 * x */
- /* We also add in ONE_HALF so that need not do it in inner loop */
- upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
- }
-}
-
-
-/*
- * Initialize for an upsampling pass.
- */
-
-METHODDEF(void)
-start_pass_merged_upsample (j_decompress_ptr cinfo)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
-
- /* Mark the spare buffer empty */
- upsample->spare_full = FALSE;
- /* Initialize total-height counter for detecting bottom of image */
- upsample->rows_to_go = cinfo->output_height;
-}
-
-
-/*
- * Control routine to do upsampling (and color conversion).
- *
- * The control routine just handles the row buffering considerations.
- */
-
-METHODDEF(void)
-merged_2v_upsample (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-/* 2:1 vertical sampling case: may need a spare row. */
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
- JSAMPROW work_ptrs[2];
- JDIMENSION num_rows; /* number of rows returned to caller */
-
- if (upsample->spare_full) {
- /* If we have a spare row saved from a previous cycle, just return it. */
- jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
- 1, upsample->out_row_width);
- num_rows = 1;
- upsample->spare_full = FALSE;
- } else {
- /* Figure number of rows to return to caller. */
- num_rows = 2;
- /* Not more than the distance to the end of the image. */
- if (num_rows > upsample->rows_to_go)
- num_rows = upsample->rows_to_go;
- /* And not more than what the client can accept: */
- out_rows_avail -= *out_row_ctr;
- if (num_rows > out_rows_avail)
- num_rows = out_rows_avail;
- /* Create output pointer array for upsampler. */
- work_ptrs[0] = output_buf[*out_row_ctr];
- if (num_rows > 1) {
- work_ptrs[1] = output_buf[*out_row_ctr + 1];
- } else {
- work_ptrs[1] = upsample->spare_row;
- upsample->spare_full = TRUE;
- }
- /* Now do the upsampling. */
- (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
- }
-
- /* Adjust counts */
- *out_row_ctr += num_rows;
- upsample->rows_to_go -= num_rows;
- /* When the buffer is emptied, declare this input row group consumed */
- if (! upsample->spare_full)
- (*in_row_group_ctr)++;
-}
-
-
-METHODDEF(void)
-merged_1v_upsample (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-/* 1:1 vertical sampling case: much easier, never need a spare row. */
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
-
- /* Just do the upsampling. */
- (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
- output_buf + *out_row_ctr);
- /* Adjust counts */
- (*out_row_ctr)++;
- (*in_row_group_ctr)++;
-}
-
-
-/*
- * These are the routines invoked by the control routines to do
- * the actual upsampling/conversion. One row group is processed per call.
- *
- * Note: since we may be writing directly into application-supplied buffers,
- * we have to be honest about the output width; we can't assume the buffer
- * has been rounded up to an even width.
- */
-
-
-/*
- * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
- */
-
-METHODDEF(void)
-h2v1_merged_upsample (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
- JSAMPARRAY output_buf)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
- register int y, cred, cgreen, cblue;
- int cb, cr;
- register JSAMPROW outptr;
- JSAMPROW inptr0, inptr1, inptr2;
- JDIMENSION col;
- /* copy these pointers into registers if possible */
- register JSAMPLE * range_limit = cinfo->sample_range_limit;
- int * Crrtab = upsample->Cr_r_tab;
- int * Cbbtab = upsample->Cb_b_tab;
- INT32 * Crgtab = upsample->Cr_g_tab;
- INT32 * Cbgtab = upsample->Cb_g_tab;
- SHIFT_TEMPS
-
- inptr0 = input_buf[0][in_row_group_ctr];
- inptr1 = input_buf[1][in_row_group_ctr];
- inptr2 = input_buf[2][in_row_group_ctr];
- outptr = output_buf[0];
- /* Loop for each pair of output pixels */
- for (col = cinfo->output_width >> 1; col > 0; col--) {
- /* Do the chroma part of the calculation */
- cb = GETJSAMPLE(*inptr1++);
- cr = GETJSAMPLE(*inptr2++);
- cred = Crrtab[cr];
- cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
- cblue = Cbbtab[cb];
- /* Fetch 2 Y values and emit 2 pixels */
- y = GETJSAMPLE(*inptr0++);
- outptr[RGB_RED] = range_limit[y + cred];
- outptr[RGB_GREEN] = range_limit[y + cgreen];
- outptr[RGB_BLUE] = range_limit[y + cblue];
- outptr += RGB_PIXELSIZE;
- y = GETJSAMPLE(*inptr0++);
- outptr[RGB_RED] = range_limit[y + cred];
- outptr[RGB_GREEN] = range_limit[y + cgreen];
- outptr[RGB_BLUE] = range_limit[y + cblue];
- outptr += RGB_PIXELSIZE;
- }
- /* If image width is odd, do the last output column separately */
- if (cinfo->output_width & 1) {
- cb = GETJSAMPLE(*inptr1);
- cr = GETJSAMPLE(*inptr2);
- cred = Crrtab[cr];
- cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
- cblue = Cbbtab[cb];
- y = GETJSAMPLE(*inptr0);
- outptr[RGB_RED] = range_limit[y + cred];
- outptr[RGB_GREEN] = range_limit[y + cgreen];
- outptr[RGB_BLUE] = range_limit[y + cblue];
- }
-}
-
-
-/*
- * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
- */
-
-METHODDEF(void)
-h2v2_merged_upsample (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
- JSAMPARRAY output_buf)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
- register int y, cred, cgreen, cblue;
- int cb, cr;
- register JSAMPROW outptr0, outptr1;
- JSAMPROW inptr00, inptr01, inptr1, inptr2;
- JDIMENSION col;
- /* copy these pointers into registers if possible */
- register JSAMPLE * range_limit = cinfo->sample_range_limit;
- int * Crrtab = upsample->Cr_r_tab;
- int * Cbbtab = upsample->Cb_b_tab;
- INT32 * Crgtab = upsample->Cr_g_tab;
- INT32 * Cbgtab = upsample->Cb_g_tab;
- SHIFT_TEMPS
-
- inptr00 = input_buf[0][in_row_group_ctr*2];
- inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
- inptr1 = input_buf[1][in_row_group_ctr];
- inptr2 = input_buf[2][in_row_group_ctr];
- outptr0 = output_buf[0];
- outptr1 = output_buf[1];
- /* Loop for each group of output pixels */
- for (col = cinfo->output_width >> 1; col > 0; col--) {
- /* Do the chroma part of the calculation */
- cb = GETJSAMPLE(*inptr1++);
- cr = GETJSAMPLE(*inptr2++);
- cred = Crrtab[cr];
- cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
- cblue = Cbbtab[cb];
- /* Fetch 4 Y values and emit 4 pixels */
- y = GETJSAMPLE(*inptr00++);
- outptr0[RGB_RED] = range_limit[y + cred];
- outptr0[RGB_GREEN] = range_limit[y + cgreen];
- outptr0[RGB_BLUE] = range_limit[y + cblue];
- outptr0 += RGB_PIXELSIZE;
- y = GETJSAMPLE(*inptr00++);
- outptr0[RGB_RED] = range_limit[y + cred];
- outptr0[RGB_GREEN] = range_limit[y + cgreen];
- outptr0[RGB_BLUE] = range_limit[y + cblue];
- outptr0 += RGB_PIXELSIZE;
- y = GETJSAMPLE(*inptr01++);
- outptr1[RGB_RED] = range_limit[y + cred];
- outptr1[RGB_GREEN] = range_limit[y + cgreen];
- outptr1[RGB_BLUE] = range_limit[y + cblue];
- outptr1 += RGB_PIXELSIZE;
- y = GETJSAMPLE(*inptr01++);
- outptr1[RGB_RED] = range_limit[y + cred];
- outptr1[RGB_GREEN] = range_limit[y + cgreen];
- outptr1[RGB_BLUE] = range_limit[y + cblue];
- outptr1 += RGB_PIXELSIZE;
- }
- /* If image width is odd, do the last output column separately */
- if (cinfo->output_width & 1) {
- cb = GETJSAMPLE(*inptr1);
- cr = GETJSAMPLE(*inptr2);
- cred = Crrtab[cr];
- cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
- cblue = Cbbtab[cb];
- y = GETJSAMPLE(*inptr00);
- outptr0[RGB_RED] = range_limit[y + cred];
- outptr0[RGB_GREEN] = range_limit[y + cgreen];
- outptr0[RGB_BLUE] = range_limit[y + cblue];
- y = GETJSAMPLE(*inptr01);
- outptr1[RGB_RED] = range_limit[y + cred];
- outptr1[RGB_GREEN] = range_limit[y + cgreen];
- outptr1[RGB_BLUE] = range_limit[y + cblue];
- }
-}
-
-
-/*
- * Module initialization routine for merged upsampling/color conversion.
- *
- * NB: this is called under the conditions determined by use_merged_upsample()
- * in jdmaster.c. That routine MUST correspond to the actual capabilities
- * of this module; no safety checks are made here.
- */
-
-GLOBAL(void)
-jinit_merged_upsampler (j_decompress_ptr cinfo)
-{
- my_upsample_ptr upsample;
-
- upsample = (my_upsample_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_upsampler));
- cinfo->upsample = (struct jpeg_upsampler *) upsample;
- upsample->pub.start_pass = start_pass_merged_upsample;
- upsample->pub.need_context_rows = FALSE;
-
- upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
-
- if (cinfo->max_v_samp_factor == 2) {
- upsample->pub.upsample = merged_2v_upsample;
- upsample->upmethod = h2v2_merged_upsample;
- /* Allocate a spare row buffer */
- upsample->spare_row = (JSAMPROW)
- (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (size_t) (upsample->out_row_width * SIZEOF(JSAMPLE)));
- } else {
- upsample->pub.upsample = merged_1v_upsample;
- upsample->upmethod = h2v1_merged_upsample;
- /* No spare row needed */
- upsample->spare_row = NULL;
- }
-
- build_ycc_rgb_table(cinfo);
-}
-
-#endif /* UPSAMPLE_MERGING_SUPPORTED */
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jdphuff.c b/core/src/fxcodec/libjpeg/fpdfapi_jdphuff.c
deleted file mode 100644
index 128e412662..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jdphuff.c
+++ /dev/null
@@ -1,671 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jdphuff.c
- *
- * Copyright (C) 1995-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains Huffman entropy decoding routines for progressive JPEG.
- *
- * Much of the complexity here has to do with supporting input suspension.
- * If the data source module demands suspension, we want to be able to back
- * up to the start of the current MCU. To do this, we copy state variables
- * into local working storage, and update them back to the permanent
- * storage only upon successful completion of an MCU.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdhuff.h" /* Declarations shared with jdhuff.c */
-
-
-#ifdef D_PROGRESSIVE_SUPPORTED
-
-/*
- * Expanded entropy decoder object for progressive Huffman decoding.
- *
- * The savable_state subrecord contains fields that change within an MCU,
- * but must not be updated permanently until we complete the MCU.
- */
-
-typedef struct {
- unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
-} savable_state;
-
-/* This macro is to work around compilers with missing or broken
- * structure assignment. You'll need to fix this code if you have
- * such a compiler and you change MAX_COMPS_IN_SCAN.
- */
-
-#ifndef NO_STRUCT_ASSIGN
-#define ASSIGN_STATE(dest,src) ((dest) = (src))
-#else
-#if MAX_COMPS_IN_SCAN == 4
-#define ASSIGN_STATE(dest,src) \
- ((dest).EOBRUN = (src).EOBRUN, \
- (dest).last_dc_val[0] = (src).last_dc_val[0], \
- (dest).last_dc_val[1] = (src).last_dc_val[1], \
- (dest).last_dc_val[2] = (src).last_dc_val[2], \
- (dest).last_dc_val[3] = (src).last_dc_val[3])
-#endif
-#endif
-
-
-typedef struct {
- struct jpeg_entropy_decoder pub; /* public fields */
-
- /* These fields are loaded into local variables at start of each MCU.
- * In case of suspension, we exit WITHOUT updating them.
- */
- bitread_perm_state bitstate; /* Bit buffer at start of MCU */
- savable_state saved; /* Other state at start of MCU */
-
- /* These fields are NOT loaded into local working state. */
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
-
- /* Pointers to derived tables (these workspaces have image lifespan) */
- d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
-
- d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
-} phuff_entropy_decoder;
-
-typedef phuff_entropy_decoder * phuff_entropy_ptr;
-
-/* Forward declarations */
-METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo,
- JBLOCKROW *MCU_data));
-METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo,
- JBLOCKROW *MCU_data));
-METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo,
- JBLOCKROW *MCU_data));
-METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo,
- JBLOCKROW *MCU_data));
-
-
-/*
- * Initialize for a Huffman-compressed scan.
- */
-
-METHODDEF(void)
-start_pass_phuff_decoder (j_decompress_ptr cinfo)
-{
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
- boolean is_DC_band, bad;
- int ci, coefi, tbl;
- int *coef_bit_ptr;
- jpeg_component_info * compptr;
-
- is_DC_band = (cinfo->Ss == 0);
-
- /* Validate scan parameters */
- bad = FALSE;
- if (is_DC_band) {
- if (cinfo->Se != 0)
- bad = TRUE;
- } else {
- /* need not check Ss/Se < 0 since they came from unsigned bytes */
- if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
- bad = TRUE;
- /* AC scans may have only one component */
- if (cinfo->comps_in_scan != 1)
- bad = TRUE;
- }
- if (cinfo->Ah != 0) {
- /* Successive approximation refinement scan: must have Al = Ah-1. */
- if (cinfo->Al != cinfo->Ah-1)
- bad = TRUE;
- }
- if (cinfo->Al > 13) /* need not check for < 0 */
- bad = TRUE;
- /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
- * but the spec doesn't say so, and we try to be liberal about what we
- * accept. Note: large Al values could result in out-of-range DC
- * coefficients during early scans, leading to bizarre displays due to
- * overflows in the IDCT math. But we won't crash.
- */
- if (bad)
- ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
- cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
- /* Update progression status, and verify that scan order is legal.
- * Note that inter-scan inconsistencies are treated as warnings
- * not fatal errors ... not clear if this is right way to behave.
- */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- int cindex = cinfo->cur_comp_info[ci]->component_index;
- coef_bit_ptr = & cinfo->coef_bits[cindex][0];
- if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
- WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
- for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
- int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
- if (cinfo->Ah != expected)
- WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
- coef_bit_ptr[coefi] = cinfo->Al;
- }
- }
-
- /* Select MCU decoding routine */
- if (cinfo->Ah == 0) {
- if (is_DC_band)
- entropy->pub.decode_mcu = decode_mcu_DC_first;
- else
- entropy->pub.decode_mcu = decode_mcu_AC_first;
- } else {
- if (is_DC_band)
- entropy->pub.decode_mcu = decode_mcu_DC_refine;
- else
- entropy->pub.decode_mcu = decode_mcu_AC_refine;
- }
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Make sure requested tables are present, and compute derived tables.
- * We may build same derived table more than once, but it's not expensive.
- */
- if (is_DC_band) {
- if (cinfo->Ah == 0) { /* DC refinement needs no table */
- tbl = compptr->dc_tbl_no;
- jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
- & entropy->derived_tbls[tbl]);
- }
- } else {
- tbl = compptr->ac_tbl_no;
- jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
- & entropy->derived_tbls[tbl]);
- /* remember the single active table */
- entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
- }
- /* Initialize DC predictions to 0 */
- entropy->saved.last_dc_val[ci] = 0;
- }
-
- /* Initialize bitread state variables */
- entropy->bitstate.bits_left = 0;
- entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
- entropy->pub.insufficient_data = FALSE;
-
- /* Initialize private state variables */
- entropy->saved.EOBRUN = 0;
-
- /* Initialize restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
-}
-
-
-/*
- * Figure F.12: extend sign bit.
- * On some machines, a shift and add will be faster than a table lookup.
- */
-
-#ifdef AVOID_TABLES
-
-#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
-
-#else
-
-#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
-
-static const int extend_test[16] = /* entry n is 2**(n-1) */
- { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
- 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
-
-static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
- { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
- ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
- ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
- ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
-
-#endif /* AVOID_TABLES */
-
-
-/*
- * Check for a restart marker & resynchronize decoder.
- * Returns FALSE if must suspend.
- */
-
-LOCAL(boolean)
-process_restart (j_decompress_ptr cinfo)
-{
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
- int ci;
-
- /* Throw away any unused bits remaining in bit buffer; */
- /* include any full bytes in next_marker's count of discarded bytes */
- cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
- entropy->bitstate.bits_left = 0;
-
- /* Advance past the RSTn marker */
- if (! (*cinfo->marker->read_restart_marker) (cinfo))
- return FALSE;
-
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++)
- entropy->saved.last_dc_val[ci] = 0;
- /* Re-init EOB run count, too */
- entropy->saved.EOBRUN = 0;
-
- /* Reset restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
-
- /* Reset out-of-data flag, unless read_restart_marker left us smack up
- * against a marker. In that case we will end up treating the next data
- * segment as empty, and we can avoid producing bogus output pixels by
- * leaving the flag set.
- */
- if (cinfo->unread_marker == 0)
- entropy->pub.insufficient_data = FALSE;
-
- return TRUE;
-}
-
-
-/*
- * Huffman MCU decoding.
- * Each of these routines decodes and returns one MCU's worth of
- * Huffman-compressed coefficients.
- * The coefficients are reordered from zigzag order into natural array order,
- * but are not dequantized.
- *
- * The i'th block of the MCU is stored into the block pointed to by
- * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
- *
- * We return FALSE if data source requested suspension. In that case no
- * changes have been made to permanent state. (Exception: some output
- * coefficients may already have been assigned. This is harmless for
- * spectral selection, since we'll just re-assign them on the next call.
- * Successive approximation AC refinement has to be more careful, however.)
- */
-
-/*
- * MCU decoding for DC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
-
-METHODDEF(boolean)
-decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
- int Al = cinfo->Al;
- register int s, r;
- int blkn, ci;
- JBLOCKROW block;
- BITREAD_STATE_VARS;
- savable_state state;
- d_derived_tbl * tbl;
- jpeg_component_info * compptr;
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
-
- /* If we've run out of data, just leave the MCU set to zeroes.
- * This way, we return uniform gray for the remainder of the segment.
- */
- if (! entropy->pub.insufficient_data) {
-
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(state, entropy->saved);
-
- /* Outer loop handles each block in the MCU */
-
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- tbl = entropy->derived_tbls[compptr->dc_tbl_no];
-
- /* Decode a single block's worth of coefficients */
-
- /* Section F.2.2.1: decode the DC coefficient difference */
- HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
- if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- }
-
- /* Convert DC difference to actual value, update last_dc_val */
- s += state.last_dc_val[ci];
- state.last_dc_val[ci] = s;
- /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
- (*block)[0] = (JCOEF) (s << Al);
- }
-
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(entropy->saved, state);
- }
-
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
-
- return TRUE;
-}
-
-
-/*
- * MCU decoding for AC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
-
-METHODDEF(boolean)
-decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
- int Se = cinfo->Se;
- int Al = cinfo->Al;
- register int s, k, r;
- unsigned int EOBRUN;
- JBLOCKROW block;
- BITREAD_STATE_VARS;
- d_derived_tbl * tbl;
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
-
- /* If we've run out of data, just leave the MCU set to zeroes.
- * This way, we return uniform gray for the remainder of the segment.
- */
- if (! entropy->pub.insufficient_data) {
-
- /* Load up working state.
- * We can avoid loading/saving bitread state if in an EOB run.
- */
- EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
-
- /* There is always only one block per MCU */
-
- if (EOBRUN > 0) /* if it's a band of zeroes... */
- EOBRUN--; /* ...process it now (we do nothing) */
- else {
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- block = MCU_data[0];
- tbl = entropy->ac_derived_tbl;
-
- for (k = cinfo->Ss; k <= Se; k++) {
- HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
- r = s >> 4;
- s &= 15;
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- /* Scale and output coefficient in natural (dezigzagged) order */
- (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
- } else {
- if (r == 15) { /* ZRL */
- k += 15; /* skip 15 zeroes in band */
- } else { /* EOBr, run length is 2^r + appended bits */
- EOBRUN = 1 << r;
- if (r) { /* EOBr, r > 0 */
- CHECK_BIT_BUFFER(br_state, r, return FALSE);
- r = GET_BITS(r);
- EOBRUN += r;
- }
- EOBRUN--; /* this band is processed at this moment */
- break; /* force end-of-band */
- }
- }
- }
-
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- }
-
- /* Completed MCU, so update state */
- entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
- }
-
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
-
- return TRUE;
-}
-
-
-/*
- * MCU decoding for DC successive approximation refinement scan.
- * Note: we assume such scans can be multi-component, although the spec
- * is not very clear on the point.
- */
-
-METHODDEF(boolean)
-decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
- int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
- int blkn;
- JBLOCKROW block;
- BITREAD_STATE_VARS;
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
-
- /* Not worth the cycles to check insufficient_data here,
- * since we will not change the data anyway if we read zeroes.
- */
-
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
-
- /* Outer loop handles each block in the MCU */
-
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
-
- /* Encoded data is simply the next bit of the two's-complement DC value */
- CHECK_BIT_BUFFER(br_state, 1, return FALSE);
- if (GET_BITS(1))
- (*block)[0] |= p1;
- /* Note: since we use |=, repeating the assignment later is safe */
- }
-
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
-
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
-
- return TRUE;
-}
-
-
-/*
- * MCU decoding for AC successive approximation refinement scan.
- */
-
-METHODDEF(boolean)
-decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
- int Se = cinfo->Se;
- int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
- int m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
- register int s, k, r;
- unsigned int EOBRUN;
- JBLOCKROW block;
- JCOEFPTR thiscoef;
- BITREAD_STATE_VARS;
- d_derived_tbl * tbl;
- int num_newnz;
- int newnz_pos[DCTSIZE2];
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
-
- /* If we've run out of data, don't modify the MCU.
- */
- if (! entropy->pub.insufficient_data) {
-
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
-
- /* There is always only one block per MCU */
- block = MCU_data[0];
- tbl = entropy->ac_derived_tbl;
-
- /* If we are forced to suspend, we must undo the assignments to any newly
- * nonzero coefficients in the block, because otherwise we'd get confused
- * next time about which coefficients were already nonzero.
- * But we need not undo addition of bits to already-nonzero coefficients;
- * instead, we can test the current bit to see if we already did it.
- */
- num_newnz = 0;
-
- /* initialize coefficient loop counter to start of band */
- k = cinfo->Ss;
-
- if (EOBRUN == 0) {
- for (; k <= Se; k++) {
- HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
- r = s >> 4;
- s &= 15;
- if (s) {
- if (s != 1) /* size of new coef should always be 1 */
- WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
- CHECK_BIT_BUFFER(br_state, 1, goto undoit);
- if (GET_BITS(1))
- s = p1; /* newly nonzero coef is positive */
- else
- s = m1; /* newly nonzero coef is negative */
- } else {
- if (r != 15) {
- EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
- if (r) {
- CHECK_BIT_BUFFER(br_state, r, goto undoit);
- r = GET_BITS(r);
- EOBRUN += r;
- }
- break; /* rest of block is handled by EOB logic */
- }
- /* note s = 0 for processing ZRL */
- }
- /* Advance over already-nonzero coefs and r still-zero coefs,
- * appending correction bits to the nonzeroes. A correction bit is 1
- * if the absolute value of the coefficient must be increased.
- */
- do {
- thiscoef = *block + jpeg_natural_order[k];
- if (*thiscoef != 0) {
- CHECK_BIT_BUFFER(br_state, 1, goto undoit);
- if (GET_BITS(1)) {
- if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
- if (*thiscoef >= 0)
- *thiscoef += p1;
- else
- *thiscoef += m1;
- }
- }
- } else {
- if (--r < 0)
- break; /* reached target zero coefficient */
- }
- k++;
- } while (k <= Se);
- if (s) {
- int pos = jpeg_natural_order[k];
- /* Output newly nonzero coefficient */
- (*block)[pos] = (JCOEF) s;
- /* Remember its position in case we have to suspend */
- newnz_pos[num_newnz++] = pos;
- }
- }
- }
-
- if (EOBRUN > 0) {
- /* Scan any remaining coefficient positions after the end-of-band
- * (the last newly nonzero coefficient, if any). Append a correction
- * bit to each already-nonzero coefficient. A correction bit is 1
- * if the absolute value of the coefficient must be increased.
- */
- for (; k <= Se; k++) {
- thiscoef = *block + jpeg_natural_order[k];
- if (*thiscoef != 0) {
- CHECK_BIT_BUFFER(br_state, 1, goto undoit);
- if (GET_BITS(1)) {
- if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
- if (*thiscoef >= 0)
- *thiscoef += p1;
- else
- *thiscoef += m1;
- }
- }
- }
- }
- /* Count one block completed in EOB run */
- EOBRUN--;
- }
-
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
- }
-
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
-
- return TRUE;
-
-undoit:
- /* Re-zero any output coefficients that we made newly nonzero */
- while (num_newnz > 0)
- (*block)[newnz_pos[--num_newnz]] = 0;
-
- return FALSE;
-}
-
-
-/*
- * Module initialization routine for progressive Huffman entropy decoding.
- */
-
-GLOBAL(void)
-jinit_phuff_decoder (j_decompress_ptr cinfo)
-{
- phuff_entropy_ptr entropy;
- int *coef_bit_ptr;
- int ci, i;
-
- entropy = (phuff_entropy_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(phuff_entropy_decoder));
- cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
- entropy->pub.start_pass = start_pass_phuff_decoder;
-
- /* Mark derived tables unallocated */
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- entropy->derived_tbls[i] = NULL;
- }
-
- /* Create progression status table */
- cinfo->coef_bits = (int (*)[DCTSIZE2])
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->num_components*DCTSIZE2*SIZEOF(int));
- coef_bit_ptr = & cinfo->coef_bits[0][0];
- for (ci = 0; ci < cinfo->num_components; ci++)
- for (i = 0; i < DCTSIZE2; i++)
- *coef_bit_ptr++ = -1;
-}
-
-#endif /* D_PROGRESSIVE_SUPPORTED */
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jdpostct.c b/core/src/fxcodec/libjpeg/fpdfapi_jdpostct.c
deleted file mode 100644
index 13b1b1bb0c..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jdpostct.c
+++ /dev/null
@@ -1,293 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jdpostct.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the decompression postprocessing controller.
- * This controller manages the upsampling, color conversion, and color
- * quantization/reduction steps; specifically, it controls the buffering
- * between upsample/color conversion and color quantization/reduction.
- *
- * If no color quantization/reduction is required, then this module has no
- * work to do, and it just hands off to the upsample/color conversion code.
- * An integrated upsample/convert/quantize process would replace this module
- * entirely.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_d_post_controller pub; /* public fields */
-
- /* Color quantization source buffer: this holds output data from
- * the upsample/color conversion step to be passed to the quantizer.
- * For two-pass color quantization, we need a full-image buffer;
- * for one-pass operation, a strip buffer is sufficient.
- */
- jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */
- JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */
- JDIMENSION strip_height; /* buffer size in rows */
- /* for two-pass mode only: */
- JDIMENSION starting_row; /* row # of first row in current strip */
- JDIMENSION next_row; /* index of next row to fill/empty in strip */
-} my_post_controller;
-
-typedef my_post_controller * my_post_ptr;
-
-
-/* Forward declarations */
-METHODDEF(void) post_process_1pass
- JPP((j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-#ifdef QUANT_2PASS_SUPPORTED
-METHODDEF(void) post_process_prepass
- JPP((j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-METHODDEF(void) post_process_2pass
- JPP((j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-#endif
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF(void)
-start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
-{
- my_post_ptr post = (my_post_ptr) cinfo->post;
-
- switch (pass_mode) {
- case JBUF_PASS_THRU:
- if (cinfo->quantize_colors) {
- /* Single-pass processing with color quantization. */
- post->pub.post_process_data = post_process_1pass;
- /* We could be doing buffered-image output before starting a 2-pass
- * color quantization; in that case, jinit_d_post_controller did not
- * allocate a strip buffer. Use the virtual-array buffer as workspace.
- */
- if (post->buffer == NULL) {
- post->buffer = (*cinfo->mem->access_virt_sarray)
- ((j_common_ptr) cinfo, post->whole_image,
- (JDIMENSION) 0, post->strip_height, TRUE);
- }
- } else {
- /* For single-pass processing without color quantization,
- * I have no work to do; just call the upsampler directly.
- */
- post->pub.post_process_data = cinfo->upsample->upsample;
- }
- break;
-#ifdef QUANT_2PASS_SUPPORTED
- case JBUF_SAVE_AND_PASS:
- /* First pass of 2-pass quantization */
- if (post->whole_image == NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- post->pub.post_process_data = post_process_prepass;
- break;
- case JBUF_CRANK_DEST:
- /* Second pass of 2-pass quantization */
- if (post->whole_image == NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- post->pub.post_process_data = post_process_2pass;
- break;
-#endif /* QUANT_2PASS_SUPPORTED */
- default:
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- break;
- }
- post->starting_row = post->next_row = 0;
-}
-
-
-/*
- * Process some data in the one-pass (strip buffer) case.
- * This is used for color precision reduction as well as one-pass quantization.
- */
-
-METHODDEF(void)
-post_process_1pass (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_post_ptr post = (my_post_ptr) cinfo->post;
- JDIMENSION num_rows, max_rows;
-
- /* Fill the buffer, but not more than what we can dump out in one go. */
- /* Note we rely on the upsampler to detect bottom of image. */
- max_rows = out_rows_avail - *out_row_ctr;
- if (max_rows > post->strip_height)
- max_rows = post->strip_height;
- num_rows = 0;
- (*cinfo->upsample->upsample) (cinfo,
- input_buf, in_row_group_ctr, in_row_groups_avail,
- post->buffer, &num_rows, max_rows);
- /* Quantize and emit data. */
- (*cinfo->cquantize->color_quantize) (cinfo,
- post->buffer, output_buf + *out_row_ctr, (int) num_rows);
- *out_row_ctr += num_rows;
-}
-
-
-#ifdef QUANT_2PASS_SUPPORTED
-
-/*
- * Process some data in the first pass of 2-pass quantization.
- */
-
-METHODDEF(void)
-post_process_prepass (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_post_ptr post = (my_post_ptr) cinfo->post;
- JDIMENSION old_next_row, num_rows;
-
- /* Reposition virtual buffer if at start of strip. */
- if (post->next_row == 0) {
- post->buffer = (*cinfo->mem->access_virt_sarray)
- ((j_common_ptr) cinfo, post->whole_image,
- post->starting_row, post->strip_height, TRUE);
- }
-
- /* Upsample some data (up to a strip height's worth). */
- old_next_row = post->next_row;
- (*cinfo->upsample->upsample) (cinfo,
- input_buf, in_row_group_ctr, in_row_groups_avail,
- post->buffer, &post->next_row, post->strip_height);
-
- /* Allow quantizer to scan new data. No data is emitted, */
- /* but we advance out_row_ctr so outer loop can tell when we're done. */
- if (post->next_row > old_next_row) {
- num_rows = post->next_row - old_next_row;
- (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
- (JSAMPARRAY) NULL, (int) num_rows);
- *out_row_ctr += num_rows;
- }
-
- /* Advance if we filled the strip. */
- if (post->next_row >= post->strip_height) {
- post->starting_row += post->strip_height;
- post->next_row = 0;
- }
-}
-
-
-/*
- * Process some data in the second pass of 2-pass quantization.
- */
-
-METHODDEF(void)
-post_process_2pass (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_post_ptr post = (my_post_ptr) cinfo->post;
- JDIMENSION num_rows, max_rows;
-
- /* Reposition virtual buffer if at start of strip. */
- if (post->next_row == 0) {
- post->buffer = (*cinfo->mem->access_virt_sarray)
- ((j_common_ptr) cinfo, post->whole_image,
- post->starting_row, post->strip_height, FALSE);
- }
-
- /* Determine number of rows to emit. */
- num_rows = post->strip_height - post->next_row; /* available in strip */
- max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
- if (num_rows > max_rows)
- num_rows = max_rows;
- /* We have to check bottom of image here, can't depend on upsampler. */
- max_rows = cinfo->output_height - post->starting_row;
- if (num_rows > max_rows)
- num_rows = max_rows;
-
- /* Quantize and emit data. */
- (*cinfo->cquantize->color_quantize) (cinfo,
- post->buffer + post->next_row, output_buf + *out_row_ctr,
- (int) num_rows);
- *out_row_ctr += num_rows;
-
- /* Advance if we filled the strip. */
- post->next_row += num_rows;
- if (post->next_row >= post->strip_height) {
- post->starting_row += post->strip_height;
- post->next_row = 0;
- }
-}
-
-#endif /* QUANT_2PASS_SUPPORTED */
-
-
-/*
- * Initialize postprocessing controller.
- */
-
-GLOBAL(void)
-jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
-{
- my_post_ptr post;
-
- post = (my_post_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_post_controller));
- cinfo->post = (struct jpeg_d_post_controller *) post;
- post->pub.start_pass = start_pass_dpost;
- post->whole_image = NULL; /* flag for no virtual arrays */
- post->buffer = NULL; /* flag for no strip buffer */
-
- /* Create the quantization buffer, if needed */
- if (cinfo->quantize_colors) {
- /* The buffer strip height is max_v_samp_factor, which is typically
- * an efficient number of rows for upsampling to return.
- * (In the presence of output rescaling, we might want to be smarter?)
- */
- post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
- if (need_full_buffer) {
- /* Two-pass color quantization: need full-image storage. */
- /* We round up the number of rows to a multiple of the strip height. */
-#ifdef QUANT_2PASS_SUPPORTED
- post->whole_image = (*cinfo->mem->request_virt_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
- cinfo->output_width * cinfo->out_color_components,
- (JDIMENSION) jround_up((long) cinfo->output_height,
- (long) post->strip_height),
- post->strip_height);
-#else
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-#endif /* QUANT_2PASS_SUPPORTED */
- } else {
- /* One-pass color quantization: just make a strip buffer. */
- post->buffer = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->output_width * cinfo->out_color_components,
- post->strip_height);
- }
- }
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jdsample.c b/core/src/fxcodec/libjpeg/fpdfapi_jdsample.c
deleted file mode 100644
index da9c38ce38..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jdsample.c
+++ /dev/null
@@ -1,481 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jdsample.c
- *
- * Copyright (C) 1991-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains upsampling routines.
- *
- * Upsampling input data is counted in "row groups". A row group
- * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
- * sample rows of each component. Upsampling will normally produce
- * max_v_samp_factor pixel rows from each row group (but this could vary
- * if the upsampler is applying a scale factor of its own).
- *
- * An excellent reference for image resampling is
- * Digital Image Warping, George Wolberg, 1990.
- * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Pointer to routine to upsample a single component */
-typedef JMETHOD(void, upsample1_ptr,
- (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
-
-/* Private subobject */
-
-typedef struct {
- struct jpeg_upsampler pub; /* public fields */
-
- /* Color conversion buffer. When using separate upsampling and color
- * conversion steps, this buffer holds one upsampled row group until it
- * has been color converted and output.
- * Note: we do not allocate any storage for component(s) which are full-size,
- * ie do not need rescaling. The corresponding entry of color_buf[] is
- * simply set to point to the input data array, thereby avoiding copying.
- */
- JSAMPARRAY color_buf[MAX_COMPONENTS];
-
- /* Per-component upsampling method pointers */
- upsample1_ptr methods[MAX_COMPONENTS];
-
- int next_row_out; /* counts rows emitted from color_buf */
- JDIMENSION rows_to_go; /* counts rows remaining in image */
-
- /* Height of an input row group for each component. */
- int rowgroup_height[MAX_COMPONENTS];
-
- /* These arrays save pixel expansion factors so that int_expand need not
- * recompute them each time. They are unused for other upsampling methods.
- */
- UINT8 h_expand[MAX_COMPONENTS];
- UINT8 v_expand[MAX_COMPONENTS];
-} my_upsampler;
-
-typedef my_upsampler * my_upsample_ptr;
-
-
-/*
- * Initialize for an upsampling pass.
- */
-
-METHODDEF(void)
-start_pass_upsample (j_decompress_ptr cinfo)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
-
- /* Mark the conversion buffer empty */
- upsample->next_row_out = cinfo->max_v_samp_factor;
- /* Initialize total-height counter for detecting bottom of image */
- upsample->rows_to_go = cinfo->output_height;
-}
-
-
-/*
- * Control routine to do upsampling (and color conversion).
- *
- * In this version we upsample each component independently.
- * We upsample one row group into the conversion buffer, then apply
- * color conversion a row at a time.
- */
-
-METHODDEF(void)
-sep_upsample (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
- int ci;
- jpeg_component_info * compptr;
- JDIMENSION num_rows;
-
- /* Fill the conversion buffer, if it's empty */
- if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Invoke per-component upsample method. Notice we pass a POINTER
- * to color_buf[ci], so that fullsize_upsample can change it.
- */
- (*upsample->methods[ci]) (cinfo, compptr,
- input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
- upsample->color_buf + ci);
- }
- upsample->next_row_out = 0;
- }
-
- /* Color-convert and emit rows */
-
- /* How many we have in the buffer: */
- num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
- /* Not more than the distance to the end of the image. Need this test
- * in case the image height is not a multiple of max_v_samp_factor:
- */
- if (num_rows > upsample->rows_to_go)
- num_rows = upsample->rows_to_go;
- /* And not more than what the client can accept: */
- out_rows_avail -= *out_row_ctr;
- if (num_rows > out_rows_avail)
- num_rows = out_rows_avail;
-
- (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
- (JDIMENSION) upsample->next_row_out,
- output_buf + *out_row_ctr,
- (int) num_rows);
-
- /* Adjust counts */
- *out_row_ctr += num_rows;
- upsample->rows_to_go -= num_rows;
- upsample->next_row_out += num_rows;
- /* When the buffer is emptied, declare this input row group consumed */
- if (upsample->next_row_out >= cinfo->max_v_samp_factor)
- (*in_row_group_ctr)++;
-}
-
-
-/*
- * These are the routines invoked by sep_upsample to upsample pixel values
- * of a single component. One row group is processed per call.
- */
-
-
-/*
- * For full-size components, we just make color_buf[ci] point at the
- * input buffer, and thus avoid copying any data. Note that this is
- * safe only because sep_upsample doesn't declare the input row group
- * "consumed" until we are done color converting and emitting it.
- */
-
-METHODDEF(void)
-fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- *output_data_ptr = input_data;
-}
-
-
-/*
- * This is a no-op version used for "uninteresting" components.
- * These components will not be referenced by color conversion.
- */
-
-METHODDEF(void)
-noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- *output_data_ptr = NULL; /* safety check */
-}
-
-
-/*
- * This version handles any integral sampling ratios.
- * This is not used for typical JPEG files, so it need not be fast.
- * Nor, for that matter, is it particularly accurate: the algorithm is
- * simple replication of the input pixel onto the corresponding output
- * pixels. The hi-falutin sampling literature refers to this as a
- * "box filter". A box filter tends to introduce visible artifacts,
- * so if you are actually going to use 3:1 or 4:1 sampling ratios
- * you would be well advised to improve this code.
- */
-
-METHODDEF(void)
-int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
- JSAMPARRAY output_data = *output_data_ptr;
- register JSAMPROW inptr, outptr;
- register JSAMPLE invalue;
- register int h;
- JSAMPROW outend;
- int h_expand, v_expand;
- int inrow, outrow;
-
- h_expand = upsample->h_expand[compptr->component_index];
- v_expand = upsample->v_expand[compptr->component_index];
-
- inrow = outrow = 0;
- while (outrow < cinfo->max_v_samp_factor) {
- /* Generate one output row with proper horizontal expansion */
- inptr = input_data[inrow];
- outptr = output_data[outrow];
- outend = outptr + cinfo->output_width;
- while (outptr < outend) {
- invalue = *inptr++; /* don't need GETJSAMPLE() here */
- for (h = h_expand; h > 0; h--) {
- *outptr++ = invalue;
- }
- }
- /* Generate any additional output rows by duplicating the first one */
- if (v_expand > 1) {
- jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
- v_expand-1, cinfo->output_width);
- }
- inrow++;
- outrow += v_expand;
- }
-}
-
-
-/*
- * Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
- * It's still a box filter.
- */
-
-METHODDEF(void)
-h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- JSAMPARRAY output_data = *output_data_ptr;
- register JSAMPROW inptr, outptr;
- register JSAMPLE invalue;
- JSAMPROW outend;
- int inrow;
-
- for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
- inptr = input_data[inrow];
- outptr = output_data[inrow];
- outend = outptr + cinfo->output_width;
- while (outptr < outend) {
- invalue = *inptr++; /* don't need GETJSAMPLE() here */
- *outptr++ = invalue;
- *outptr++ = invalue;
- }
- }
-}
-
-
-/*
- * Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
- * It's still a box filter.
- */
-
-METHODDEF(void)
-h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- JSAMPARRAY output_data = *output_data_ptr;
- register JSAMPROW inptr, outptr;
- register JSAMPLE invalue;
- JSAMPROW outend;
- int inrow, outrow;
-
- inrow = outrow = 0;
- while (outrow < cinfo->max_v_samp_factor) {
- inptr = input_data[inrow];
- outptr = output_data[outrow];
- outend = outptr + cinfo->output_width;
- while (outptr < outend) {
- invalue = *inptr++; /* don't need GETJSAMPLE() here */
- *outptr++ = invalue;
- *outptr++ = invalue;
- }
- jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
- 1, cinfo->output_width);
- inrow++;
- outrow += 2;
- }
-}
-
-
-/*
- * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
- *
- * The upsampling algorithm is linear interpolation between pixel centers,
- * also known as a "triangle filter". This is a good compromise between
- * speed and visual quality. The centers of the output pixels are 1/4 and 3/4
- * of the way between input pixel centers.
- *
- * A note about the "bias" calculations: when rounding fractional values to
- * integer, we do not want to always round 0.5 up to the next integer.
- * If we did that, we'd introduce a noticeable bias towards larger values.
- * Instead, this code is arranged so that 0.5 will be rounded up or down at
- * alternate pixel locations (a simple ordered dither pattern).
- */
-
-METHODDEF(void)
-h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- JSAMPARRAY output_data = *output_data_ptr;
- register JSAMPROW inptr, outptr;
- register int invalue;
- register JDIMENSION colctr;
- int inrow;
-
- for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
- inptr = input_data[inrow];
- outptr = output_data[inrow];
- /* Special case for first column */
- invalue = GETJSAMPLE(*inptr++);
- *outptr++ = (JSAMPLE) invalue;
- *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);
-
- for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
- /* General case: 3/4 * nearer pixel + 1/4 * further pixel */
- invalue = GETJSAMPLE(*inptr++) * 3;
- *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
- *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
- }
-
- /* Special case for last column */
- invalue = GETJSAMPLE(*inptr);
- *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
- *outptr++ = (JSAMPLE) invalue;
- }
-}
-
-
-/*
- * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
- * Again a triangle filter; see comments for h2v1 case, above.
- *
- * It is OK for us to reference the adjacent input rows because we demanded
- * context from the main buffer controller (see initialization code).
- */
-
-METHODDEF(void)
-h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- JSAMPARRAY output_data = *output_data_ptr;
- register JSAMPROW inptr0, inptr1, outptr;
-#if BITS_IN_JSAMPLE == 8
- register int thiscolsum, lastcolsum, nextcolsum;
-#else
- register INT32 thiscolsum, lastcolsum, nextcolsum;
-#endif
- register JDIMENSION colctr;
- int inrow, outrow, v;
-
- inrow = outrow = 0;
- while (outrow < cinfo->max_v_samp_factor) {
- for (v = 0; v < 2; v++) {
- /* inptr0 points to nearest input row, inptr1 points to next nearest */
- inptr0 = input_data[inrow];
- if (v == 0) /* next nearest is row above */
- inptr1 = input_data[inrow-1];
- else /* next nearest is row below */
- inptr1 = input_data[inrow+1];
- outptr = output_data[outrow++];
-
- /* Special case for first column */
- thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
- nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
- *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
- *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
- lastcolsum = thiscolsum; thiscolsum = nextcolsum;
-
- for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
- /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
- /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
- nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
- *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
- *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
- lastcolsum = thiscolsum; thiscolsum = nextcolsum;
- }
-
- /* Special case for last column */
- *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
- *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
- }
- inrow++;
- }
-}
-
-
-/*
- * Module initialization routine for upsampling.
- */
-
-GLOBAL(void)
-jinit_upsampler (j_decompress_ptr cinfo)
-{
- my_upsample_ptr upsample;
- int ci;
- jpeg_component_info * compptr;
- boolean need_buffer, do_fancy;
- int h_in_group, v_in_group, h_out_group, v_out_group;
-
- upsample = (my_upsample_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_upsampler));
- cinfo->upsample = (struct jpeg_upsampler *) upsample;
- upsample->pub.start_pass = start_pass_upsample;
- upsample->pub.upsample = sep_upsample;
- upsample->pub.need_context_rows = FALSE; /* until we find out differently */
-
- if (cinfo->CCIR601_sampling) /* this isn't supported */
- ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
-
- /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
- * so don't ask for it.
- */
- do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1;
-
- /* Verify we can handle the sampling factors, select per-component methods,
- * and create storage as needed.
- */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Compute size of an "input group" after IDCT scaling. This many samples
- * are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
- */
- h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) /
- cinfo->min_DCT_scaled_size;
- v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
- cinfo->min_DCT_scaled_size;
- h_out_group = cinfo->max_h_samp_factor;
- v_out_group = cinfo->max_v_samp_factor;
- upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
- need_buffer = TRUE;
- if (! compptr->component_needed) {
- /* Don't bother to upsample an uninteresting component. */
- upsample->methods[ci] = noop_upsample;
- need_buffer = FALSE;
- } else if (h_in_group == h_out_group && v_in_group == v_out_group) {
- /* Fullsize components can be processed without any work. */
- upsample->methods[ci] = fullsize_upsample;
- need_buffer = FALSE;
- } else if (h_in_group * 2 == h_out_group &&
- v_in_group == v_out_group) {
- /* Special cases for 2h1v upsampling */
- if (do_fancy && compptr->downsampled_width > 2)
- upsample->methods[ci] = h2v1_fancy_upsample;
- else
- upsample->methods[ci] = h2v1_upsample;
- } else if (h_in_group * 2 == h_out_group &&
- v_in_group * 2 == v_out_group) {
- /* Special cases for 2h2v upsampling */
- if (do_fancy && compptr->downsampled_width > 2) {
- upsample->methods[ci] = h2v2_fancy_upsample;
- upsample->pub.need_context_rows = TRUE;
- } else
- upsample->methods[ci] = h2v2_upsample;
- } else if ((h_out_group % h_in_group) == 0 &&
- (v_out_group % v_in_group) == 0) {
- /* Generic integral-factors upsampling method */
- upsample->methods[ci] = int_upsample;
- upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
- upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
- } else
- ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
- if (need_buffer) {
- upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (JDIMENSION) jround_up((long) cinfo->output_width,
- (long) cinfo->max_h_samp_factor),
- (JDIMENSION) cinfo->max_v_samp_factor);
- }
- }
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jdtrans.c b/core/src/fxcodec/libjpeg/fpdfapi_jdtrans.c
deleted file mode 100644
index ae44f36043..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jdtrans.c
+++ /dev/null
@@ -1,146 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jdtrans.c
- *
- * Copyright (C) 1995-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains library routines for transcoding decompression,
- * that is, reading raw DCT coefficient arrays from an input JPEG file.
- * The routines in jdapimin.c will also be needed by a transcoder.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Forward declarations */
-LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo));
-
-
-/*
- * Read the coefficient arrays from a JPEG file.
- * jpeg_read_header must be completed before calling this.
- *
- * The entire image is read into a set of virtual coefficient-block arrays,
- * one per component. The return value is a pointer to the array of
- * virtual-array descriptors. These can be manipulated directly via the
- * JPEG memory manager, or handed off to jpeg_write_coefficients().
- * To release the memory occupied by the virtual arrays, call
- * jpeg_finish_decompress() when done with the data.
- *
- * An alternative usage is to simply obtain access to the coefficient arrays
- * during a buffered-image-mode decompression operation. This is allowed
- * after any jpeg_finish_output() call. The arrays can be accessed until
- * jpeg_finish_decompress() is called. (Note that any call to the library
- * may reposition the arrays, so don't rely on access_virt_barray() results
- * to stay valid across library calls.)
- *
- * Returns NULL if suspended. This case need be checked only if
- * a suspending data source is used.
- */
-
-GLOBAL(jvirt_barray_ptr *)
-jpeg_read_coefficients (j_decompress_ptr cinfo)
-{
- if (cinfo->global_state == DSTATE_READY) {
- /* First call: initialize active modules */
- transdecode_master_selection(cinfo);
- cinfo->global_state = DSTATE_RDCOEFS;
- }
- if (cinfo->global_state == DSTATE_RDCOEFS) {
- /* Absorb whole file into the coef buffer */
- for (;;) {
- int retcode;
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL)
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- /* Absorb some more input */
- retcode = (*cinfo->inputctl->consume_input) (cinfo);
- if (retcode == JPEG_SUSPENDED)
- return NULL;
- if (retcode == JPEG_REACHED_EOI)
- break;
- /* Advance progress counter if appropriate */
- if (cinfo->progress != NULL &&
- (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
- if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
- /* startup underestimated number of scans; ratchet up one scan */
- cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
- }
- }
- }
- /* Set state so that jpeg_finish_decompress does the right thing */
- cinfo->global_state = DSTATE_STOPPING;
- }
- /* At this point we should be in state DSTATE_STOPPING if being used
- * standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
- * to the coefficients during a full buffered-image-mode decompression.
- */
- if ((cinfo->global_state == DSTATE_STOPPING ||
- cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
- return cinfo->coef->coef_arrays;
- }
- /* Oops, improper usage */
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- return NULL; /* keep compiler happy */
-}
-
-
-/*
- * Master selection of decompression modules for transcoding.
- * This substitutes for jdmaster.c's initialization of the full decompressor.
- */
-
-LOCAL(void)
-transdecode_master_selection (j_decompress_ptr cinfo)
-{
- /* This is effectively a buffered-image operation. */
- cinfo->buffered_image = TRUE;
-
- /* Entropy decoding: either Huffman or arithmetic coding. */
- if (cinfo->arith_code) {
- ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
- } else {
- if (cinfo->progressive_mode) {
-#ifdef D_PROGRESSIVE_SUPPORTED
- jinit_phuff_decoder(cinfo);
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else
- jinit_huff_decoder(cinfo);
- }
-
- /* Always get a full-image coefficient buffer. */
- jinit_d_coef_controller(cinfo, TRUE);
-
- /* We can now tell the memory manager to allocate virtual arrays. */
- (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
-
- /* Initialize input side of decompressor to consume first scan. */
- (*cinfo->inputctl->start_input_pass) (cinfo);
-
- /* Initialize progress monitoring. */
- if (cinfo->progress != NULL) {
- int nscans;
- /* Estimate number of scans to set pass_limit. */
- if (cinfo->progressive_mode) {
- /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
- nscans = 2 + 3 * cinfo->num_components;
- } else if (cinfo->inputctl->has_multiple_scans) {
- /* For a nonprogressive multiscan file, estimate 1 scan per component. */
- nscans = cinfo->num_components;
- } else {
- nscans = 1;
- }
- cinfo->progress->pass_counter = 0L;
- cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
- cinfo->progress->completed_passes = 0;
- cinfo->progress->total_passes = 1;
- }
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jerror.c b/core/src/fxcodec/libjpeg/fpdfapi_jerror.c
deleted file mode 100644
index 282f889ebd..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jerror.c
+++ /dev/null
@@ -1,242 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jerror.c
- *
- * Copyright (C) 1991-1998, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains simple error-reporting and trace-message routines.
- * These are suitable for Unix-like systems and others where writing to
- * stderr is the right thing to do. Many applications will want to replace
- * some or all of these routines.
- *
- * These routines are used by both the compression and decompression code.
- */
-
-/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jversion.h"
-#include "jerror.h"
-
-#ifndef EXIT_FAILURE /* define exit() codes if not provided */
-#define EXIT_FAILURE 1
-#endif
-
-
-/*
- * Create the message string table.
- * We do this from the master message list in jerror.h by re-reading
- * jerror.h with a suitable definition for macro JMESSAGE.
- * The message table is made an external symbol just in case any applications
- * want to refer to it directly.
- */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jpeg_std_message_table jMsgTable
-#endif
-
-#define JMESSAGE(code,string) string ,
-
-const char * const jpeg_std_message_table[] = {
-#include "jerror.h"
- NULL
-};
-
-
-/*
- * Error exit handler: must not return to caller.
- *
- * Applications may override this if they want to get control back after
- * an error. Typically one would longjmp somewhere instead of exiting.
- * The setjmp buffer can be made a private field within an expanded error
- * handler object. Note that the info needed to generate an error message
- * is stored in the error object, so you can generate the message now or
- * later, at your convenience.
- * You should make sure that the JPEG object is cleaned up (with jpeg_abort
- * or jpeg_destroy) at some point.
- */
-
-METHODDEF(void)
-error_exit (j_common_ptr cinfo)
-{
- /* Always display the message */
- (*cinfo->err->output_message) (cinfo);
-
- /* Let the memory manager delete any temp files before we die */
- jpeg_destroy(cinfo);
-
-// exit(EXIT_FAILURE);
-}
-
-
-/*
- * Actual output of an error or trace message.
- * Applications may override this method to send JPEG messages somewhere
- * other than stderr.
- *
- * On Windows, printing to stderr is generally completely useless,
- * so we provide optional code to produce an error-dialog popup.
- * Most Windows applications will still prefer to override this routine,
- * but if they don't, it'll do something at least marginally useful.
- *
- * NOTE: to use the library in an environment that doesn't support the
- * C stdio library, you may have to delete the call to fprintf() entirely,
- * not just not use this routine.
- */
-
-METHODDEF(void)
-output_message (j_common_ptr cinfo)
-{
- char buffer[JMSG_LENGTH_MAX];
-
- /* Create the message */
- (*cinfo->err->format_message) (cinfo, buffer);
-
- /* Send it to stderr, adding a newline */
- FXSYS_fprintf(stderr, "%s\n", buffer);
-}
-
-
-/*
- * Decide whether to emit a trace or warning message.
- * msg_level is one of:
- * -1: recoverable corrupt-data warning, may want to abort.
- * 0: important advisory messages (always display to user).
- * 1: first level of tracing detail.
- * 2,3,...: successively more detailed tracing messages.
- * An application might override this method if it wanted to abort on warnings
- * or change the policy about which messages to display.
- */
-
-METHODDEF(void)
-emit_message (j_common_ptr cinfo, int msg_level)
-{
- struct jpeg_error_mgr * err = cinfo->err;
-
- if (msg_level < 0) {
- /* It's a warning message. Since corrupt files may generate many warnings,
- * the policy implemented here is to show only the first warning,
- * unless trace_level >= 3.
- */
- if (err->num_warnings == 0 || err->trace_level >= 3)
- (*err->output_message) (cinfo);
- /* Always count warnings in num_warnings. */
- err->num_warnings++;
- } else {
- /* It's a trace message. Show it if trace_level >= msg_level. */
- if (err->trace_level >= msg_level)
- (*err->output_message) (cinfo);
- }
-}
-
-
-/*
- * Format a message string for the most recent JPEG error or message.
- * The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
- * characters. Note that no '\n' character is added to the string.
- * Few applications should need to override this method.
- */
-
-METHODDEF(void)
-format_message (j_common_ptr cinfo, char * buffer)
-{
-#if 0 /* XYQ */
- struct jpeg_error_mgr * err = cinfo->err;
- int msg_code = err->msg_code;
- const char * msgtext = NULL;
- const char * msgptr;
- char ch;
- boolean isstring;
-
- /* Look up message string in proper table */
- if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
- msgtext = err->jpeg_message_table[msg_code];
- } else if (err->addon_message_table != NULL &&
- msg_code >= err->first_addon_message &&
- msg_code <= err->last_addon_message) {
- msgtext = err->addon_message_table[msg_code - err->first_addon_message];
- }
-
- /* Defend against bogus message number */
- if (msgtext == NULL) {
- err->msg_parm.i[0] = msg_code;
- msgtext = err->jpeg_message_table[0];
- }
-
- /* Check for string parameter, as indicated by %s in the message text */
- isstring = FALSE;
- msgptr = msgtext;
- while ((ch = *msgptr++) != '\0') {
- if (ch == '%') {
- if (*msgptr == 's') isstring = TRUE;
- break;
- }
- }
-
- /* Format the message into the passed buffer */
- if (isstring)
- sprintf(buffer, msgtext, err->msg_parm.s);
- else
- sprintf(buffer, msgtext,
- err->msg_parm.i[0], err->msg_parm.i[1],
- err->msg_parm.i[2], err->msg_parm.i[3],
- err->msg_parm.i[4], err->msg_parm.i[5],
- err->msg_parm.i[6], err->msg_parm.i[7]);
-#endif
-}
-
-
-/*
- * Reset error state variables at start of a new image.
- * This is called during compression startup to reset trace/error
- * processing to default state, without losing any application-specific
- * method pointers. An application might possibly want to override
- * this method if it has additional error processing state.
- */
-
-METHODDEF(void)
-reset_error_mgr (j_common_ptr cinfo)
-{
- cinfo->err->num_warnings = 0;
- /* trace_level is not reset since it is an application-supplied parameter */
- cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
-}
-
-
-/*
- * Fill in the standard error-handling methods in a jpeg_error_mgr object.
- * Typical call is:
- * struct jpeg_compress_struct cinfo;
- * struct jpeg_error_mgr err;
- *
- * cinfo.err = jpeg_std_error(&err);
- * after which the application may override some of the methods.
- */
-
-GLOBAL(struct jpeg_error_mgr *)
-jpeg_std_error (struct jpeg_error_mgr * err)
-{
- err->error_exit = error_exit;
- err->emit_message = emit_message;
- err->output_message = output_message;
- err->format_message = format_message;
- err->reset_error_mgr = reset_error_mgr;
-
- err->trace_level = 0; /* default = no tracing */
- err->num_warnings = 0; /* no warnings emitted yet */
- err->msg_code = 0; /* may be useful as a flag for "no error" */
-
- /* Initialize message table pointers */
- err->jpeg_message_table = jpeg_std_message_table;
- err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
-
- err->addon_message_table = NULL;
- err->first_addon_message = 0; /* for safety */
- err->last_addon_message = 0;
-
- return err;
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jfdctfst.c b/core/src/fxcodec/libjpeg/fpdfapi_jfdctfst.c
deleted file mode 100644
index b978b468d7..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jfdctfst.c
+++ /dev/null
@@ -1,227 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jfdctfst.c
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a fast, not so accurate integer implementation of the
- * forward DCT (Discrete Cosine Transform).
- *
- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
- * on each column. Direct algorithms are also available, but they are
- * much more complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
- * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
- * JPEG textbook (see REFERENCES section in file README). The following code
- * is based directly on figure 4-8 in P&M.
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
- * possible to arrange the computation so that many of the multiplies are
- * simple scalings of the final outputs. These multiplies can then be
- * folded into the multiplications or divisions by the JPEG quantization
- * table entries. The AA&N method leaves only 5 multiplies and 29 adds
- * to be done in the DCT itself.
- * The primary disadvantage of this method is that with fixed-point math,
- * accuracy is lost due to imprecise representation of the scaled
- * quantization values. The smaller the quantization table entry, the less
- * precise the scaled value, so this implementation does worse with high-
- * quality-setting files than with low-quality ones.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-#ifdef DCT_IFAST_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/* Scaling decisions are generally the same as in the LL&M algorithm;
- * see jfdctint.c for more details. However, we choose to descale
- * (right shift) multiplication products as soon as they are formed,
- * rather than carrying additional fractional bits into subsequent additions.
- * This compromises accuracy slightly, but it lets us save a few shifts.
- * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
- * everywhere except in the multiplications proper; this saves a good deal
- * of work on 16-bit-int machines.
- *
- * Again to save a few shifts, the intermediate results between pass 1 and
- * pass 2 are not upscaled, but are represented only to integral precision.
- *
- * A final compromise is to represent the multiplicative constants to only
- * 8 fractional bits, rather than 13. This saves some shifting work on some
- * machines, and may also reduce the cost of multiplication (since there
- * are fewer one-bits in the constants).
- */
-
-#define CONST_BITS 8
-
-
-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
-
-#if CONST_BITS == 8
-#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
-#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
-#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
-#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
-#else
-#define FIX_0_382683433 FIX(0.382683433)
-#define FIX_0_541196100 FIX(0.541196100)
-#define FIX_0_707106781 FIX(0.707106781)
-#define FIX_1_306562965 FIX(1.306562965)
-#endif
-
-
-/* We can gain a little more speed, with a further compromise in accuracy,
- * by omitting the addition in a descaling shift. This yields an incorrectly
- * rounded result half the time...
- */
-
-#ifndef USE_ACCURATE_ROUNDING
-#undef DESCALE
-#define DESCALE(x,n) RIGHT_SHIFT(x, n)
-#endif
-
-
-/* Multiply a DCTELEM variable by an INT32 constant, and immediately
- * descale to yield a DCTELEM result.
- */
-
-#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
-
-
-/*
- * Perform the forward DCT on one block of samples.
- */
-
-GLOBAL(void)
-jpeg_fdct_ifast (DCTELEM * data)
-{
- DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- DCTELEM tmp10, tmp11, tmp12, tmp13;
- DCTELEM z1, z2, z3, z4, z5, z11, z13;
- DCTELEM *dataptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- tmp0 = dataptr[0] + dataptr[7];
- tmp7 = dataptr[0] - dataptr[7];
- tmp1 = dataptr[1] + dataptr[6];
- tmp6 = dataptr[1] - dataptr[6];
- tmp2 = dataptr[2] + dataptr[5];
- tmp5 = dataptr[2] - dataptr[5];
- tmp3 = dataptr[3] + dataptr[4];
- tmp4 = dataptr[3] - dataptr[4];
-
- /* Even part */
-
- tmp10 = tmp0 + tmp3; /* phase 2 */
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- dataptr[0] = tmp10 + tmp11; /* phase 3 */
- dataptr[4] = tmp10 - tmp11;
-
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
- dataptr[2] = tmp13 + z1; /* phase 5 */
- dataptr[6] = tmp13 - z1;
-
- /* Odd part */
-
- tmp10 = tmp4 + tmp5; /* phase 2 */
- tmp11 = tmp5 + tmp6;
- tmp12 = tmp6 + tmp7;
-
- /* The rotator is modified from fig 4-8 to avoid extra negations. */
- z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
- z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
- z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
- z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
-
- z11 = tmp7 + z3; /* phase 5 */
- z13 = tmp7 - z3;
-
- dataptr[5] = z13 + z2; /* phase 6 */
- dataptr[3] = z13 - z2;
- dataptr[1] = z11 + z4;
- dataptr[7] = z11 - z4;
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns. */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
- tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
- tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
- tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
- tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
-
- /* Even part */
-
- tmp10 = tmp0 + tmp3; /* phase 2 */
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
- dataptr[DCTSIZE*4] = tmp10 - tmp11;
-
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
- dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
- dataptr[DCTSIZE*6] = tmp13 - z1;
-
- /* Odd part */
-
- tmp10 = tmp4 + tmp5; /* phase 2 */
- tmp11 = tmp5 + tmp6;
- tmp12 = tmp6 + tmp7;
-
- /* The rotator is modified from fig 4-8 to avoid extra negations. */
- z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
- z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
- z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
- z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
-
- z11 = tmp7 + z3; /* phase 5 */
- z13 = tmp7 - z3;
-
- dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
- dataptr[DCTSIZE*3] = z13 - z2;
- dataptr[DCTSIZE*1] = z11 + z4;
- dataptr[DCTSIZE*7] = z11 - z4;
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-#endif /* DCT_IFAST_SUPPORTED */
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jfdctint.c b/core/src/fxcodec/libjpeg/fpdfapi_jfdctint.c
deleted file mode 100644
index 488505b062..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jfdctint.c
+++ /dev/null
@@ -1,286 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jfdctint.c
- *
- * Copyright (C) 1991-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a slow-but-accurate integer implementation of the
- * forward DCT (Discrete Cosine Transform).
- *
- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
- * on each column. Direct algorithms are also available, but they are
- * much more complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on an algorithm described in
- * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
- * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
- * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
- * The primary algorithm described there uses 11 multiplies and 29 adds.
- * We use their alternate method with 12 multiplies and 32 adds.
- * The advantage of this method is that no data path contains more than one
- * multiplication; this allows a very simple and accurate implementation in
- * scaled fixed-point arithmetic, with a minimal number of shifts.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-#ifdef DCT_ISLOW_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/*
- * The poop on this scaling stuff is as follows:
- *
- * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
- * larger than the true DCT outputs. The final outputs are therefore
- * a factor of N larger than desired; since N=8 this can be cured by
- * a simple right shift at the end of the algorithm. The advantage of
- * this arrangement is that we save two multiplications per 1-D DCT,
- * because the y0 and y4 outputs need not be divided by sqrt(N).
- * In the IJG code, this factor of 8 is removed by the quantization step
- * (in jcdctmgr.c), NOT in this module.
- *
- * We have to do addition and subtraction of the integer inputs, which
- * is no problem, and multiplication by fractional constants, which is
- * a problem to do in integer arithmetic. We multiply all the constants
- * by CONST_SCALE and convert them to integer constants (thus retaining
- * CONST_BITS bits of precision in the constants). After doing a
- * multiplication we have to divide the product by CONST_SCALE, with proper
- * rounding, to produce the correct output. This division can be done
- * cheaply as a right shift of CONST_BITS bits. We postpone shifting
- * as long as possible so that partial sums can be added together with
- * full fractional precision.
- *
- * The outputs of the first pass are scaled up by PASS1_BITS bits so that
- * they are represented to better-than-integral precision. These outputs
- * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
- * with the recommended scaling. (For 12-bit sample data, the intermediate
- * array is INT32 anyway.)
- *
- * To avoid overflow of the 32-bit intermediate results in pass 2, we must
- * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
- * shows that the values given below are the most effective.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define CONST_BITS 13
-#define PASS1_BITS 2
-#else
-#define CONST_BITS 13
-#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
-#endif
-
-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
-
-#if CONST_BITS == 13
-#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
-#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
-#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
-#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
-#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
-#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
-#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
-#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
-#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
-#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
-#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
-#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
-#else
-#define FIX_0_298631336 FIX(0.298631336)
-#define FIX_0_390180644 FIX(0.390180644)
-#define FIX_0_541196100 FIX(0.541196100)
-#define FIX_0_765366865 FIX(0.765366865)
-#define FIX_0_899976223 FIX(0.899976223)
-#define FIX_1_175875602 FIX(1.175875602)
-#define FIX_1_501321110 FIX(1.501321110)
-#define FIX_1_847759065 FIX(1.847759065)
-#define FIX_1_961570560 FIX(1.961570560)
-#define FIX_2_053119869 FIX(2.053119869)
-#define FIX_2_562915447 FIX(2.562915447)
-#define FIX_3_072711026 FIX(3.072711026)
-#endif
-
-
-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- * For 8-bit samples with the recommended scaling, all the variable
- * and constant values involved are no more than 16 bits wide, so a
- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
- * For 12-bit samples, a full 32-bit multiplication will be needed.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
-#else
-#define MULTIPLY(var,const) ((var) * (const))
-#endif
-
-
-/*
- * Perform the forward DCT on one block of samples.
- */
-
-GLOBAL(void)
-jpeg_fdct_islow (DCTELEM * data)
-{
- INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1, z2, z3, z4, z5;
- DCTELEM *dataptr;
- int ctr;
- SHIFT_TEMPS
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- tmp0 = dataptr[0] + dataptr[7];
- tmp7 = dataptr[0] - dataptr[7];
- tmp1 = dataptr[1] + dataptr[6];
- tmp6 = dataptr[1] - dataptr[6];
- tmp2 = dataptr[2] + dataptr[5];
- tmp5 = dataptr[2] - dataptr[5];
- tmp3 = dataptr[3] + dataptr[4];
- tmp4 = dataptr[3] - dataptr[4];
-
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
- */
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
- dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
-
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
- dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
- CONST_BITS-PASS1_BITS);
- dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
- CONST_BITS-PASS1_BITS);
-
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * cK represents cos(K*pi/16).
- * i0..i3 in the paper are tmp4..tmp7 here.
- */
-
- z1 = tmp4 + tmp7;
- z2 = tmp5 + tmp6;
- z3 = tmp4 + tmp6;
- z4 = tmp5 + tmp7;
- z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
-
- tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
- z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
- z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
- z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
- z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
-
- z3 += z5;
- z4 += z5;
-
- dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
- dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
- tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
- tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
- tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
- tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
-
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
- */
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
- dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
-
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
- dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
- CONST_BITS+PASS1_BITS);
-
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * cK represents cos(K*pi/16).
- * i0..i3 in the paper are tmp4..tmp7 here.
- */
-
- z1 = tmp4 + tmp7;
- z2 = tmp5 + tmp6;
- z3 = tmp4 + tmp6;
- z4 = tmp5 + tmp7;
- z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
-
- tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
- z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
- z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
- z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
- z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
-
- z3 += z5;
- z4 += z5;
-
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
- CONST_BITS+PASS1_BITS);
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
- CONST_BITS+PASS1_BITS);
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-#endif /* DCT_ISLOW_SUPPORTED */
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jidctfst.c b/core/src/fxcodec/libjpeg/fpdfapi_jidctfst.c
deleted file mode 100644
index 26a8f68a27..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jidctfst.c
+++ /dev/null
@@ -1,371 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jidctfst.c
- *
- * Copyright (C) 1994-1998, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a fast, not so accurate integer implementation of the
- * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
- * must also perform dequantization of the input coefficients.
- *
- * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
- * on each row (or vice versa, but it's more convenient to emit a row at
- * a time). Direct algorithms are also available, but they are much more
- * complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
- * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
- * JPEG textbook (see REFERENCES section in file README). The following code
- * is based directly on figure 4-8 in P&M.
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
- * possible to arrange the computation so that many of the multiplies are
- * simple scalings of the final outputs. These multiplies can then be
- * folded into the multiplications or divisions by the JPEG quantization
- * table entries. The AA&N method leaves only 5 multiplies and 29 adds
- * to be done in the DCT itself.
- * The primary disadvantage of this method is that with fixed-point math,
- * accuracy is lost due to imprecise representation of the scaled
- * quantization values. The smaller the quantization table entry, the less
- * precise the scaled value, so this implementation does worse with high-
- * quality-setting files than with low-quality ones.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-#ifdef DCT_IFAST_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/* Scaling decisions are generally the same as in the LL&M algorithm;
- * see jidctint.c for more details. However, we choose to descale
- * (right shift) multiplication products as soon as they are formed,
- * rather than carrying additional fractional bits into subsequent additions.
- * This compromises accuracy slightly, but it lets us save a few shifts.
- * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
- * everywhere except in the multiplications proper; this saves a good deal
- * of work on 16-bit-int machines.
- *
- * The dequantized coefficients are not integers because the AA&N scaling
- * factors have been incorporated. We represent them scaled up by PASS1_BITS,
- * so that the first and second IDCT rounds have the same input scaling.
- * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
- * avoid a descaling shift; this compromises accuracy rather drastically
- * for small quantization table entries, but it saves a lot of shifts.
- * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
- * so we use a much larger scaling factor to preserve accuracy.
- *
- * A final compromise is to represent the multiplicative constants to only
- * 8 fractional bits, rather than 13. This saves some shifting work on some
- * machines, and may also reduce the cost of multiplication (since there
- * are fewer one-bits in the constants).
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define CONST_BITS 8
-#define PASS1_BITS 2
-#else
-#define CONST_BITS 8
-#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
-#endif
-
-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
-
-#if CONST_BITS == 8
-#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
-#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
-#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
-#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
-#else
-#define FIX_1_082392200 FIX(1.082392200)
-#define FIX_1_414213562 FIX(1.414213562)
-#define FIX_1_847759065 FIX(1.847759065)
-#define FIX_2_613125930 FIX(2.613125930)
-#endif
-
-
-/* We can gain a little more speed, with a further compromise in accuracy,
- * by omitting the addition in a descaling shift. This yields an incorrectly
- * rounded result half the time...
- */
-
-#ifndef USE_ACCURATE_ROUNDING
-#undef DESCALE
-#define DESCALE(x,n) RIGHT_SHIFT(x, n)
-#endif
-
-
-/* Multiply a DCTELEM variable by an INT32 constant, and immediately
- * descale to yield a DCTELEM result.
- */
-
-#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
-
-
-/* Dequantize a coefficient by multiplying it by the multiplier-table
- * entry; produce a DCTELEM result. For 8-bit data a 16x16->16
- * multiplication will do. For 12-bit data, the multiplier table is
- * declared INT32, so a 32-bit multiply will be used.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
-#else
-#define DEQUANTIZE(coef,quantval) \
- DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
-#endif
-
-
-/* Like DESCALE, but applies to a DCTELEM and produces an int.
- * We assume that int right shift is unsigned if INT32 right shift is.
- */
-
-#ifdef RIGHT_SHIFT_IS_UNSIGNED
-#define ISHIFT_TEMPS DCTELEM ishift_temp;
-#if BITS_IN_JSAMPLE == 8
-#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
-#else
-#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
-#endif
-#define IRIGHT_SHIFT(x,shft) \
- ((ishift_temp = (x)) < 0 ? \
- (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
- (ishift_temp >> (shft)))
-#else
-#define ISHIFT_TEMPS
-#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
-#endif
-
-#ifdef USE_ACCURATE_ROUNDING
-#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
-#else
-#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
-#endif
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients.
- */
-
-GLOBAL(void)
-jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- DCTELEM tmp10, tmp11, tmp12, tmp13;
- DCTELEM z5, z10, z11, z12, z13;
- JCOEFPTR inptr;
- IFAST_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[DCTSIZE2]; /* buffers data between passes */
- SHIFT_TEMPS /* for DESCALE */
- ISHIFT_TEMPS /* for IDESCALE */
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = DCTSIZE; ctr > 0; ctr--) {
- /* Due to quantization, we will usually find that many of the input
- * coefficients are zero, especially the AC terms. We can exploit this
- * by short-circuiting the IDCT calculation for any column in which all
- * the AC terms are zero. In that case each output is equal to the
- * DC coefficient (with scale factor as needed).
- * With typical images and quantization tables, half or more of the
- * column DCT calculations can be simplified this way.
- */
-
- if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
- inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
- inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
- inptr[DCTSIZE*7] == 0) {
- /* AC terms all zero */
- int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
-
- wsptr[DCTSIZE*0] = dcval;
- wsptr[DCTSIZE*1] = dcval;
- wsptr[DCTSIZE*2] = dcval;
- wsptr[DCTSIZE*3] = dcval;
- wsptr[DCTSIZE*4] = dcval;
- wsptr[DCTSIZE*5] = dcval;
- wsptr[DCTSIZE*6] = dcval;
- wsptr[DCTSIZE*7] = dcval;
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- continue;
- }
-
- /* Even part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- tmp10 = tmp0 + tmp2; /* phase 3 */
- tmp11 = tmp0 - tmp2;
-
- tmp13 = tmp1 + tmp3; /* phases 5-3 */
- tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
-
- tmp0 = tmp10 + tmp13; /* phase 2 */
- tmp3 = tmp10 - tmp13;
- tmp1 = tmp11 + tmp12;
- tmp2 = tmp11 - tmp12;
-
- /* Odd part */
-
- tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
- z13 = tmp6 + tmp5; /* phase 6 */
- z10 = tmp6 - tmp5;
- z11 = tmp4 + tmp7;
- z12 = tmp4 - tmp7;
-
- tmp7 = z11 + z13; /* phase 5 */
- tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
-
- z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
- tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
- tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
-
- tmp6 = tmp12 - tmp7; /* phase 2 */
- tmp5 = tmp11 - tmp6;
- tmp4 = tmp10 + tmp5;
-
- wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
- wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
- wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
- wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
- wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
- wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
- wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
- wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- }
-
- /* Pass 2: process rows from work array, store into output array. */
- /* Note that we must descale the results by a factor of 8 == 2**3, */
- /* and also undo the PASS1_BITS scaling. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < DCTSIZE; ctr++) {
- outptr = output_buf[ctr] + output_col;
- /* Rows of zeroes can be exploited in the same way as we did with columns.
- * However, the column calculation has created many nonzero AC terms, so
- * the simplification applies less often (typically 5% to 10% of the time).
- * On machines with very fast multiplication, it's possible that the
- * test takes more time than it's worth. In that case this section
- * may be commented out.
- */
-
-#ifndef NO_ZERO_ROW_TEST
- if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
- wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
- /* AC terms all zero */
- JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
- & RANGE_MASK];
-
- outptr[0] = dcval;
- outptr[1] = dcval;
- outptr[2] = dcval;
- outptr[3] = dcval;
- outptr[4] = dcval;
- outptr[5] = dcval;
- outptr[6] = dcval;
- outptr[7] = dcval;
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- continue;
- }
-#endif
-
- /* Even part */
-
- tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
- tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
-
- tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
- tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
- - tmp13;
-
- tmp0 = tmp10 + tmp13;
- tmp3 = tmp10 - tmp13;
- tmp1 = tmp11 + tmp12;
- tmp2 = tmp11 - tmp12;
-
- /* Odd part */
-
- z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
- z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
- z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
- z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
-
- tmp7 = z11 + z13; /* phase 5 */
- tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
-
- z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
- tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
- tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
-
- tmp6 = tmp12 - tmp7; /* phase 2 */
- tmp5 = tmp11 - tmp6;
- tmp4 = tmp10 + tmp5;
-
- /* Final output stage: scale down by a factor of 8 and range-limit */
-
- outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- }
-}
-
-#endif /* DCT_IFAST_SUPPORTED */
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jidctint.c b/core/src/fxcodec/libjpeg/fpdfapi_jidctint.c
deleted file mode 100644
index 78a8d66552..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jidctint.c
+++ /dev/null
@@ -1,392 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jidctint.c
- *
- * Copyright (C) 1991-1998, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a slow-but-accurate integer implementation of the
- * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
- * must also perform dequantization of the input coefficients.
- *
- * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
- * on each row (or vice versa, but it's more convenient to emit a row at
- * a time). Direct algorithms are also available, but they are much more
- * complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on an algorithm described in
- * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
- * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
- * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
- * The primary algorithm described there uses 11 multiplies and 29 adds.
- * We use their alternate method with 12 multiplies and 32 adds.
- * The advantage of this method is that no data path contains more than one
- * multiplication; this allows a very simple and accurate implementation in
- * scaled fixed-point arithmetic, with a minimal number of shifts.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-#ifdef DCT_ISLOW_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/*
- * The poop on this scaling stuff is as follows:
- *
- * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
- * larger than the true IDCT outputs. The final outputs are therefore
- * a factor of N larger than desired; since N=8 this can be cured by
- * a simple right shift at the end of the algorithm. The advantage of
- * this arrangement is that we save two multiplications per 1-D IDCT,
- * because the y0 and y4 inputs need not be divided by sqrt(N).
- *
- * We have to do addition and subtraction of the integer inputs, which
- * is no problem, and multiplication by fractional constants, which is
- * a problem to do in integer arithmetic. We multiply all the constants
- * by CONST_SCALE and convert them to integer constants (thus retaining
- * CONST_BITS bits of precision in the constants). After doing a
- * multiplication we have to divide the product by CONST_SCALE, with proper
- * rounding, to produce the correct output. This division can be done
- * cheaply as a right shift of CONST_BITS bits. We postpone shifting
- * as long as possible so that partial sums can be added together with
- * full fractional precision.
- *
- * The outputs of the first pass are scaled up by PASS1_BITS bits so that
- * they are represented to better-than-integral precision. These outputs
- * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
- * with the recommended scaling. (To scale up 12-bit sample data further, an
- * intermediate INT32 array would be needed.)
- *
- * To avoid overflow of the 32-bit intermediate results in pass 2, we must
- * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
- * shows that the values given below are the most effective.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define CONST_BITS 13
-#define PASS1_BITS 2
-#else
-#define CONST_BITS 13
-#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
-#endif
-
-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
-
-#if CONST_BITS == 13
-#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
-#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
-#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
-#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
-#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
-#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
-#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
-#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
-#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
-#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
-#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
-#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
-#else
-#define FIX_0_298631336 FIX(0.298631336)
-#define FIX_0_390180644 FIX(0.390180644)
-#define FIX_0_541196100 FIX(0.541196100)
-#define FIX_0_765366865 FIX(0.765366865)
-#define FIX_0_899976223 FIX(0.899976223)
-#define FIX_1_175875602 FIX(1.175875602)
-#define FIX_1_501321110 FIX(1.501321110)
-#define FIX_1_847759065 FIX(1.847759065)
-#define FIX_1_961570560 FIX(1.961570560)
-#define FIX_2_053119869 FIX(2.053119869)
-#define FIX_2_562915447 FIX(2.562915447)
-#define FIX_3_072711026 FIX(3.072711026)
-#endif
-
-
-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- * For 8-bit samples with the recommended scaling, all the variable
- * and constant values involved are no more than 16 bits wide, so a
- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
- * For 12-bit samples, a full 32-bit multiplication will be needed.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
-#else
-#define MULTIPLY(var,const) ((var) * (const))
-#endif
-
-
-/* Dequantize a coefficient by multiplying it by the multiplier-table
- * entry; produce an int result. In this module, both inputs and result
- * are 16 bits or less, so either int or short multiply will work.
- */
-
-#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients.
- */
-
-GLOBAL(void)
-jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp1, tmp2, tmp3;
- INT32 tmp10, tmp11, tmp12, tmp13;
- INT32 z1, z2, z3, z4, z5;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[DCTSIZE2]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
- /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = DCTSIZE; ctr > 0; ctr--) {
- /* Due to quantization, we will usually find that many of the input
- * coefficients are zero, especially the AC terms. We can exploit this
- * by short-circuiting the IDCT calculation for any column in which all
- * the AC terms are zero. In that case each output is equal to the
- * DC coefficient (with scale factor as needed).
- * With typical images and quantization tables, half or more of the
- * column DCT calculations can be simplified this way.
- */
-
- if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
- inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
- inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
- inptr[DCTSIZE*7] == 0) {
- /* AC terms all zero */
- int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
-
- wsptr[DCTSIZE*0] = dcval;
- wsptr[DCTSIZE*1] = dcval;
- wsptr[DCTSIZE*2] = dcval;
- wsptr[DCTSIZE*3] = dcval;
- wsptr[DCTSIZE*4] = dcval;
- wsptr[DCTSIZE*5] = dcval;
- wsptr[DCTSIZE*6] = dcval;
- wsptr[DCTSIZE*7] = dcval;
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- continue;
- }
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
- tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
- tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
-
- tmp0 = (z2 + z3) << CONST_BITS;
- tmp1 = (z2 - z3) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
- tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
-
- z1 = tmp0 + tmp3;
- z2 = tmp1 + tmp2;
- z3 = tmp0 + tmp2;
- z4 = tmp1 + tmp3;
- z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
-
- tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
- z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
- z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
- z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
- z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
-
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
- wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- }
-
- /* Pass 2: process rows from work array, store into output array. */
- /* Note that we must descale the results by a factor of 8 == 2**3, */
- /* and also undo the PASS1_BITS scaling. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < DCTSIZE; ctr++) {
- outptr = output_buf[ctr] + output_col;
- /* Rows of zeroes can be exploited in the same way as we did with columns.
- * However, the column calculation has created many nonzero AC terms, so
- * the simplification applies less often (typically 5% to 10% of the time).
- * On machines with very fast multiplication, it's possible that the
- * test takes more time than it's worth. In that case this section
- * may be commented out.
- */
-
-#ifndef NO_ZERO_ROW_TEST
- if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
- wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
- /* AC terms all zero */
- JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
- & RANGE_MASK];
-
- outptr[0] = dcval;
- outptr[1] = dcval;
- outptr[2] = dcval;
- outptr[3] = dcval;
- outptr[4] = dcval;
- outptr[5] = dcval;
- outptr[6] = dcval;
- outptr[7] = dcval;
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- continue;
- }
-#endif
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
-
- z2 = (INT32) wsptr[2];
- z3 = (INT32) wsptr[6];
-
- z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
- tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
- tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
-
- tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
- tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
-
- tmp0 = (INT32) wsptr[7];
- tmp1 = (INT32) wsptr[5];
- tmp2 = (INT32) wsptr[3];
- tmp3 = (INT32) wsptr[1];
-
- z1 = tmp0 + tmp3;
- z2 = tmp1 + tmp2;
- z3 = tmp0 + tmp2;
- z4 = tmp1 + tmp3;
- z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
-
- tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
- z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
- z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
- z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
- z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
-
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
- CONST_BITS+PASS1_BITS+3)
- & RANGE_MASK];
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- }
-}
-
-#endif /* DCT_ISLOW_SUPPORTED */
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jidctred.c b/core/src/fxcodec/libjpeg/fpdfapi_jidctred.c
deleted file mode 100644
index 8b4b807192..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jidctred.c
+++ /dev/null
@@ -1,401 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jidctred.c
- *
- * Copyright (C) 1994-1998, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains inverse-DCT routines that produce reduced-size output:
- * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
- *
- * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
- * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step
- * with an 8-to-4 step that produces the four averages of two adjacent outputs
- * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
- * These steps were derived by computing the corresponding values at the end
- * of the normal LL&M code, then simplifying as much as possible.
- *
- * 1x1 is trivial: just take the DC coefficient divided by 8.
- *
- * See jidctint.c for additional comments.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-#ifdef IDCT_SCALING_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/* Scaling is the same as in jidctint.c. */
-
-#if BITS_IN_JSAMPLE == 8
-#define CONST_BITS 13
-#define PASS1_BITS 2
-#else
-#define CONST_BITS 13
-#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
-#endif
-
-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
-
-#if CONST_BITS == 13
-#define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */
-#define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */
-#define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */
-#define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */
-#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
-#define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */
-#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
-#define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */
-#define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */
-#define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */
-#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
-#define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */
-#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
-#define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */
-#else
-#define FIX_0_211164243 FIX(0.211164243)
-#define FIX_0_509795579 FIX(0.509795579)
-#define FIX_0_601344887 FIX(0.601344887)
-#define FIX_0_720959822 FIX(0.720959822)
-#define FIX_0_765366865 FIX(0.765366865)
-#define FIX_0_850430095 FIX(0.850430095)
-#define FIX_0_899976223 FIX(0.899976223)
-#define FIX_1_061594337 FIX(1.061594337)
-#define FIX_1_272758580 FIX(1.272758580)
-#define FIX_1_451774981 FIX(1.451774981)
-#define FIX_1_847759065 FIX(1.847759065)
-#define FIX_2_172734803 FIX(2.172734803)
-#define FIX_2_562915447 FIX(2.562915447)
-#define FIX_3_624509785 FIX(3.624509785)
-#endif
-
-
-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- * For 8-bit samples with the recommended scaling, all the variable
- * and constant values involved are no more than 16 bits wide, so a
- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
- * For 12-bit samples, a full 32-bit multiplication will be needed.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
-#else
-#define MULTIPLY(var,const) ((var) * (const))
-#endif
-
-
-/* Dequantize a coefficient by multiplying it by the multiplier-table
- * entry; produce an int result. In this module, both inputs and result
- * are 16 bits or less, so either int or short multiply will work.
- */
-
-#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 4x4 output block.
- */
-
-GLOBAL(void)
-jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp2, tmp10, tmp12;
- INT32 z1, z2, z3, z4;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[DCTSIZE*4]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
- /* Don't bother to process column 4, because second pass won't use it */
- if (ctr == DCTSIZE-4)
- continue;
- if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
- inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
- inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
- /* AC terms all zero; we need not examine term 4 for 4x4 output */
- int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
-
- wsptr[DCTSIZE*0] = dcval;
- wsptr[DCTSIZE*1] = dcval;
- wsptr[DCTSIZE*2] = dcval;
- wsptr[DCTSIZE*3] = dcval;
-
- continue;
- }
-
- /* Even part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp0 <<= (CONST_BITS+1);
-
- z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
-
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
- z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
-
- tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
- + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
- + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
- + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
-
- tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
- + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
- + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
- + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
-
- /* Final output stage */
-
- wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
- wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
- wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
- wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
- }
-
- /* Pass 2: process 4 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 4; ctr++) {
- outptr = output_buf[ctr] + output_col;
- /* It's not clear whether a zero row test is worthwhile here ... */
-
-#ifndef NO_ZERO_ROW_TEST
- if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
- wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
- /* AC terms all zero */
- JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
- & RANGE_MASK];
-
- outptr[0] = dcval;
- outptr[1] = dcval;
- outptr[2] = dcval;
- outptr[3] = dcval;
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- continue;
- }
-#endif
-
- /* Even part */
-
- tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
-
- tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
- + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
-
- tmp10 = tmp0 + tmp2;
- tmp12 = tmp0 - tmp2;
-
- /* Odd part */
-
- z1 = (INT32) wsptr[7];
- z2 = (INT32) wsptr[5];
- z3 = (INT32) wsptr[3];
- z4 = (INT32) wsptr[1];
-
- tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
- + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
- + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
- + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
-
- tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
- + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
- + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
- + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
- CONST_BITS+PASS1_BITS+3+1)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
- CONST_BITS+PASS1_BITS+3+1)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
- CONST_BITS+PASS1_BITS+3+1)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
- CONST_BITS+PASS1_BITS+3+1)
- & RANGE_MASK];
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 2x2 output block.
- */
-
-GLOBAL(void)
-jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- INT32 tmp0, tmp10, z1;
- JCOEFPTR inptr;
- ISLOW_MULT_TYPE * quantptr;
- int * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- int workspace[DCTSIZE*2]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
- /* Don't bother to process columns 2,4,6 */
- if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
- continue;
- if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
- inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
- /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
- int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
-
- wsptr[DCTSIZE*0] = dcval;
- wsptr[DCTSIZE*1] = dcval;
-
- continue;
- }
-
- /* Even part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp10 = z1 << (CONST_BITS+2);
-
- /* Odd part */
-
- z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
- tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
- z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
- z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
- z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
-
- /* Final output stage */
-
- wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
- wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
- }
-
- /* Pass 2: process 2 rows from work array, store into output array. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < 2; ctr++) {
- outptr = output_buf[ctr] + output_col;
- /* It's not clear whether a zero row test is worthwhile here ... */
-
-#ifndef NO_ZERO_ROW_TEST
- if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
- /* AC terms all zero */
- JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
- & RANGE_MASK];
-
- outptr[0] = dcval;
- outptr[1] = dcval;
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- continue;
- }
-#endif
-
- /* Even part */
-
- tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
-
- /* Odd part */
-
- tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
- + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
- + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
- + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
-
- /* Final output stage */
-
- outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
- CONST_BITS+PASS1_BITS+3+2)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
- CONST_BITS+PASS1_BITS+3+2)
- & RANGE_MASK];
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- }
-}
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients,
- * producing a reduced-size 1x1 output block.
- */
-
-GLOBAL(void)
-jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- int dcval;
- ISLOW_MULT_TYPE * quantptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- SHIFT_TEMPS
-
- /* We hardly need an inverse DCT routine for this: just take the
- * average pixel value, which is one-eighth of the DC coefficient.
- */
- quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
- dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
- dcval = (int) DESCALE((INT32) dcval, 3);
-
- output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
-}
-
-#endif /* IDCT_SCALING_SUPPORTED */
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jmemmgr.c b/core/src/fxcodec/libjpeg/fpdfapi_jmemmgr.c
deleted file mode 100644
index 630102fc2e..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jmemmgr.c
+++ /dev/null
@@ -1,1123 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jmemmgr.c
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the JPEG system-independent memory management
- * routines. This code is usable across a wide variety of machines; most
- * of the system dependencies have been isolated in a separate file.
- * The major functions provided here are:
- * * pool-based allocation and freeing of memory;
- * * policy decisions about how to divide available memory among the
- * virtual arrays;
- * * control logic for swapping virtual arrays between main memory and
- * backing storage.
- * The separate system-dependent file provides the actual backing-storage
- * access code, and it contains the policy decision about how much total
- * main memory to use.
- * This file is system-dependent in the sense that some of its functions
- * are unnecessary in some systems. For example, if there is enough virtual
- * memory so that backing storage will never be used, much of the virtual
- * array control logic could be removed. (Of course, if you have that much
- * memory then you shouldn't care about a little bit of unused code...)
- */
-
-#define JPEG_INTERNALS
-#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jmemsys.h" /* import the system-dependent declarations */
-
-#define NO_GETENV /* XYQ: 2007-5-22 Don't use it */
-
-#ifndef NO_GETENV
-#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
-extern char * getenv JPP((const char * name));
-#endif
-#endif
-
-
-/*
- * Some important notes:
- * The allocation routines provided here must never return NULL.
- * They should exit to error_exit if unsuccessful.
- *
- * It's not a good idea to try to merge the sarray and barray routines,
- * even though they are textually almost the same, because samples are
- * usually stored as bytes while coefficients are shorts or ints. Thus,
- * in machines where byte pointers have a different representation from
- * word pointers, the resulting machine code could not be the same.
- */
-
-
-/*
- * Many machines require storage alignment: longs must start on 4-byte
- * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
- * always returns pointers that are multiples of the worst-case alignment
- * requirement, and we had better do so too.
- * There isn't any really portable way to determine the worst-case alignment
- * requirement. This module assumes that the alignment requirement is
- * multiples of sizeof(ALIGN_TYPE).
- * By default, we define ALIGN_TYPE as double. This is necessary on some
- * workstations (where doubles really do need 8-byte alignment) and will work
- * fine on nearly everything. If your machine has lesser alignment needs,
- * you can save a few bytes by making ALIGN_TYPE smaller.
- * The only place I know of where this will NOT work is certain Macintosh
- * 680x0 compilers that define double as a 10-byte IEEE extended float.
- * Doing 10-byte alignment is counterproductive because longwords won't be
- * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
- * such a compiler.
- */
-
-#ifndef ALIGN_TYPE /* so can override from jconfig.h */
-#define ALIGN_TYPE double
-#endif
-
-
-/*
- * We allocate objects from "pools", where each pool is gotten with a single
- * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
- * overhead within a pool, except for alignment padding. Each pool has a
- * header with a link to the next pool of the same class.
- * Small and large pool headers are identical except that the latter's
- * link pointer must be FAR on 80x86 machines.
- * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
- * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
- * of the alignment requirement of ALIGN_TYPE.
- */
-
-typedef union small_pool_struct * small_pool_ptr;
-
-typedef union small_pool_struct {
- struct {
- small_pool_ptr next; /* next in list of pools */
- size_t bytes_used; /* how many bytes already used within pool */
- size_t bytes_left; /* bytes still available in this pool */
- } hdr;
- ALIGN_TYPE dummy; /* included in union to ensure alignment */
-} small_pool_hdr;
-
-typedef union large_pool_struct FAR * large_pool_ptr;
-
-typedef union large_pool_struct {
- struct {
- large_pool_ptr next; /* next in list of pools */
- size_t bytes_used; /* how many bytes already used within pool */
- size_t bytes_left; /* bytes still available in this pool */
- } hdr;
- ALIGN_TYPE dummy; /* included in union to ensure alignment */
-} large_pool_hdr;
-
-
-/*
- * Here is the full definition of a memory manager object.
- */
-
-typedef struct {
- struct jpeg_memory_mgr pub; /* public fields */
-
- /* Each pool identifier (lifetime class) names a linked list of pools. */
- small_pool_ptr small_list[JPOOL_NUMPOOLS];
- large_pool_ptr large_list[JPOOL_NUMPOOLS];
-
- /* Since we only have one lifetime class of virtual arrays, only one
- * linked list is necessary (for each datatype). Note that the virtual
- * array control blocks being linked together are actually stored somewhere
- * in the small-pool list.
- */
- jvirt_sarray_ptr virt_sarray_list;
- jvirt_barray_ptr virt_barray_list;
-
- /* This counts total space obtained from jpeg_get_small/large */
- long total_space_allocated;
-
- /* alloc_sarray and alloc_barray set this value for use by virtual
- * array routines.
- */
- JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
-} my_memory_mgr;
-
-typedef my_memory_mgr * my_mem_ptr;
-
-
-/*
- * The control blocks for virtual arrays.
- * Note that these blocks are allocated in the "small" pool area.
- * System-dependent info for the associated backing store (if any) is hidden
- * inside the backing_store_info struct.
- */
-
-struct jvirt_sarray_control {
- JSAMPARRAY mem_buffer; /* => the in-memory buffer */
- JDIMENSION rows_in_array; /* total virtual array height */
- JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
- JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
- JDIMENSION rows_in_mem; /* height of memory buffer */
- JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
- JDIMENSION cur_start_row; /* first logical row # in the buffer */
- JDIMENSION first_undef_row; /* row # of first uninitialized row */
- boolean pre_zero; /* pre-zero mode requested? */
- boolean dirty; /* do current buffer contents need written? */
- boolean b_s_open; /* is backing-store data valid? */
- jvirt_sarray_ptr next; /* link to next virtual sarray control block */
- backing_store_info b_s_info; /* System-dependent control info */
-};
-
-struct jvirt_barray_control {
- JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
- JDIMENSION rows_in_array; /* total virtual array height */
- JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
- JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
- JDIMENSION rows_in_mem; /* height of memory buffer */
- JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
- JDIMENSION cur_start_row; /* first logical row # in the buffer */
- JDIMENSION first_undef_row; /* row # of first uninitialized row */
- boolean pre_zero; /* pre-zero mode requested? */
- boolean dirty; /* do current buffer contents need written? */
- boolean b_s_open; /* is backing-store data valid? */
- jvirt_barray_ptr next; /* link to next virtual barray control block */
- backing_store_info b_s_info; /* System-dependent control info */
-};
-
-
-#ifdef MEM_STATS /* optional extra stuff for statistics */
-
-LOCAL(void)
-print_mem_stats (j_common_ptr cinfo, int pool_id)
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- small_pool_ptr shdr_ptr;
- large_pool_ptr lhdr_ptr;
-
- /* Since this is only a debugging stub, we can cheat a little by using
- * fprintf directly rather than going through the trace message code.
- * This is helpful because message parm array can't handle longs.
- */
- FXSYS_fprintf(stderr, "Freeing pool %d, total space = %ld\n",
- pool_id, mem->total_space_allocated);
-
- for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
- lhdr_ptr = lhdr_ptr->hdr.next) {
- FXSYS_fprintf(stderr, " Large chunk used %ld\n",
- (long) lhdr_ptr->hdr.bytes_used);
- }
-
- for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
- shdr_ptr = shdr_ptr->hdr.next) {
- FXSYS_fprintf(stderr, " Small chunk used %ld free %ld\n",
- (long) shdr_ptr->hdr.bytes_used,
- (long) shdr_ptr->hdr.bytes_left);
- }
-}
-
-#endif /* MEM_STATS */
-
-
-LOCAL(void)
-out_of_memory (j_common_ptr cinfo, int which)
-/* Report an out-of-memory error and stop execution */
-/* If we compiled MEM_STATS support, report alloc requests before dying */
-{
-#ifdef MEM_STATS
- cinfo->err->trace_level = 2; /* force self_destruct to report stats */
-#endif
- ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
-}
-
-
-/*
- * Allocation of "small" objects.
- *
- * For these, we use pooled storage. When a new pool must be created,
- * we try to get enough space for the current request plus a "slop" factor,
- * where the slop will be the amount of leftover space in the new pool.
- * The speed vs. space tradeoff is largely determined by the slop values.
- * A different slop value is provided for each pool class (lifetime),
- * and we also distinguish the first pool of a class from later ones.
- * NOTE: the values given work fairly well on both 16- and 32-bit-int
- * machines, but may be too small if longs are 64 bits or more.
- */
-
-static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
-{
- 1600, /* first PERMANENT pool */
- 16000 /* first IMAGE pool */
-};
-
-static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
-{
- 0, /* additional PERMANENT pools */
- 5000 /* additional IMAGE pools */
-};
-
-#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
-
-
-METHODDEF(void *)
-alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
-/* Allocate a "small" object */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- small_pool_ptr hdr_ptr, prev_hdr_ptr;
- char * data_ptr;
- size_t odd_bytes, min_request, slop;
-
- /* Check for unsatisfiable request (do now to ensure no overflow below) */
- if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
- out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
-
- /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
- odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
- if (odd_bytes > 0)
- sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
-
- /* See if space is available in any existing pool */
- if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
- prev_hdr_ptr = NULL;
- hdr_ptr = mem->small_list[pool_id];
- while (hdr_ptr != NULL) {
- if (hdr_ptr->hdr.bytes_left >= sizeofobject)
- break; /* found pool with enough space */
- prev_hdr_ptr = hdr_ptr;
- hdr_ptr = hdr_ptr->hdr.next;
- }
-
- /* Time to make a new pool? */
- if (hdr_ptr == NULL) {
- /* min_request is what we need now, slop is what will be leftover */
- min_request = sizeofobject + SIZEOF(small_pool_hdr);
- if (prev_hdr_ptr == NULL) /* first pool in class? */
- slop = first_pool_slop[pool_id];
- else
- slop = extra_pool_slop[pool_id];
- /* Don't ask for more than MAX_ALLOC_CHUNK */
- if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
- slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
- /* Try to get space, if fail reduce slop and try again */
- for (;;) {
- hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
- if (hdr_ptr != NULL)
- break;
- slop /= 2;
- if (slop < MIN_SLOP) /* give up when it gets real small */
- out_of_memory(cinfo, 2); /* jpeg_get_small failed */
- }
- mem->total_space_allocated += min_request + slop;
- /* Success, initialize the new pool header and add to end of list */
- hdr_ptr->hdr.next = NULL;
- hdr_ptr->hdr.bytes_used = 0;
- hdr_ptr->hdr.bytes_left = sizeofobject + slop;
- if (prev_hdr_ptr == NULL) /* first pool in class? */
- mem->small_list[pool_id] = hdr_ptr;
- else
- prev_hdr_ptr->hdr.next = hdr_ptr;
- }
-
- /* OK, allocate the object from the current pool */
- data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
- data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
- hdr_ptr->hdr.bytes_used += sizeofobject;
- hdr_ptr->hdr.bytes_left -= sizeofobject;
-
- return (void *) data_ptr;
-}
-
-
-/*
- * Allocation of "large" objects.
- *
- * The external semantics of these are the same as "small" objects,
- * except that FAR pointers are used on 80x86. However the pool
- * management heuristics are quite different. We assume that each
- * request is large enough that it may as well be passed directly to
- * jpeg_get_large; the pool management just links everything together
- * so that we can free it all on demand.
- * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
- * structures. The routines that create these structures (see below)
- * deliberately bunch rows together to ensure a large request size.
- */
-
-METHODDEF(void FAR *)
-alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
-/* Allocate a "large" object */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- large_pool_ptr hdr_ptr;
- size_t odd_bytes;
-
- /* Check for unsatisfiable request (do now to ensure no overflow below) */
- if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
- out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
-
- /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
- odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
- if (odd_bytes > 0)
- sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
-
- /* Always make a new pool */
- if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
-
- hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
- SIZEOF(large_pool_hdr));
- if (hdr_ptr == NULL)
- out_of_memory(cinfo, 4); /* jpeg_get_large failed */
- mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
-
- /* Success, initialize the new pool header and add to list */
- hdr_ptr->hdr.next = mem->large_list[pool_id];
- /* We maintain space counts in each pool header for statistical purposes,
- * even though they are not needed for allocation.
- */
- hdr_ptr->hdr.bytes_used = sizeofobject;
- hdr_ptr->hdr.bytes_left = 0;
- mem->large_list[pool_id] = hdr_ptr;
-
- return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
-}
-
-
-/*
- * Creation of 2-D sample arrays.
- * The pointers are in near heap, the samples themselves in FAR heap.
- *
- * To minimize allocation overhead and to allow I/O of large contiguous
- * blocks, we allocate the sample rows in groups of as many rows as possible
- * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
- * NB: the virtual array control routines, later in this file, know about
- * this chunking of rows. The rowsperchunk value is left in the mem manager
- * object so that it can be saved away if this sarray is the workspace for
- * a virtual array.
- */
-
-METHODDEF(JSAMPARRAY)
-alloc_sarray (j_common_ptr cinfo, int pool_id,
- JDIMENSION samplesperrow, JDIMENSION numrows)
-/* Allocate a 2-D sample array */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- JSAMPARRAY result;
- JSAMPROW workspace;
- JDIMENSION rowsperchunk, currow, i;
- long ltemp;
-
- /* Calculate max # of rows allowed in one allocation chunk */
- ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
- ((long) samplesperrow * SIZEOF(JSAMPLE));
- if (ltemp <= 0)
- ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
- if (ltemp < (long) numrows)
- rowsperchunk = (JDIMENSION) ltemp;
- else
- rowsperchunk = numrows;
- mem->last_rowsperchunk = rowsperchunk;
-
- /* Get space for row pointers (small object) */
- result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
- (size_t) (numrows * SIZEOF(JSAMPROW)));
-
- /* Get the rows themselves (large objects) */
- currow = 0;
- while (currow < numrows) {
- rowsperchunk = MIN(rowsperchunk, numrows - currow);
- workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
- (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
- * SIZEOF(JSAMPLE)));
- for (i = rowsperchunk; i > 0; i--) {
- result[currow++] = workspace;
- workspace += samplesperrow;
- }
- }
-
- return result;
-}
-
-
-/*
- * Creation of 2-D coefficient-block arrays.
- * This is essentially the same as the code for sample arrays, above.
- */
-
-METHODDEF(JBLOCKARRAY)
-alloc_barray (j_common_ptr cinfo, int pool_id,
- JDIMENSION blocksperrow, JDIMENSION numrows)
-/* Allocate a 2-D coefficient-block array */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- JBLOCKARRAY result;
- JBLOCKROW workspace;
- JDIMENSION rowsperchunk, currow, i;
- long ltemp;
-
- /* Calculate max # of rows allowed in one allocation chunk */
- ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
- ((long) blocksperrow * SIZEOF(JBLOCK));
- if (ltemp <= 0)
- ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
- if (ltemp < (long) numrows)
- rowsperchunk = (JDIMENSION) ltemp;
- else
- rowsperchunk = numrows;
- mem->last_rowsperchunk = rowsperchunk;
-
- /* Get space for row pointers (small object) */
- result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
- (size_t) (numrows * SIZEOF(JBLOCKROW)));
-
- /* Get the rows themselves (large objects) */
- currow = 0;
- while (currow < numrows) {
- rowsperchunk = MIN(rowsperchunk, numrows - currow);
- workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
- (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
- * SIZEOF(JBLOCK)));
- for (i = rowsperchunk; i > 0; i--) {
- result[currow++] = workspace;
- workspace += blocksperrow;
- }
- }
-
- return result;
-}
-
-
-/*
- * About virtual array management:
- *
- * The above "normal" array routines are only used to allocate strip buffers
- * (as wide as the image, but just a few rows high). Full-image-sized buffers
- * are handled as "virtual" arrays. The array is still accessed a strip at a
- * time, but the memory manager must save the whole array for repeated
- * accesses. The intended implementation is that there is a strip buffer in
- * memory (as high as is possible given the desired memory limit), plus a
- * backing file that holds the rest of the array.
- *
- * The request_virt_array routines are told the total size of the image and
- * the maximum number of rows that will be accessed at once. The in-memory
- * buffer must be at least as large as the maxaccess value.
- *
- * The request routines create control blocks but not the in-memory buffers.
- * That is postponed until realize_virt_arrays is called. At that time the
- * total amount of space needed is known (approximately, anyway), so free
- * memory can be divided up fairly.
- *
- * The access_virt_array routines are responsible for making a specific strip
- * area accessible (after reading or writing the backing file, if necessary).
- * Note that the access routines are told whether the caller intends to modify
- * the accessed strip; during a read-only pass this saves having to rewrite
- * data to disk. The access routines are also responsible for pre-zeroing
- * any newly accessed rows, if pre-zeroing was requested.
- *
- * In current usage, the access requests are usually for nonoverlapping
- * strips; that is, successive access start_row numbers differ by exactly
- * num_rows = maxaccess. This means we can get good performance with simple
- * buffer dump/reload logic, by making the in-memory buffer be a multiple
- * of the access height; then there will never be accesses across bufferload
- * boundaries. The code will still work with overlapping access requests,
- * but it doesn't handle bufferload overlaps very efficiently.
- */
-
-
-METHODDEF(jvirt_sarray_ptr)
-request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
- JDIMENSION samplesperrow, JDIMENSION numrows,
- JDIMENSION maxaccess)
-/* Request a virtual 2-D sample array */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- jvirt_sarray_ptr result;
-
- /* Only IMAGE-lifetime virtual arrays are currently supported */
- if (pool_id != JPOOL_IMAGE)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
-
- /* get control block */
- result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
- SIZEOF(struct jvirt_sarray_control));
-
- result->mem_buffer = NULL; /* marks array not yet realized */
- result->rows_in_array = numrows;
- result->samplesperrow = samplesperrow;
- result->maxaccess = maxaccess;
- result->pre_zero = pre_zero;
- result->b_s_open = FALSE; /* no associated backing-store object */
- result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
- mem->virt_sarray_list = result;
-
- return result;
-}
-
-
-METHODDEF(jvirt_barray_ptr)
-request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
- JDIMENSION blocksperrow, JDIMENSION numrows,
- JDIMENSION maxaccess)
-/* Request a virtual 2-D coefficient-block array */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- jvirt_barray_ptr result;
-
- /* Only IMAGE-lifetime virtual arrays are currently supported */
- if (pool_id != JPOOL_IMAGE)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
-
- /* get control block */
- result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
- SIZEOF(struct jvirt_barray_control));
-
- result->mem_buffer = NULL; /* marks array not yet realized */
- result->rows_in_array = numrows;
- result->blocksperrow = blocksperrow;
- result->maxaccess = maxaccess;
- result->pre_zero = pre_zero;
- result->b_s_open = FALSE; /* no associated backing-store object */
- result->next = mem->virt_barray_list; /* add to list of virtual arrays */
- mem->virt_barray_list = result;
-
- return result;
-}
-
-
-METHODDEF(void)
-realize_virt_arrays (j_common_ptr cinfo)
-/* Allocate the in-memory buffers for any unrealized virtual arrays */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- long space_per_minheight, maximum_space, avail_mem;
- long minheights, max_minheights;
- jvirt_sarray_ptr sptr;
- jvirt_barray_ptr bptr;
-
- /* Compute the minimum space needed (maxaccess rows in each buffer)
- * and the maximum space needed (full image height in each buffer).
- * These may be of use to the system-dependent jpeg_mem_available routine.
- */
- space_per_minheight = 0;
- maximum_space = 0;
- for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
- if (sptr->mem_buffer == NULL) { /* if not realized yet */
- space_per_minheight += (long) sptr->maxaccess *
- (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
- maximum_space += (long) sptr->rows_in_array *
- (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
- }
- }
- for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
- if (bptr->mem_buffer == NULL) { /* if not realized yet */
- space_per_minheight += (long) bptr->maxaccess *
- (long) bptr->blocksperrow * SIZEOF(JBLOCK);
- maximum_space += (long) bptr->rows_in_array *
- (long) bptr->blocksperrow * SIZEOF(JBLOCK);
- }
- }
-
- if (space_per_minheight <= 0)
- return; /* no unrealized arrays, no work */
-
- /* Determine amount of memory to actually use; this is system-dependent. */
- avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
- mem->total_space_allocated);
-
- /* If the maximum space needed is available, make all the buffers full
- * height; otherwise parcel it out with the same number of minheights
- * in each buffer.
- */
- if (avail_mem >= maximum_space)
- max_minheights = 1000000000L;
- else {
- max_minheights = avail_mem / space_per_minheight;
- /* If there doesn't seem to be enough space, try to get the minimum
- * anyway. This allows a "stub" implementation of jpeg_mem_available().
- */
- if (max_minheights <= 0)
- max_minheights = 1;
- }
-
- /* Allocate the in-memory buffers and initialize backing store as needed. */
-
- for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
- if (sptr->mem_buffer == NULL) { /* if not realized yet */
- minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
- if (minheights <= max_minheights) {
- /* This buffer fits in memory */
- sptr->rows_in_mem = sptr->rows_in_array;
- } else {
- /* It doesn't fit in memory, create backing store. */
- sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
- jpeg_open_backing_store(cinfo, & sptr->b_s_info,
- (long) sptr->rows_in_array *
- (long) sptr->samplesperrow *
- (long) SIZEOF(JSAMPLE));
- sptr->b_s_open = TRUE;
- }
- sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
- sptr->samplesperrow, sptr->rows_in_mem);
- sptr->rowsperchunk = mem->last_rowsperchunk;
- sptr->cur_start_row = 0;
- sptr->first_undef_row = 0;
- sptr->dirty = FALSE;
- }
- }
-
- for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
- if (bptr->mem_buffer == NULL) { /* if not realized yet */
- minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
- if (minheights <= max_minheights) {
- /* This buffer fits in memory */
- bptr->rows_in_mem = bptr->rows_in_array;
- } else {
- /* It doesn't fit in memory, create backing store. */
- bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
- jpeg_open_backing_store(cinfo, & bptr->b_s_info,
- (long) bptr->rows_in_array *
- (long) bptr->blocksperrow *
- (long) SIZEOF(JBLOCK));
- bptr->b_s_open = TRUE;
- }
- bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
- bptr->blocksperrow, bptr->rows_in_mem);
- bptr->rowsperchunk = mem->last_rowsperchunk;
- bptr->cur_start_row = 0;
- bptr->first_undef_row = 0;
- bptr->dirty = FALSE;
- }
- }
-}
-
-
-LOCAL(void)
-do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
-/* Do backing store read or write of a virtual sample array */
-{
- long bytesperrow, file_offset, byte_count, rows, thisrow, i;
-
- bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
- file_offset = ptr->cur_start_row * bytesperrow;
- /* Loop to read or write each allocation chunk in mem_buffer */
- for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
- /* One chunk, but check for short chunk at end of buffer */
- rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
- /* Transfer no more than is currently defined */
- thisrow = (long) ptr->cur_start_row + i;
- rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
- /* Transfer no more than fits in file */
- rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
- if (rows <= 0) /* this chunk might be past end of file! */
- break;
- byte_count = rows * bytesperrow;
- if (writing)
- (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- else
- (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- file_offset += byte_count;
- }
-}
-
-
-LOCAL(void)
-do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
-/* Do backing store read or write of a virtual coefficient-block array */
-{
- long bytesperrow, file_offset, byte_count, rows, thisrow, i;
-
- bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
- file_offset = ptr->cur_start_row * bytesperrow;
- /* Loop to read or write each allocation chunk in mem_buffer */
- for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
- /* One chunk, but check for short chunk at end of buffer */
- rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
- /* Transfer no more than is currently defined */
- thisrow = (long) ptr->cur_start_row + i;
- rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
- /* Transfer no more than fits in file */
- rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
- if (rows <= 0) /* this chunk might be past end of file! */
- break;
- byte_count = rows * bytesperrow;
- if (writing)
- (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- else
- (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- file_offset += byte_count;
- }
-}
-
-
-METHODDEF(JSAMPARRAY)
-access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
- JDIMENSION start_row, JDIMENSION num_rows,
- boolean writable)
-/* Access the part of a virtual sample array starting at start_row */
-/* and extending for num_rows rows. writable is true if */
-/* caller intends to modify the accessed area. */
-{
- JDIMENSION end_row = start_row + num_rows;
- JDIMENSION undef_row;
-
- /* debugging check */
- if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
- ptr->mem_buffer == NULL)
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
-
- /* Make the desired part of the virtual array accessible */
- if (start_row < ptr->cur_start_row ||
- end_row > ptr->cur_start_row+ptr->rows_in_mem) {
- if (! ptr->b_s_open)
- ERREXIT(cinfo, JERR_VIRTUAL_BUG);
- /* Flush old buffer contents if necessary */
- if (ptr->dirty) {
- do_sarray_io(cinfo, ptr, TRUE);
- ptr->dirty = FALSE;
- }
- /* Decide what part of virtual array to access.
- * Algorithm: if target address > current window, assume forward scan,
- * load starting at target address. If target address < current window,
- * assume backward scan, load so that target area is top of window.
- * Note that when switching from forward write to forward read, will have
- * start_row = 0, so the limiting case applies and we load from 0 anyway.
- */
- if (start_row > ptr->cur_start_row) {
- ptr->cur_start_row = start_row;
- } else {
- /* use long arithmetic here to avoid overflow & unsigned problems */
- long ltemp;
-
- ltemp = (long) end_row - (long) ptr->rows_in_mem;
- if (ltemp < 0)
- ltemp = 0; /* don't fall off front end of file */
- ptr->cur_start_row = (JDIMENSION) ltemp;
- }
- /* Read in the selected part of the array.
- * During the initial write pass, we will do no actual read
- * because the selected part is all undefined.
- */
- do_sarray_io(cinfo, ptr, FALSE);
- }
- /* Ensure the accessed part of the array is defined; prezero if needed.
- * To improve locality of access, we only prezero the part of the array
- * that the caller is about to access, not the entire in-memory array.
- */
- if (ptr->first_undef_row < end_row) {
- if (ptr->first_undef_row < start_row) {
- if (writable) /* writer skipped over a section of array */
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
- undef_row = start_row; /* but reader is allowed to read ahead */
- } else {
- undef_row = ptr->first_undef_row;
- }
- if (writable)
- ptr->first_undef_row = end_row;
- if (ptr->pre_zero) {
- size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
- undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
- end_row -= ptr->cur_start_row;
- while (undef_row < end_row) {
- jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
- undef_row++;
- }
- } else {
- if (! writable) /* reader looking at undefined data */
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
- }
- }
- /* Flag the buffer dirty if caller will write in it */
- if (writable)
- ptr->dirty = TRUE;
- /* Return address of proper part of the buffer */
- return ptr->mem_buffer + (start_row - ptr->cur_start_row);
-}
-
-
-METHODDEF(JBLOCKARRAY)
-access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
- JDIMENSION start_row, JDIMENSION num_rows,
- boolean writable)
-/* Access the part of a virtual block array starting at start_row */
-/* and extending for num_rows rows. writable is true if */
-/* caller intends to modify the accessed area. */
-{
- JDIMENSION end_row = start_row + num_rows;
- JDIMENSION undef_row;
-
- /* debugging check */
- if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
- ptr->mem_buffer == NULL)
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
-
- /* Make the desired part of the virtual array accessible */
- if (start_row < ptr->cur_start_row ||
- end_row > ptr->cur_start_row+ptr->rows_in_mem) {
- if (! ptr->b_s_open)
- ERREXIT(cinfo, JERR_VIRTUAL_BUG);
- /* Flush old buffer contents if necessary */
- if (ptr->dirty) {
- do_barray_io(cinfo, ptr, TRUE);
- ptr->dirty = FALSE;
- }
- /* Decide what part of virtual array to access.
- * Algorithm: if target address > current window, assume forward scan,
- * load starting at target address. If target address < current window,
- * assume backward scan, load so that target area is top of window.
- * Note that when switching from forward write to forward read, will have
- * start_row = 0, so the limiting case applies and we load from 0 anyway.
- */
- if (start_row > ptr->cur_start_row) {
- ptr->cur_start_row = start_row;
- } else {
- /* use long arithmetic here to avoid overflow & unsigned problems */
- long ltemp;
-
- ltemp = (long) end_row - (long) ptr->rows_in_mem;
- if (ltemp < 0)
- ltemp = 0; /* don't fall off front end of file */
- ptr->cur_start_row = (JDIMENSION) ltemp;
- }
- /* Read in the selected part of the array.
- * During the initial write pass, we will do no actual read
- * because the selected part is all undefined.
- */
- do_barray_io(cinfo, ptr, FALSE);
- }
- /* Ensure the accessed part of the array is defined; prezero if needed.
- * To improve locality of access, we only prezero the part of the array
- * that the caller is about to access, not the entire in-memory array.
- */
- if (ptr->first_undef_row < end_row) {
- if (ptr->first_undef_row < start_row) {
- if (writable) /* writer skipped over a section of array */
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
- undef_row = start_row; /* but reader is allowed to read ahead */
- } else {
- undef_row = ptr->first_undef_row;
- }
- if (writable)
- ptr->first_undef_row = end_row;
- if (ptr->pre_zero) {
- size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
- undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
- end_row -= ptr->cur_start_row;
- while (undef_row < end_row) {
- jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
- undef_row++;
- }
- } else {
- if (! writable) /* reader looking at undefined data */
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
- }
- }
- /* Flag the buffer dirty if caller will write in it */
- if (writable)
- ptr->dirty = TRUE;
- /* Return address of proper part of the buffer */
- return ptr->mem_buffer + (start_row - ptr->cur_start_row);
-}
-
-
-/*
- * Release all objects belonging to a specified pool.
- */
-
-METHODDEF(void)
-free_pool (j_common_ptr cinfo, int pool_id)
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- small_pool_ptr shdr_ptr;
- large_pool_ptr lhdr_ptr;
- size_t space_freed;
-
- if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
-
-#ifdef MEM_STATS
- if (cinfo->err->trace_level > 1)
- print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
-#endif
-
- /* If freeing IMAGE pool, close any virtual arrays first */
- if (pool_id == JPOOL_IMAGE) {
- jvirt_sarray_ptr sptr;
- jvirt_barray_ptr bptr;
-
- for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
- if (sptr->b_s_open) { /* there may be no backing store */
- sptr->b_s_open = FALSE; /* prevent recursive close if error */
- (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
- }
- }
- mem->virt_sarray_list = NULL;
- for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
- if (bptr->b_s_open) { /* there may be no backing store */
- bptr->b_s_open = FALSE; /* prevent recursive close if error */
- (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
- }
- }
- mem->virt_barray_list = NULL;
- }
-
- /* Release large objects */
- lhdr_ptr = mem->large_list[pool_id];
- mem->large_list[pool_id] = NULL;
-
- while (lhdr_ptr != NULL) {
- large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
- space_freed = lhdr_ptr->hdr.bytes_used +
- lhdr_ptr->hdr.bytes_left +
- SIZEOF(large_pool_hdr);
- jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
- mem->total_space_allocated -= space_freed;
- lhdr_ptr = next_lhdr_ptr;
- }
-
- /* Release small objects */
- shdr_ptr = mem->small_list[pool_id];
- mem->small_list[pool_id] = NULL;
-
- while (shdr_ptr != NULL) {
- small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
- space_freed = shdr_ptr->hdr.bytes_used +
- shdr_ptr->hdr.bytes_left +
- SIZEOF(small_pool_hdr);
- jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
- mem->total_space_allocated -= space_freed;
- shdr_ptr = next_shdr_ptr;
- }
-}
-
-
-/*
- * Close up shop entirely.
- * Note that this cannot be called unless cinfo->mem is non-NULL.
- */
-
-METHODDEF(void)
-self_destruct (j_common_ptr cinfo)
-{
- int pool;
-
- /* Close all backing store, release all memory.
- * Releasing pools in reverse order might help avoid fragmentation
- * with some (brain-damaged) malloc libraries.
- */
- for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
- free_pool(cinfo, pool);
- }
-
- /* Release the memory manager control block too. */
- jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
- cinfo->mem = NULL; /* ensures I will be called only once */
-
- jpeg_mem_term(cinfo); /* system-dependent cleanup */
-}
-
-
-/*
- * Memory manager initialization.
- * When this is called, only the error manager pointer is valid in cinfo!
- */
-
-GLOBAL(void)
-jinit_memory_mgr (j_common_ptr cinfo)
-{
- my_mem_ptr mem;
- long max_to_use;
- int pool;
- size_t test_mac;
-
- cinfo->mem = NULL; /* for safety if init fails */
-
- /* Check for configuration errors.
- * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
- * doesn't reflect any real hardware alignment requirement.
- * The test is a little tricky: for X>0, X and X-1 have no one-bits
- * in common if and only if X is a power of 2, ie has only one one-bit.
- * Some compilers may give an "unreachable code" warning here; ignore it.
- */
- if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
- ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
- /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
- * a multiple of SIZEOF(ALIGN_TYPE).
- * Again, an "unreachable code" warning may be ignored here.
- * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
- */
- test_mac = (size_t) MAX_ALLOC_CHUNK;
- if ((long) test_mac != MAX_ALLOC_CHUNK ||
- (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
- ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
-
- max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
-
- /* Attempt to allocate memory manager's control block */
- mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
-
- if (mem == NULL) {
- jpeg_mem_term(cinfo); /* system-dependent cleanup */
- ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
- }
-
- /* OK, fill in the method pointers */
- mem->pub.alloc_small = alloc_small;
- mem->pub.alloc_large = alloc_large;
- mem->pub.alloc_sarray = alloc_sarray;
- mem->pub.alloc_barray = alloc_barray;
- mem->pub.request_virt_sarray = request_virt_sarray;
- mem->pub.request_virt_barray = request_virt_barray;
- mem->pub.realize_virt_arrays = realize_virt_arrays;
- mem->pub.access_virt_sarray = access_virt_sarray;
- mem->pub.access_virt_barray = access_virt_barray;
- mem->pub.free_pool = free_pool;
- mem->pub.self_destruct = self_destruct;
-
- /* Make MAX_ALLOC_CHUNK accessible to other modules */
- mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
-
- /* Initialize working state */
- mem->pub.max_memory_to_use = max_to_use;
-
- for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
- mem->small_list[pool] = NULL;
- mem->large_list[pool] = NULL;
- }
- mem->virt_sarray_list = NULL;
- mem->virt_barray_list = NULL;
-
- mem->total_space_allocated = SIZEOF(my_memory_mgr);
-
- /* Declare ourselves open for business */
- cinfo->mem = & mem->pub;
-
- /* Check for an environment variable JPEGMEM; if found, override the
- * default max_memory setting from jpeg_mem_init. Note that the
- * surrounding application may again override this value.
- * If your system doesn't support getenv(), define NO_GETENV to disable
- * this feature.
- */
-#ifndef NO_GETENV
- { char * memenv;
-
- if ((memenv = getenv("JPEGMEM")) != NULL) {
- char ch = 'x';
-
- if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
- if (ch == 'm' || ch == 'M')
- max_to_use *= 1000L;
- mem->pub.max_memory_to_use = max_to_use * 1000L;
- }
- }
- }
-#endif
-
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jmemnobs.c b/core/src/fxcodec/libjpeg/fpdfapi_jmemnobs.c
deleted file mode 100644
index f1f789a1a6..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jmemnobs.c
+++ /dev/null
@@ -1,126 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jmemnobs.c
- *
- * Copyright (C) 1992-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file provides a really simple implementation of the system-
- * dependent portion of the JPEG memory manager. This implementation
- * assumes that no backing-store files are needed: all required space
- * can be obtained from malloc().
- * This is very portable in the sense that it'll compile on almost anything,
- * but you'd better have lots of main memory (or virtual memory) if you want
- * to process big images.
- * Note that the max_memory_to_use option is ignored by this implementation.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jmemsys.h" /* import the system-dependent declarations */
-
-#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
-extern void * malloc JPP((size_t size));
-extern void free JPP((void *ptr));
-#endif
-
-#if defined(_FX_MANAGED_CODE_) && defined(__cplusplus)
-extern "C" {
-#endif
-
-void* FXMEM_DefaultAlloc(int byte_size, int);
-void FXMEM_DefaultFree(void* pointer, int);
-
-#if defined(_FX_MANAGED_CODE_) && defined(__cplusplus)
-}
-#endif
-
-/*
- * Memory allocation and freeing are controlled by the regular library
- * routines malloc() and free().
- */
-
-GLOBAL(void *)
-jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
-{
-// return (void *) malloc(sizeofobject);
- return FXMEM_DefaultAlloc(sizeofobject, 0);
-}
-
-GLOBAL(void)
-jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
-{
-// free(object);
- FXMEM_DefaultFree(object, 0);
-}
-
-
-/*
- * "Large" objects are treated the same as "small" ones.
- * NB: although we include FAR keywords in the routine declarations,
- * this file won't actually work in 80x86 small/medium model; at least,
- * you probably won't be able to process useful-size images in only 64KB.
- */
-
-GLOBAL(void FAR *)
-jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
-{
-// return (void FAR *) malloc(sizeofobject);
- return FXMEM_DefaultAlloc(sizeofobject, 0);
-}
-
-GLOBAL(void)
-jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
-{
-// free(object);
- FXMEM_DefaultFree(object, 0);
-}
-
-
-/*
- * This routine computes the total memory space available for allocation.
- * Here we always say, "we got all you want bud!"
- */
-
-GLOBAL(long)
-jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
- long max_bytes_needed, long already_allocated)
-{
- return max_bytes_needed;
-}
-
-
-/*
- * Backing store (temporary file) management.
- * Since jpeg_mem_available always promised the moon,
- * this should never be called and we can just error out.
- */
-
-GLOBAL(void)
-jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
- long total_bytes_needed)
-{
- ERREXIT(cinfo, JERR_NO_BACKING_STORE);
-}
-
-
-/*
- * These routines take care of any system-dependent initialization and
- * cleanup required. Here, there isn't any.
- */
-
-GLOBAL(long)
-jpeg_mem_init (j_common_ptr cinfo)
-{
- return 0; /* just set max_memory_to_use to 0 */
-}
-
-GLOBAL(void)
-jpeg_mem_term (j_common_ptr cinfo)
-{
- /* no work */
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fpdfapi_jutils.c b/core/src/fxcodec/libjpeg/fpdfapi_jutils.c
deleted file mode 100644
index c6f7248af8..0000000000
--- a/core/src/fxcodec/libjpeg/fpdfapi_jutils.c
+++ /dev/null
@@ -1,182 +0,0 @@
-#if !defined(_FX_JPEG_TURBO_)
-/*
- * jutils.c
- *
- * Copyright (C) 1991-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains tables and miscellaneous utility routines needed
- * for both compression and decompression.
- * Note we prefix all global names with "j" to minimize conflicts with
- * a surrounding application.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
- * of a DCT block read in natural order (left to right, top to bottom).
- */
-
-#if 0 /* This table is not actually needed in v6a */
-
-const int jpeg_zigzag_order[DCTSIZE2] = {
- 0, 1, 5, 6, 14, 15, 27, 28,
- 2, 4, 7, 13, 16, 26, 29, 42,
- 3, 8, 12, 17, 25, 30, 41, 43,
- 9, 11, 18, 24, 31, 40, 44, 53,
- 10, 19, 23, 32, 39, 45, 52, 54,
- 20, 22, 33, 38, 46, 51, 55, 60,
- 21, 34, 37, 47, 50, 56, 59, 61,
- 35, 36, 48, 49, 57, 58, 62, 63
-};
-
-#endif
-
-/*
- * jpeg_natural_order[i] is the natural-order position of the i'th element
- * of zigzag order.
- *
- * When reading corrupted data, the Huffman decoders could attempt
- * to reference an entry beyond the end of this array (if the decoded
- * zero run length reaches past the end of the block). To prevent
- * wild stores without adding an inner-loop test, we put some extra
- * "63"s after the real entries. This will cause the extra coefficient
- * to be stored in location 63 of the block, not somewhere random.
- * The worst case would be a run-length of 15, which means we need 16
- * fake entries.
- */
-
-const int jpeg_natural_order[DCTSIZE2+16] = {
- 0, 1, 8, 16, 9, 2, 3, 10,
- 17, 24, 32, 25, 18, 11, 4, 5,
- 12, 19, 26, 33, 40, 48, 41, 34,
- 27, 20, 13, 6, 7, 14, 21, 28,
- 35, 42, 49, 56, 57, 50, 43, 36,
- 29, 22, 15, 23, 30, 37, 44, 51,
- 58, 59, 52, 45, 38, 31, 39, 46,
- 53, 60, 61, 54, 47, 55, 62, 63,
- 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
- 63, 63, 63, 63, 63, 63, 63, 63
-};
-
-
-/*
- * Arithmetic utilities
- */
-
-GLOBAL(long)
-jdiv_round_up (long a, long b)
-/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
-/* Assumes a >= 0, b > 0 */
-{
- return (a + b - 1L) / b;
-}
-
-
-GLOBAL(long)
-jround_up (long a, long b)
-/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
-/* Assumes a >= 0, b > 0 */
-{
- a += b - 1L;
- return a - (a % b);
-}
-
-
-/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
- * and coefficient-block arrays. This won't work on 80x86 because the arrays
- * are FAR and we're assuming a small-pointer memory model. However, some
- * DOS compilers provide far-pointer versions of memcpy() and memset() even
- * in the small-model libraries. These will be used if USE_FMEM is defined.
- * Otherwise, the routines below do it the hard way. (The performance cost
- * is not all that great, because these routines aren't very heavily used.)
- */
-
-#ifndef NEED_FAR_POINTERS /* normal case, same as regular macros */
-#define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)
-#define FMEMZERO(target,size) MEMZERO(target,size)
-#else /* 80x86 case, define if we can */
-#ifdef USE_FMEM
-#define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
-#define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size))
-#endif
-#endif
-
-
-GLOBAL(void)
-jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
- JSAMPARRAY output_array, int dest_row,
- int num_rows, JDIMENSION num_cols)
-/* Copy some rows of samples from one place to another.
- * num_rows rows are copied from input_array[source_row++]
- * to output_array[dest_row++]; these areas may overlap for duplication.
- * The source and destination arrays must be at least as wide as num_cols.
- */
-{
- register JSAMPROW inptr, outptr;
-#ifdef FMEMCOPY
- register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE));
-#else
- register JDIMENSION count;
-#endif
- register int row;
-
- input_array += source_row;
- output_array += dest_row;
-
- for (row = num_rows; row > 0; row--) {
- inptr = *input_array++;
- outptr = *output_array++;
-#ifdef FMEMCOPY
- FMEMCOPY(outptr, inptr, count);
-#else
- for (count = num_cols; count > 0; count--)
- *outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */
-#endif
- }
-}
-
-
-GLOBAL(void)
-jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
- JDIMENSION num_blocks)
-/* Copy a row of coefficient blocks from one place to another. */
-{
-#ifdef FMEMCOPY
- FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
-#else
- register JCOEFPTR inptr, outptr;
- register long count;
-
- inptr = (JCOEFPTR) input_row;
- outptr = (JCOEFPTR) output_row;
- for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
- *outptr++ = *inptr++;
- }
-#endif
-}
-
-
-GLOBAL(void)
-jzero_far (void FAR * target, size_t bytestozero)
-/* Zero out a chunk of FAR memory. */
-/* This might be sample-array data, block-array data, or alloc_large data. */
-{
-#ifdef FMEMZERO
- FMEMZERO(target, bytestozero);
-#else
- register char FAR * ptr = (char FAR *) target;
- register size_t count;
-
- for (count = bytestozero; count > 0; count--) {
- *ptr++ = 0;
- }
-#endif
-}
-
-#endif //_FX_JPEG_TURBO_
diff --git a/core/src/fxcodec/libjpeg/fx_libjpeg.h b/core/src/fxcodec/libjpeg/fx_libjpeg.h
new file mode 100644
index 0000000000..7cab1a4deb
--- /dev/null
+++ b/core/src/fxcodec/libjpeg/fx_libjpeg.h
@@ -0,0 +1,12 @@
+// Copyright 2014 PDFium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
+
+#ifndef CORE_SRC_FXCODEC_LIBJPEG_FX_LIBJPEG_H_
+#define CORE_SRC_FXCODEC_LIBJPEG_FX_LIBJPEG_H_
+
+#include "../../../../third_party/libjpeg/jpeglib.h"
+
+#endif // CORE_SRC_FXCODEC_LIBJPEG_FX_LIBJPEG_H_
diff --git a/core/src/fxcodec/libjpeg/jchuff.h b/core/src/fxcodec/libjpeg/jchuff.h
deleted file mode 100644
index a9599fc1e6..0000000000
--- a/core/src/fxcodec/libjpeg/jchuff.h
+++ /dev/null
@@ -1,47 +0,0 @@
-/*
- * jchuff.h
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains declarations for Huffman entropy encoding routines
- * that are shared between the sequential encoder (jchuff.c) and the
- * progressive encoder (jcphuff.c). No other modules need to see these.
- */
-
-/* The legal range of a DCT coefficient is
- * -1024 .. +1023 for 8-bit data;
- * -16384 .. +16383 for 12-bit data.
- * Hence the magnitude should always fit in 10 or 14 bits respectively.
- */
-
-#if BITS_IN_JSAMPLE == 8
-#define MAX_COEF_BITS 10
-#else
-#define MAX_COEF_BITS 14
-#endif
-
-/* Derived data constructed for each Huffman table */
-
-typedef struct {
- unsigned int ehufco[256]; /* code for each symbol */
- char ehufsi[256]; /* length of code for each symbol */
- /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
-} c_derived_tbl;
-
-/* Short forms of external names for systems with brain-damaged linkers. */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jpeg_make_c_derived_tbl jMkCDerived
-#define jpeg_gen_optimal_table jGenOptTbl
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-/* Expand a Huffman table definition into the derived format */
-EXTERN(void) jpeg_make_c_derived_tbl
- JPP((j_compress_ptr cinfo, boolean isDC, int tblno,
- c_derived_tbl ** pdtbl));
-
-/* Generate an optimal table definition given the specified counts */
-EXTERN(void) jpeg_gen_optimal_table
- JPP((j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]));
diff --git a/core/src/fxcodec/libjpeg/jconfig.h b/core/src/fxcodec/libjpeg/jconfig.h
deleted file mode 100644
index ea3c397799..0000000000
--- a/core/src/fxcodec/libjpeg/jconfig.h
+++ /dev/null
@@ -1,51 +0,0 @@
-// Copyright 2014 PDFium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
-
-/* jconfig.vc --- jconfig.h for Microsoft Visual C++ on Windows 95 or NT. */
-/* see jconfig.doc for explanations */
-
-#define HAVE_PROTOTYPES
-#define HAVE_UNSIGNED_CHAR
-#define HAVE_UNSIGNED_SHORT
-/* #define void char */
-/* #define const */
-#undef CHAR_IS_UNSIGNED
-#define HAVE_STDDEF_H
-#define HAVE_STDLIB_H
-#undef NEED_BSD_STRINGS
-#undef NEED_SYS_TYPES_H
-#undef NEED_FAR_POINTERS /* we presume a 32-bit flat memory model */
-#undef NEED_SHORT_EXTERNAL_NAMES
-#undef INCOMPLETE_TYPES_BROKEN
-
-/* Define "boolean" as unsigned char, not int, per Windows custom */
-#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
-typedef unsigned char boolean;
-#endif
-#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
-
-
-#ifdef JPEG_INTERNALS
-
-#undef RIGHT_SHIFT_IS_UNSIGNED
-
-#endif /* JPEG_INTERNALS */
-
-#ifdef JPEG_CJPEG_DJPEG
-
-#define BMP_SUPPORTED /* BMP image file format */
-#define GIF_SUPPORTED /* GIF image file format */
-#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
-#undef RLE_SUPPORTED /* Utah RLE image file format */
-#define TARGA_SUPPORTED /* Targa image file format */
-
-#define TWO_FILE_COMMANDLINE /* optional */
-#define USE_SETMODE /* Microsoft has setmode() */
-#undef NEED_SIGNAL_CATCHER
-#undef DONT_USE_B_MODE
-#undef PROGRESS_REPORT /* optional */
-
-#endif /* JPEG_CJPEG_DJPEG */
diff --git a/core/src/fxcodec/libjpeg/jdct.h b/core/src/fxcodec/libjpeg/jdct.h
deleted file mode 100644
index 04192a266a..0000000000
--- a/core/src/fxcodec/libjpeg/jdct.h
+++ /dev/null
@@ -1,176 +0,0 @@
-/*
- * jdct.h
- *
- * Copyright (C) 1994-1996, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This include file contains common declarations for the forward and
- * inverse DCT modules. These declarations are private to the DCT managers
- * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
- * The individual DCT algorithms are kept in separate files to ease
- * machine-dependent tuning (e.g., assembly coding).
- */
-
-
-/*
- * A forward DCT routine is given a pointer to a work area of type DCTELEM[];
- * the DCT is to be performed in-place in that buffer. Type DCTELEM is int
- * for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT
- * implementations use an array of type FAST_FLOAT, instead.)
- * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
- * The DCT outputs are returned scaled up by a factor of 8; they therefore
- * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
- * convention improves accuracy in integer implementations and saves some
- * work in floating-point ones.
- * Quantization of the output coefficients is done by jcdctmgr.c.
- */
-
-#if BITS_IN_JSAMPLE == 8
-typedef int DCTELEM; /* 16 or 32 bits is fine */
-#else
-typedef INT32 DCTELEM; /* must have 32 bits */
-#endif
-
-typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
-typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
-
-
-/*
- * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
- * to an output sample array. The routine must dequantize the input data as
- * well as perform the IDCT; for dequantization, it uses the multiplier table
- * pointed to by compptr->dct_table. The output data is to be placed into the
- * sample array starting at a specified column. (Any row offset needed will
- * be applied to the array pointer before it is passed to the IDCT code.)
- * Note that the number of samples emitted by the IDCT routine is
- * DCT_scaled_size * DCT_scaled_size.
- */
-
-/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
-
-/*
- * Each IDCT routine has its own ideas about the best dct_table element type.
- */
-
-typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
-#if BITS_IN_JSAMPLE == 8
-typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
-#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
-#else
-typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
-#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
-#endif
-typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
-
-
-/*
- * Each IDCT routine is responsible for range-limiting its results and
- * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
- * be quite far out of range if the input data is corrupt, so a bulletproof
- * range-limiting step is required. We use a mask-and-table-lookup method
- * to do the combined operations quickly. See the comments with
- * prepare_range_limit_table (in jdmaster.c) for more info.
- */
-
-#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
-
-#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
-
-
-/* Short forms of external names for systems with brain-damaged linkers. */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jpeg_fdct_islow jFDislow
-#define jpeg_fdct_ifast jFDifast
-#define jpeg_fdct_float jFDfloat
-#define jpeg_idct_islow jRDislow
-#define jpeg_idct_ifast jRDifast
-#define jpeg_idct_float jRDfloat
-#define jpeg_idct_4x4 jRD4x4
-#define jpeg_idct_2x2 jRD2x2
-#define jpeg_idct_1x1 jRD1x1
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-/* Extern declarations for the forward and inverse DCT routines. */
-
-EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
-EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
-EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
-
-EXTERN(void) jpeg_idct_islow
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_ifast
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_float
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_4x4
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_2x2
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN(void) jpeg_idct_1x1
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-
-
-/*
- * Macros for handling fixed-point arithmetic; these are used by many
- * but not all of the DCT/IDCT modules.
- *
- * All values are expected to be of type INT32.
- * Fractional constants are scaled left by CONST_BITS bits.
- * CONST_BITS is defined within each module using these macros,
- * and may differ from one module to the next.
- */
-
-#define ONE ((INT32) 1)
-#define CONST_SCALE (ONE << CONST_BITS)
-
-/* Convert a positive real constant to an integer scaled by CONST_SCALE.
- * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
- * thus causing a lot of useless floating-point operations at run time.
- */
-
-#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
-
-/* Descale and correctly round an INT32 value that's scaled by N bits.
- * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
- * the fudge factor is correct for either sign of X.
- */
-
-#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
-
-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- * This macro is used only when the two inputs will actually be no more than
- * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
- * full 32x32 multiply. This provides a useful speedup on many machines.
- * Unfortunately there is no way to specify a 16x16->32 multiply portably
- * in C, but some C compilers will do the right thing if you provide the
- * correct combination of casts.
- */
-
-#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
-#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
-#endif
-#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
-#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
-#endif
-
-#ifndef MULTIPLY16C16 /* default definition */
-#define MULTIPLY16C16(var,const) ((var) * (const))
-#endif
-
-/* Same except both inputs are variables. */
-
-#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
-#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
-#endif
-
-#ifndef MULTIPLY16V16 /* default definition */
-#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
-#endif
diff --git a/core/src/fxcodec/libjpeg/jdhuff.h b/core/src/fxcodec/libjpeg/jdhuff.h
deleted file mode 100644
index ae19b6cafd..0000000000
--- a/core/src/fxcodec/libjpeg/jdhuff.h
+++ /dev/null
@@ -1,201 +0,0 @@
-/*
- * jdhuff.h
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains declarations for Huffman entropy decoding routines
- * that are shared between the sequential decoder (jdhuff.c) and the
- * progressive decoder (jdphuff.c). No other modules need to see these.
- */
-
-/* Short forms of external names for systems with brain-damaged linkers. */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jpeg_make_d_derived_tbl jMkDDerived
-#define jpeg_fill_bit_buffer jFilBitBuf
-#define jpeg_huff_decode jHufDecode
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-
-/* Derived data constructed for each Huffman table */
-
-#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
-
-typedef struct {
- /* Basic tables: (element [0] of each array is unused) */
- INT32 maxcode[18]; /* largest code of length k (-1 if none) */
- /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
- INT32 valoffset[17]; /* huffval[] offset for codes of length k */
- /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
- * the smallest code of length k; so given a code of length k, the
- * corresponding symbol is huffval[code + valoffset[k]]
- */
-
- /* Link to public Huffman table (needed only in jpeg_huff_decode) */
- JHUFF_TBL *pub;
-
- /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
- * the input data stream. If the next Huffman code is no more
- * than HUFF_LOOKAHEAD bits long, we can obtain its length and
- * the corresponding symbol directly from these tables.
- */
- int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
- UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
-} d_derived_tbl;
-
-/* Expand a Huffman table definition into the derived format */
-EXTERN(void) jpeg_make_d_derived_tbl
- JPP((j_decompress_ptr cinfo, boolean isDC, int tblno,
- d_derived_tbl ** pdtbl));
-
-
-/*
- * Fetching the next N bits from the input stream is a time-critical operation
- * for the Huffman decoders. We implement it with a combination of inline
- * macros and out-of-line subroutines. Note that N (the number of bits
- * demanded at one time) never exceeds 15 for JPEG use.
- *
- * We read source bytes into get_buffer and dole out bits as needed.
- * If get_buffer already contains enough bits, they are fetched in-line
- * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
- * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
- * as full as possible (not just to the number of bits needed; this
- * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
- * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
- * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
- * at least the requested number of bits --- dummy zeroes are inserted if
- * necessary.
- */
-
-typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
-#define BIT_BUF_SIZE 32 /* size of buffer in bits */
-
-/* If long is > 32 bits on your machine, and shifting/masking longs is
- * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
- * appropriately should be a win. Unfortunately we can't define the size
- * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
- * because not all machines measure sizeof in 8-bit bytes.
- */
-
-typedef struct { /* Bitreading state saved across MCUs */
- bit_buf_type get_buffer; /* current bit-extraction buffer */
- int bits_left; /* # of unused bits in it */
-} bitread_perm_state;
-
-typedef struct { /* Bitreading working state within an MCU */
- /* Current data source location */
- /* We need a copy, rather than munging the original, in case of suspension */
- const JOCTET * next_input_byte; /* => next byte to read from source */
- size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
- /* Bit input buffer --- note these values are kept in register variables,
- * not in this struct, inside the inner loops.
- */
- bit_buf_type get_buffer; /* current bit-extraction buffer */
- int bits_left; /* # of unused bits in it */
- /* Pointer needed by jpeg_fill_bit_buffer. */
- j_decompress_ptr cinfo; /* back link to decompress master record */
-} bitread_working_state;
-
-/* Macros to declare and load/save bitread local variables. */
-#define BITREAD_STATE_VARS \
- register bit_buf_type get_buffer; \
- register int bits_left; \
- bitread_working_state br_state
-
-#define BITREAD_LOAD_STATE(cinfop,permstate) \
- br_state.cinfo = cinfop; \
- br_state.next_input_byte = cinfop->src->next_input_byte; \
- br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
- get_buffer = permstate.get_buffer; \
- bits_left = permstate.bits_left;
-
-#define BITREAD_SAVE_STATE(cinfop,permstate) \
- cinfop->src->next_input_byte = br_state.next_input_byte; \
- cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
- permstate.get_buffer = get_buffer; \
- permstate.bits_left = bits_left
-
-/*
- * These macros provide the in-line portion of bit fetching.
- * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
- * before using GET_BITS, PEEK_BITS, or DROP_BITS.
- * The variables get_buffer and bits_left are assumed to be locals,
- * but the state struct might not be (jpeg_huff_decode needs this).
- * CHECK_BIT_BUFFER(state,n,action);
- * Ensure there are N bits in get_buffer; if suspend, take action.
- * val = GET_BITS(n);
- * Fetch next N bits.
- * val = PEEK_BITS(n);
- * Fetch next N bits without removing them from the buffer.
- * DROP_BITS(n);
- * Discard next N bits.
- * The value N should be a simple variable, not an expression, because it
- * is evaluated multiple times.
- */
-
-#define CHECK_BIT_BUFFER(state,nbits,action) \
- { if (bits_left < (nbits)) { \
- if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
- { action; } \
- get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
-
-#define GET_BITS(nbits) \
- (((int) (get_buffer >> (bits_left -= (nbits)))) & ((1<<(nbits))-1))
-
-#define PEEK_BITS(nbits) \
- (((int) (get_buffer >> (bits_left - (nbits)))) & ((1<<(nbits))-1))
-
-#define DROP_BITS(nbits) \
- (bits_left -= (nbits))
-
-/* Load up the bit buffer to a depth of at least nbits */
-EXTERN(boolean) jpeg_fill_bit_buffer
- JPP((bitread_working_state * state, register bit_buf_type get_buffer,
- register int bits_left, int nbits));
-
-
-/*
- * Code for extracting next Huffman-coded symbol from input bit stream.
- * Again, this is time-critical and we make the main paths be macros.
- *
- * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
- * without looping. Usually, more than 95% of the Huffman codes will be 8
- * or fewer bits long. The few overlength codes are handled with a loop,
- * which need not be inline code.
- *
- * Notes about the HUFF_DECODE macro:
- * 1. Near the end of the data segment, we may fail to get enough bits
- * for a lookahead. In that case, we do it the hard way.
- * 2. If the lookahead table contains no entry, the next code must be
- * more than HUFF_LOOKAHEAD bits long.
- * 3. jpeg_huff_decode returns -1 if forced to suspend.
- */
-
-#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
-{ register int nb, look; \
- if (bits_left < HUFF_LOOKAHEAD) { \
- if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
- get_buffer = state.get_buffer; bits_left = state.bits_left; \
- if (bits_left < HUFF_LOOKAHEAD) { \
- nb = 1; goto slowlabel; \
- } \
- } \
- look = PEEK_BITS(HUFF_LOOKAHEAD); \
- if ((nb = htbl->look_nbits[look]) != 0) { \
- DROP_BITS(nb); \
- result = htbl->look_sym[look]; \
- } else { \
- nb = HUFF_LOOKAHEAD+1; \
-slowlabel: \
- if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
- { failaction; } \
- get_buffer = state.get_buffer; bits_left = state.bits_left; \
- } \
-}
-
-/* Out-of-line case for Huffman code fetching */
-EXTERN(int) jpeg_huff_decode
- JPP((bitread_working_state * state, register bit_buf_type get_buffer,
- register int bits_left, d_derived_tbl * htbl, int min_bits));
diff --git a/core/src/fxcodec/libjpeg/jerror.h b/core/src/fxcodec/libjpeg/jerror.h
deleted file mode 100644
index 06d344067a..0000000000
--- a/core/src/fxcodec/libjpeg/jerror.h
+++ /dev/null
@@ -1,291 +0,0 @@
-/*
- * jerror.h
- *
- * Copyright (C) 1994-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file defines the error and message codes for the JPEG library.
- * Edit this file to add new codes, or to translate the message strings to
- * some other language.
- * A set of error-reporting macros are defined too. Some applications using
- * the JPEG library may wish to include this file to get the error codes
- * and/or the macros.
- */
-
-/*
- * To define the enum list of message codes, include this file without
- * defining macro JMESSAGE. To create a message string table, include it
- * again with a suitable JMESSAGE definition (see jerror.c for an example).
- */
-#ifndef JMESSAGE
-#ifndef JERROR_H
-/* First time through, define the enum list */
-#define JMAKE_ENUM_LIST
-#else
-/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
-#define JMESSAGE(code,string)
-#endif /* JERROR_H */
-#endif /* JMESSAGE */
-
-#ifdef JMAKE_ENUM_LIST
-
-typedef enum {
-
-#define JMESSAGE(code,string) code ,
-
-#endif /* JMAKE_ENUM_LIST */
-
-JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
-
-/* For maintenance convenience, list is alphabetical by message code name */
-JMESSAGE(JERR_ARITH_NOTIMPL,
- "Sorry, there are legal restrictions on arithmetic coding")
-JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
-JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
-JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
-JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
-JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range")
-JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported")
-JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
-JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
-JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
-JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
-JMESSAGE(JERR_BAD_LIB_VERSION,
- "Wrong JPEG library version: library is %d, caller expects %d")
-JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
-JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
-JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
-JMESSAGE(JERR_BAD_PROGRESSION,
- "Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
-JMESSAGE(JERR_BAD_PROG_SCRIPT,
- "Invalid progressive parameters at scan script entry %d")
-JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
-JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
-JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
-JMESSAGE(JERR_BAD_STRUCT_SIZE,
- "JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
-JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
-JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
-JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
-JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
-JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
-JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
-JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
-JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
-JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
-JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
-JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
-JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
-JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
-JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
-JMESSAGE(JERR_FILE_READ, "Input file read error")
-JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
-JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
-JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
-JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
-JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
-JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
-JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
-JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
- "Cannot transcode due to multiple use of quantization table %d")
-JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
-JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
-JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
-JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
-JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
-JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
-JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
-JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
-JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
-JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
-JMESSAGE(JERR_QUANT_COMPONENTS,
- "Cannot quantize more than %d color components")
-JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
-JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
-JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
-JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
-JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
-JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
-JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
-JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
-JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
-JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
-JMESSAGE(JERR_TFILE_WRITE,
- "Write failed on temporary file --- out of disk space?")
-JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
-JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
-JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
-JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
-JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
-JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
-JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
-JMESSAGE(JMSG_VERSION, JVERSION)
-JMESSAGE(JTRC_16BIT_TABLES,
- "Caution: quantization tables are too coarse for baseline JPEG")
-JMESSAGE(JTRC_ADOBE,
- "Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
-JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
-JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
-JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
-JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
-JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
-JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
-JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
-JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
-JMESSAGE(JTRC_EOI, "End Of Image")
-JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
-JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d")
-JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
- "Warning: thumbnail image size does not match data length %u")
-JMESSAGE(JTRC_JFIF_EXTENSION,
- "JFIF extension marker: type 0x%02x, length %u")
-JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
-JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
-JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
-JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
-JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
-JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
-JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
-JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
-JMESSAGE(JTRC_RST, "RST%d")
-JMESSAGE(JTRC_SMOOTH_NOTIMPL,
- "Smoothing not supported with nonstandard sampling ratios")
-JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
-JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
-JMESSAGE(JTRC_SOI, "Start of Image")
-JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
-JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
-JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
-JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
-JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
-JMESSAGE(JTRC_THUMB_JPEG,
- "JFIF extension marker: JPEG-compressed thumbnail image, length %u")
-JMESSAGE(JTRC_THUMB_PALETTE,
- "JFIF extension marker: palette thumbnail image, length %u")
-JMESSAGE(JTRC_THUMB_RGB,
- "JFIF extension marker: RGB thumbnail image, length %u")
-JMESSAGE(JTRC_UNKNOWN_IDS,
- "Unrecognized component IDs %d %d %d, assuming YCbCr")
-JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
-JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
-JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
-JMESSAGE(JWRN_BOGUS_PROGRESSION,
- "Inconsistent progression sequence for component %d coefficient %d")
-JMESSAGE(JWRN_EXTRANEOUS_DATA,
- "Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
-JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
-JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
-JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
-JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
-JMESSAGE(JWRN_MUST_RESYNC,
- "Corrupt JPEG data: found marker 0x%02x instead of RST%d")
-JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
-JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
-
-#ifdef JMAKE_ENUM_LIST
-
- JMSG_LASTMSGCODE
-} J_MESSAGE_CODE;
-
-#undef JMAKE_ENUM_LIST
-#endif /* JMAKE_ENUM_LIST */
-
-/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
-#undef JMESSAGE
-
-
-#ifndef JERROR_H
-#define JERROR_H
-
-/* Macros to simplify using the error and trace message stuff */
-/* The first parameter is either type of cinfo pointer */
-
-/* Fatal errors (print message and exit) */
-#define ERREXIT(cinfo,code) \
- ((cinfo)->err->msg_code = (code), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXIT1(cinfo,code,p1) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXIT2(cinfo,code,p1,p2) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXIT3(cinfo,code,p1,p2,p3) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (cinfo)->err->msg_parm.i[2] = (p3), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (cinfo)->err->msg_parm.i[2] = (p3), \
- (cinfo)->err->msg_parm.i[3] = (p4), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXITS(cinfo,code,str) \
- ((cinfo)->err->msg_code = (code), \
- FXSYS_strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-
-#define MAKESTMT(stuff) do { stuff } while (0)
-
-/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
-#define WARNMS(cinfo,code) \
- ((cinfo)->err->msg_code = (code), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
-#define WARNMS1(cinfo,code,p1) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
-#define WARNMS2(cinfo,code,p1,p2) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
-
-/* Informational/debugging messages */
-#define TRACEMS(cinfo,lvl,code) \
- ((cinfo)->err->msg_code = (code), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
-#define TRACEMS1(cinfo,lvl,code,p1) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
-#define TRACEMS2(cinfo,lvl,code,p1,p2) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
-#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \
- MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
- _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
- (cinfo)->err->msg_code = (code); \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
-#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \
- MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
- _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
- (cinfo)->err->msg_code = (code); \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
-#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \
- MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
- _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
- _mp[4] = (p5); \
- (cinfo)->err->msg_code = (code); \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
-#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \
- MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
- _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
- _mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
- (cinfo)->err->msg_code = (code); \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
-#define TRACEMSS(cinfo,lvl,code,str) \
- ((cinfo)->err->msg_code = (code), \
- FXSYS_strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
-
-#endif /* JERROR_H */
diff --git a/core/src/fxcodec/libjpeg/jinclude.h b/core/src/fxcodec/libjpeg/jinclude.h
deleted file mode 100644
index 5cfc6e1fc9..0000000000
--- a/core/src/fxcodec/libjpeg/jinclude.h
+++ /dev/null
@@ -1,102 +0,0 @@
-/*
- * jinclude.h
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file exists to provide a single place to fix any problems with
- * including the wrong system include files. (Common problems are taken
- * care of by the standard jconfig symbols, but on really weird systems
- * you may have to edit this file.)
- *
- * NOTE: this file is NOT intended to be included by applications using the
- * JPEG library. Most applications need only include jpeglib.h.
- */
-
-
-/* Include auto-config file to find out which system include files we need. */
-
-#include "jconfig.h" /* auto configuration options */
-#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
-
-#include "../../../include/fxcrt/fx_system.h"
-/*
- * We need the NULL macro and size_t typedef.
- * On an ANSI-conforming system it is sufficient to include <stddef.h>.
- * Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
- * pull in <sys/types.h> as well.
- * Note that the core JPEG library does not require <stdio.h>;
- * only the default error handler and data source/destination modules do.
- * But we must pull it in because of the references to FILE in jpeglib.h.
- * You can remove those references if you want to compile without <stdio.h>.
- */
-
-#ifdef _DEBUG
-#define CRTDBG_MAP_ALLOC
-//#include <stdlib.h>
-//#include <crtdbg.h>
-#endif
-
-#ifdef HAVE_STDDEF_H
-#include <stddef.h>
-#endif
-
-#ifdef HAVE_STDLIB_H
-//#include <stdlib.h>
-#endif
-
-#ifdef NEED_SYS_TYPES_H
-#include <sys/types.h>
-#endif
-
-#ifndef FAR
-#define FAR
-#endif
-
-//#include <stdio.h>
-
-/*
- * We need memory copying and zeroing functions, plus strncpy().
- * ANSI and System V implementations declare these in <string.h>.
- * BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
- * Some systems may declare memset and memcpy in <memory.h>.
- *
- * NOTE: we assume the size parameters to these functions are of type size_t.
- * Change the casts in these macros if not!
- */
-
-#ifdef NEED_BSD_STRINGS
-
-//#include <strings.h>
-#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
-#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
-
-#else /* not BSD, assume ANSI/SysV string lib */
-
-//#include <string.h>
-#define MEMZERO(target,size) FXSYS_memset((void *)(target), 0, (size_t)(size))
-#define MEMCOPY(dest,src,size) FXSYS_memcpy((void *)(dest), (const void *)(src), (size_t)(size))
-
-#endif
-
-/*
- * In ANSI C, and indeed any rational implementation, size_t is also the
- * type returned by sizeof(). However, it seems there are some irrational
- * implementations out there, in which sizeof() returns an int even though
- * size_t is defined as long or unsigned long. To ensure consistent results
- * we always use this SIZEOF() macro in place of using sizeof() directly.
- */
-
-#define SIZEOF(object) ((size_t) sizeof(object))
-
-/*
- * The modules that use fread() and fwrite() always invoke them through
- * these macros. On some systems you may need to twiddle the argument casts.
- * CAUTION: argument order is different from underlying functions!
- */
-
-#define JFREAD(file,buf,sizeofbuf) \
- ((size_t) FXSYS_fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
-#define JFWRITE(file,buf,sizeofbuf) \
- ((size_t) FXSYS_fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
diff --git a/core/src/fxcodec/libjpeg/jmemsys.h b/core/src/fxcodec/libjpeg/jmemsys.h
deleted file mode 100644
index 896688181b..0000000000
--- a/core/src/fxcodec/libjpeg/jmemsys.h
+++ /dev/null
@@ -1,163 +0,0 @@
-/*
- * jmemsys.h
- *
- * Copyright (C) 1992-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This include file defines the interface between the system-independent
- * and system-dependent portions of the JPEG memory manager. No other
- * modules need include it. (The system-independent portion is jmemmgr.c;
- * there are several different versions of the system-dependent portion.)
- *
- * This file works as-is for the system-dependent memory managers supplied
- * in the IJG distribution. You may need to modify it if you write a
- * custom memory manager.
- */
-
-
-/* Short forms of external names for systems with brain-damaged linkers. */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jpeg_get_small jGetSmall
-#define jpeg_free_small jFreeSmall
-#define jpeg_get_large jGetLarge
-#define jpeg_free_large jFreeLarge
-#define jpeg_mem_available jMemAvail
-#define jpeg_open_backing_store jOpenBackStore
-#define jpeg_mem_init jMemInit
-#define jpeg_mem_term jMemTerm
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-
-/*
- * These two functions are used to allocate and release small chunks of
- * memory. (Typically the total amount requested through jpeg_get_small is
- * no more than 20K or so; this will be requested in chunks of a few K each.)
- * Behavior should be the same as for the standard library functions malloc
- * and free; in particular, jpeg_get_small must return NULL on failure.
- * On most systems, these ARE malloc and free. jpeg_free_small is passed the
- * size of the object being freed, just in case it's needed.
- * On an 80x86 machine using small-data memory model, these manage near heap.
- */
-
-EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
-EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object,
- size_t sizeofobject));
-
-/*
- * These two functions are used to allocate and release large chunks of
- * memory (up to the total free space designated by jpeg_mem_available).
- * The interface is the same as above, except that on an 80x86 machine,
- * far pointers are used. On most other machines these are identical to
- * the jpeg_get/free_small routines; but we keep them separate anyway,
- * in case a different allocation strategy is desirable for large chunks.
- */
-
-EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo,
- size_t sizeofobject));
-EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
- size_t sizeofobject));
-
-/*
- * The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
- * be requested in a single call to jpeg_get_large (and jpeg_get_small for that
- * matter, but that case should never come into play). This macro is needed
- * to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
- * On those machines, we expect that jconfig.h will provide a proper value.
- * On machines with 32-bit flat address spaces, any large constant may be used.
- *
- * NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
- * size_t and will be a multiple of sizeof(align_type).
- */
-
-#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
-#define MAX_ALLOC_CHUNK 1000000000L
-#endif
-
-/*
- * This routine computes the total space still available for allocation by
- * jpeg_get_large. If more space than this is needed, backing store will be
- * used. NOTE: any memory already allocated must not be counted.
- *
- * There is a minimum space requirement, corresponding to the minimum
- * feasible buffer sizes; jmemmgr.c will request that much space even if
- * jpeg_mem_available returns zero. The maximum space needed, enough to hold
- * all working storage in memory, is also passed in case it is useful.
- * Finally, the total space already allocated is passed. If no better
- * method is available, cinfo->mem->max_memory_to_use - already_allocated
- * is often a suitable calculation.
- *
- * It is OK for jpeg_mem_available to underestimate the space available
- * (that'll just lead to more backing-store access than is really necessary).
- * However, an overestimate will lead to failure. Hence it's wise to subtract
- * a slop factor from the true available space. 5% should be enough.
- *
- * On machines with lots of virtual memory, any large constant may be returned.
- * Conversely, zero may be returned to always use the minimum amount of memory.
- */
-
-EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo,
- long min_bytes_needed,
- long max_bytes_needed,
- long already_allocated));
-
-
-/*
- * This structure holds whatever state is needed to access a single
- * backing-store object. The read/write/close method pointers are called
- * by jmemmgr.c to manipulate the backing-store object; all other fields
- * are private to the system-dependent backing store routines.
- */
-
-#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
-
-typedef struct backing_store_struct * backing_store_ptr;
-
-typedef struct backing_store_struct {
- /* Methods for reading/writing/closing this backing-store object */
- JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
- backing_store_ptr info,
- void FAR * buffer_address,
- long file_offset, long byte_count));
- JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
- backing_store_ptr info,
- void FAR * buffer_address,
- long file_offset, long byte_count));
- JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
- backing_store_ptr info));
-
- /* Private fields for system-dependent backing-store management */
- /* For a typical implementation with temp files, we need: */
- FXSYS_FILE * temp_file; /* stdio reference to temp file */
- char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
-} backing_store_info;
-
-
-/*
- * Initial opening of a backing-store object. This must fill in the
- * read/write/close pointers in the object. The read/write routines
- * may take an error exit if the specified maximum file size is exceeded.
- * (If jpeg_mem_available always returns a large value, this routine can
- * just take an error exit.)
- */
-
-EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo,
- backing_store_ptr info,
- long total_bytes_needed));
-
-
-/*
- * These routines take care of any system-dependent initialization and
- * cleanup required. jpeg_mem_init will be called before anything is
- * allocated (and, therefore, nothing in cinfo is of use except the error
- * manager pointer). It should return a suitable default value for
- * max_memory_to_use; this may subsequently be overridden by the surrounding
- * application. (Note that max_memory_to_use is only important if
- * jpeg_mem_available chooses to consult it ... no one else will.)
- * jpeg_mem_term may assume that all requested memory has been freed and that
- * all opened backing-store objects have been closed.
- */
-
-EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo));
-EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo));
diff --git a/core/src/fxcodec/libjpeg/jmorecfg.h b/core/src/fxcodec/libjpeg/jmorecfg.h
deleted file mode 100644
index 88d210954c..0000000000
--- a/core/src/fxcodec/libjpeg/jmorecfg.h
+++ /dev/null
@@ -1,376 +0,0 @@
-/*
- * jmorecfg.h
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains additional configuration options that customize the
- * JPEG software for special applications or support machine-dependent
- * optimizations. Most users will not need to touch this file.
- */
-
-#ifdef _MSC_VER
-#pragma warning (disable : 4142)
-#endif
-
-/*
- * Define BITS_IN_JSAMPLE as either
- * 8 for 8-bit sample values (the usual setting)
- * 12 for 12-bit sample values
- * Only 8 and 12 are legal data precisions for lossy JPEG according to the
- * JPEG standard, and the IJG code does not support anything else!
- * We do not support run-time selection of data precision, sorry.
- */
-
-#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
-
-
-/*
- * Maximum number of components (color channels) allowed in JPEG image.
- * To meet the letter of the JPEG spec, set this to 255. However, darn
- * few applications need more than 4 channels (maybe 5 for CMYK + alpha
- * mask). We recommend 10 as a reasonable compromise; use 4 if you are
- * really short on memory. (Each allowed component costs a hundred or so
- * bytes of storage, whether actually used in an image or not.)
- */
-
-#define MAX_COMPONENTS 10 /* maximum number of image components */
-
-
-/*
- * Basic data types.
- * You may need to change these if you have a machine with unusual data
- * type sizes; for example, "char" not 8 bits, "short" not 16 bits,
- * or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
- * but it had better be at least 16.
- */
-
-/* Representation of a single sample (pixel element value).
- * We frequently allocate large arrays of these, so it's important to keep
- * them small. But if you have memory to burn and access to char or short
- * arrays is very slow on your hardware, you might want to change these.
- */
-
-#if BITS_IN_JSAMPLE == 8
-/* JSAMPLE should be the smallest type that will hold the values 0..255.
- * You can use a signed char by having GETJSAMPLE mask it with 0xFF.
- */
-
-#ifdef HAVE_UNSIGNED_CHAR
-
-typedef unsigned char JSAMPLE;
-#define GETJSAMPLE(value) ((int) (value))
-
-#else /* not HAVE_UNSIGNED_CHAR */
-
-typedef char JSAMPLE;
-#ifdef CHAR_IS_UNSIGNED
-#define GETJSAMPLE(value) ((int) (value))
-#else
-#define GETJSAMPLE(value) ((int) (value) & 0xFF)
-#endif /* CHAR_IS_UNSIGNED */
-
-#endif /* HAVE_UNSIGNED_CHAR */
-
-#define MAXJSAMPLE 255
-#define CENTERJSAMPLE 128
-
-#endif /* BITS_IN_JSAMPLE == 8 */
-
-
-#if BITS_IN_JSAMPLE == 12
-/* JSAMPLE should be the smallest type that will hold the values 0..4095.
- * On nearly all machines "short" will do nicely.
- */
-
-typedef short JSAMPLE;
-#define GETJSAMPLE(value) ((int) (value))
-
-#define MAXJSAMPLE 4095
-#define CENTERJSAMPLE 2048
-
-#endif /* BITS_IN_JSAMPLE == 12 */
-
-
-/* Representation of a DCT frequency coefficient.
- * This should be a signed value of at least 16 bits; "short" is usually OK.
- * Again, we allocate large arrays of these, but you can change to int
- * if you have memory to burn and "short" is really slow.
- */
-
-typedef short JCOEF;
-
-
-/* Compressed datastreams are represented as arrays of JOCTET.
- * These must be EXACTLY 8 bits wide, at least once they are written to
- * external storage. Note that when using the stdio data source/destination
- * managers, this is also the data type passed to fread/fwrite.
- */
-
-#ifdef HAVE_UNSIGNED_CHAR
-
-typedef unsigned char JOCTET;
-#define GETJOCTET(value) (value)
-
-#else /* not HAVE_UNSIGNED_CHAR */
-
-typedef char JOCTET;
-#ifdef CHAR_IS_UNSIGNED
-#define GETJOCTET(value) (value)
-#else
-#define GETJOCTET(value) ((value) & 0xFF)
-#endif /* CHAR_IS_UNSIGNED */
-
-#endif /* HAVE_UNSIGNED_CHAR */
-
-
-/* These typedefs are used for various table entries and so forth.
- * They must be at least as wide as specified; but making them too big
- * won't cost a huge amount of memory, so we don't provide special
- * extraction code like we did for JSAMPLE. (In other words, these
- * typedefs live at a different point on the speed/space tradeoff curve.)
- */
-
-#if _FX_OS_ != _FX_VXWORKS_
-
-/* UINT8 must hold at least the values 0..255. */
-
-#ifdef HAVE_UNSIGNED_CHAR
-typedef unsigned char UINT8;
-#else /* not HAVE_UNSIGNED_CHAR */
-#ifdef CHAR_IS_UNSIGNED
-typedef char UINT8;
-#else /* not CHAR_IS_UNSIGNED */
-typedef short UINT8;
-#endif /* CHAR_IS_UNSIGNED */
-#endif /* HAVE_UNSIGNED_CHAR */
-
-
-/* UINT16 must hold at least the values 0..65535. */
-
-#ifdef HAVE_UNSIGNED_SHORT
-typedef unsigned short UINT16;
-#else /* not HAVE_UNSIGNED_SHORT */
-typedef unsigned int UINT16;
-#endif /* HAVE_UNSIGNED_SHORT */
-
-/* INT16 must hold at least the values -32768..32767. */
-
-#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
-typedef short INT16;
-#endif
-
-/* INT32 must hold at least signed 32-bit values. */
-
-#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
-typedef int INT32;
-#endif
-
-#endif
-
-/* Datatype used for image dimensions. The JPEG standard only supports
- * images up to 64K*64K due to 16-bit fields in SOF markers. Therefore
- * "unsigned int" is sufficient on all machines. However, if you need to
- * handle larger images and you don't mind deviating from the spec, you
- * can change this datatype.
- */
-
-typedef unsigned int JDIMENSION;
-
-#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
-
-
-/* These macros are used in all function definitions and extern declarations.
- * You could modify them if you need to change function linkage conventions;
- * in particular, you'll need to do that to make the library a Windows DLL.
- * Another application is to make all functions global for use with debuggers
- * or code profilers that require it.
- */
-
-/* a function called through method pointers: */
-#define METHODDEF(type) static type
-/* a function used only in its module: */
-#define LOCAL(type) static type
-/* a function referenced thru EXTERNs: */
-#define GLOBAL(type) type
-
-#ifdef _FX_MANAGED_CODE_
-#define EXTERN(type) extern "C" type
-#else
-/* a reference to a GLOBAL function: */
-#define EXTERN(type) extern type
-#endif
-
-
-/* This macro is used to declare a "method", that is, a function pointer.
- * We want to supply prototype parameters if the compiler can cope.
- * Note that the arglist parameter must be parenthesized!
- * Again, you can customize this if you need special linkage keywords.
- */
-
-#ifdef HAVE_PROTOTYPES
-#define JMETHOD(type,methodname,arglist) type (*methodname) arglist
-#else
-#define JMETHOD(type,methodname,arglist) type (*methodname) ()
-#endif
-
-
-/* Here is the pseudo-keyword for declaring pointers that must be "far"
- * on 80x86 machines. Most of the specialized coding for 80x86 is handled
- * by just saying "FAR *" where such a pointer is needed. In a few places
- * explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
- */
-
-#ifdef NEED_FAR_POINTERS
-#define FAR far
-#else
-//#define FAR
-#endif
-
-
-/*
- * On a few systems, type boolean and/or its values FALSE, TRUE may appear
- * in standard header files. Or you may have conflicts with application-
- * specific header files that you want to include together with these files.
- * Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
- */
-
-#ifndef HAVE_BOOLEAN
-typedef int boolean;
-#endif
-#ifndef FALSE /* in case these macros already exist */
-#define FALSE 0 /* values of boolean */
-#endif
-#ifndef TRUE
-#define TRUE 1
-#endif
-
-
-/*
- * The remaining options affect code selection within the JPEG library,
- * but they don't need to be visible to most applications using the library.
- * To minimize application namespace pollution, the symbols won't be
- * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
- */
-
-#ifdef JPEG_INTERNALS
-#define JPEG_INTERNAL_OPTIONS
-#endif
-
-#ifdef JPEG_INTERNAL_OPTIONS
-
-
-/*
- * These defines indicate whether to include various optional functions.
- * Undefining some of these symbols will produce a smaller but less capable
- * library. Note that you can leave certain source files out of the
- * compilation/linking process if you've #undef'd the corresponding symbols.
- * (You may HAVE to do that if your compiler doesn't like null source files.)
- */
-
-/* Arithmetic coding is unsupported for legal reasons. Complaints to IBM. */
-
-/* Capability options common to encoder and decoder: */
-
-#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
-#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
-#undef DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
-
-/* Encoder capability options: */
-
-#undef C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
-#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
-#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
-#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
-/* Note: if you selected 12-bit data precision, it is dangerous to turn off
- * ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
- * precision, so jchuff.c normally uses entropy optimization to compute
- * usable tables for higher precision. If you don't want to do optimization,
- * you'll have to supply different default Huffman tables.
- * The exact same statements apply for progressive JPEG: the default tables
- * don't work for progressive mode. (This may get fixed, however.)
- */
-#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
-
-/* Decoder capability options: */
-
-#undef D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
-#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
-#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
-#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
-#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
-#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
-#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
-#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
-#undef QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
-#undef QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
-
-/* more capability options later, no doubt */
-
-
-/*
- * Ordering of RGB data in scanlines passed to or from the application.
- * If your application wants to deal with data in the order B,G,R, just
- * change these macros. You can also deal with formats such as R,G,B,X
- * (one extra byte per pixel) by changing RGB_PIXELSIZE. Note that changing
- * the offsets will also change the order in which colormap data is organized.
- * RESTRICTIONS:
- * 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
- * 2. These macros only affect RGB<=>YCbCr color conversion, so they are not
- * useful if you are using JPEG color spaces other than YCbCr or grayscale.
- * 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
- * is not 3 (they don't understand about dummy color components!). So you
- * can't use color quantization if you change that value.
- */
-
-#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
-#define RGB_GREEN 1 /* Offset of Green */
-#define RGB_BLUE 2 /* Offset of Blue */
-#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */
-
-
-/* Definitions for speed-related optimizations. */
-
-
-/* If your compiler supports inline functions, define INLINE
- * as the inline keyword; otherwise define it as empty.
- */
-
-#ifndef INLINE
-#ifdef __GNUC__ /* for instance, GNU C knows about inline */
-#define INLINE __inline__
-#endif
-#ifndef INLINE
-#define INLINE /* default is to define it as empty */
-#endif
-#endif
-
-
-/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
- * two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER
- * as short on such a machine. MULTIPLIER must be at least 16 bits wide.
- */
-
-#ifndef MULTIPLIER
-#define MULTIPLIER int /* type for fastest integer multiply */
-#endif
-
-
-/* FAST_FLOAT should be either float or double, whichever is done faster
- * by your compiler. (Note that this type is only used in the floating point
- * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
- * Typically, float is faster in ANSI C compilers, while double is faster in
- * pre-ANSI compilers (because they insist on converting to double anyway).
- * The code below therefore chooses float if we have ANSI-style prototypes.
- */
-
-#ifndef FAST_FLOAT
-#ifdef HAVE_PROTOTYPES
-#define FAST_FLOAT float
-#else
-#define FAST_FLOAT double
-#endif
-#endif
-
-#endif /* JPEG_INTERNAL_OPTIONS */
diff --git a/core/src/fxcodec/libjpeg/jpegint.h b/core/src/fxcodec/libjpeg/jpegint.h
deleted file mode 100644
index 95b00d405c..0000000000
--- a/core/src/fxcodec/libjpeg/jpegint.h
+++ /dev/null
@@ -1,392 +0,0 @@
-/*
- * jpegint.h
- *
- * Copyright (C) 1991-1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file provides common declarations for the various JPEG modules.
- * These declarations are considered internal to the JPEG library; most
- * applications using the library shouldn't need to include this file.
- */
-
-
-/* Declarations for both compression & decompression */
-
-typedef enum { /* Operating modes for buffer controllers */
- JBUF_PASS_THRU, /* Plain stripwise operation */
- /* Remaining modes require a full-image buffer to have been created */
- JBUF_SAVE_SOURCE, /* Run source subobject only, save output */
- JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */
- JBUF_SAVE_AND_PASS /* Run both subobjects, save output */
-} J_BUF_MODE;
-
-/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
-#define CSTATE_START 100 /* after create_compress */
-#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */
-#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */
-#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */
-#define DSTATE_START 200 /* after create_decompress */
-#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */
-#define DSTATE_READY 202 /* found SOS, ready for start_decompress */
-#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/
-#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */
-#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */
-#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */
-#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */
-#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */
-#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */
-#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */
-
-
-/* Declarations for compression modules */
-
-/* Master control module */
-struct jpeg_comp_master {
- JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
- JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
- JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
-
- /* State variables made visible to other modules */
- boolean call_pass_startup; /* True if pass_startup must be called */
- boolean is_last_pass; /* True during last pass */
-};
-
-/* Main buffer control (downsampled-data buffer) */
-struct jpeg_c_main_controller {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
- JMETHOD(void, process_data, (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail));
-};
-
-/* Compression preprocessing (downsampling input buffer control) */
-struct jpeg_c_prep_controller {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
- JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
- JSAMPARRAY input_buf,
- JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail,
- JSAMPIMAGE output_buf,
- JDIMENSION *out_row_group_ctr,
- JDIMENSION out_row_groups_avail));
-};
-
-/* Coefficient buffer control */
-struct jpeg_c_coef_controller {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
- JMETHOD(boolean, compress_data, (j_compress_ptr cinfo,
- JSAMPIMAGE input_buf));
-};
-
-/* Colorspace conversion */
-struct jpeg_color_converter {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo));
- JMETHOD(void, color_convert, (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
- JDIMENSION output_row, int num_rows));
-};
-
-/* Downsampling */
-struct jpeg_downsampler {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo));
- JMETHOD(void, downsample, (j_compress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION in_row_index,
- JSAMPIMAGE output_buf,
- JDIMENSION out_row_group_index));
-
- boolean need_context_rows; /* TRUE if need rows above & below */
-};
-
-/* Forward DCT (also controls coefficient quantization) */
-struct jpeg_forward_dct {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo));
- /* perhaps this should be an array??? */
- JMETHOD(void, forward_DCT, (j_compress_ptr cinfo,
- jpeg_component_info * compptr,
- JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
- JDIMENSION start_row, JDIMENSION start_col,
- JDIMENSION num_blocks));
-};
-
-/* Entropy encoding */
-struct jpeg_entropy_encoder {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
- JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data));
- JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
-};
-
-/* Marker writing */
-struct jpeg_marker_writer {
- JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
- JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
- JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
- JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
- JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
- /* These routines are exported to allow insertion of extra markers */
- /* Probably only COM and APPn markers should be written this way */
- JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker,
- unsigned int datalen));
- JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val));
-};
-
-
-/* Declarations for decompression modules */
-
-/* Master control module */
-struct jpeg_decomp_master {
- JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo));
- JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo));
-
- /* State variables made visible to other modules */
- boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */
-};
-
-/* Input control module */
-struct jpeg_input_controller {
- JMETHOD(int, consume_input, (j_decompress_ptr cinfo));
- JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo));
- JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
- JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo));
-
- /* State variables made visible to other modules */
- boolean has_multiple_scans; /* True if file has multiple scans */
- boolean eoi_reached; /* True when EOI has been consumed */
-};
-
-/* Main buffer control (downsampled-data buffer) */
-struct jpeg_d_main_controller {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
- JMETHOD(void, process_data, (j_decompress_ptr cinfo,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-};
-
-/* Coefficient buffer control */
-struct jpeg_d_coef_controller {
- JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
- JMETHOD(int, consume_data, (j_decompress_ptr cinfo));
- JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
- JMETHOD(int, decompress_data, (j_decompress_ptr cinfo,
- JSAMPIMAGE output_buf));
- /* Pointer to array of coefficient virtual arrays, or NULL if none */
- jvirt_barray_ptr *coef_arrays;
-};
-
-/* Decompression postprocessing (color quantization buffer control) */
-struct jpeg_d_post_controller {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
- JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf,
- JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf,
- JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-};
-
-/* Marker reading & parsing */
-struct jpeg_marker_reader {
- JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
- /* Read markers until SOS or EOI.
- * Returns same codes as are defined for jpeg_consume_input:
- * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
- */
- JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
- /* Read a restart marker --- exported for use by entropy decoder only */
- jpeg_marker_parser_method read_restart_marker;
-
- /* State of marker reader --- nominally internal, but applications
- * supplying COM or APPn handlers might like to know the state.
- */
- boolean saw_SOI; /* found SOI? */
- boolean saw_SOF; /* found SOF? */
- int next_restart_num; /* next restart number expected (0-7) */
- unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */
-};
-
-/* Entropy decoding */
-struct jpeg_entropy_decoder {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
- JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo,
- JBLOCKROW *MCU_data));
-
- /* This is here to share code between baseline and progressive decoders; */
- /* other modules probably should not use it */
- boolean insufficient_data; /* set TRUE after emitting warning */
-};
-
-/* Inverse DCT (also performs dequantization) */
-typedef JMETHOD(void, inverse_DCT_method_ptr,
- (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col));
-
-struct jpeg_inverse_dct {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
- /* It is useful to allow each component to have a separate IDCT method. */
- inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
-};
-
-/* Upsampling (note that upsampler must also call color converter) */
-struct jpeg_upsampler {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
- JMETHOD(void, upsample, (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf,
- JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf,
- JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-
- boolean need_context_rows; /* TRUE if need rows above & below */
-};
-
-/* Colorspace conversion */
-struct jpeg_color_deconverter {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
- JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows));
-};
-
-/* Color quantization or color precision reduction */
-struct jpeg_color_quantizer {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
- JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPARRAY output_buf,
- int num_rows));
- JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
- JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
-};
-
-
-/* Miscellaneous useful macros */
-
-#undef MAX
-#define MAX(a,b) ((a) > (b) ? (a) : (b))
-#undef MIN
-#define MIN(a,b) ((a) < (b) ? (a) : (b))
-
-
-/* We assume that right shift corresponds to signed division by 2 with
- * rounding towards minus infinity. This is correct for typical "arithmetic
- * shift" instructions that shift in copies of the sign bit. But some
- * C compilers implement >> with an unsigned shift. For these machines you
- * must define RIGHT_SHIFT_IS_UNSIGNED.
- * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
- * It is only applied with constant shift counts. SHIFT_TEMPS must be
- * included in the variables of any routine using RIGHT_SHIFT.
- */
-
-#ifdef RIGHT_SHIFT_IS_UNSIGNED
-#define SHIFT_TEMPS INT32 shift_temp;
-#define RIGHT_SHIFT(x,shft) \
- ((shift_temp = (x)) < 0 ? \
- (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
- (shift_temp >> (shft)))
-#else
-#define SHIFT_TEMPS
-#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
-#endif
-
-
-/* Short forms of external names for systems with brain-damaged linkers. */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jinit_compress_master jICompress
-#define jinit_c_master_control jICMaster
-#define jinit_c_main_controller jICMainC
-#define jinit_c_prep_controller jICPrepC
-#define jinit_c_coef_controller jICCoefC
-#define jinit_color_converter jICColor
-#define jinit_downsampler jIDownsampler
-#define jinit_forward_dct jIFDCT
-#define jinit_huff_encoder jIHEncoder
-#define jinit_phuff_encoder jIPHEncoder
-#define jinit_marker_writer jIMWriter
-#define jinit_master_decompress jIDMaster
-#define jinit_d_main_controller jIDMainC
-#define jinit_d_coef_controller jIDCoefC
-#define jinit_d_post_controller jIDPostC
-#define jinit_input_controller jIInCtlr
-#define jinit_marker_reader jIMReader
-#define jinit_huff_decoder jIHDecoder
-#define jinit_phuff_decoder jIPHDecoder
-#define jinit_inverse_dct jIIDCT
-#define jinit_upsampler jIUpsampler
-#define jinit_color_deconverter jIDColor
-#define jinit_1pass_quantizer jI1Quant
-#define jinit_2pass_quantizer jI2Quant
-#define jinit_merged_upsampler jIMUpsampler
-#define jinit_memory_mgr jIMemMgr
-#define jdiv_round_up jDivRound
-#define jround_up jRound
-#define jcopy_sample_rows jCopySamples
-#define jcopy_block_row jCopyBlocks
-#define jzero_far jZeroFar
-#define jpeg_zigzag_order jZIGTable
-#define jpeg_natural_order jZAGTable
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-
-/* Compression module initialization routines */
-EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo));
-EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo,
- boolean transcode_only));
-EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo));
-EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo));
-EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo));
-EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo));
-EXTERN(void) jinit_phuff_encoder JPP((j_compress_ptr cinfo));
-EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo));
-/* Decompression module initialization routines */
-EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_phuff_decoder JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
-EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
-/* Memory manager initialization */
-EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo));
-
-/* Utility routines in jutils.c */
-EXTERN(long) jdiv_round_up JPP((long a, long b));
-EXTERN(long) jround_up JPP((long a, long b));
-EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row,
- JSAMPARRAY output_array, int dest_row,
- int num_rows, JDIMENSION num_cols));
-EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
- JDIMENSION num_blocks));
-EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero));
-/* Constant tables in jutils.c */
-#if 0 /* This table is not actually needed in v6a */
-extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
-#endif
-extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */
-
-/* Suppress undefined-structure complaints if necessary. */
-
-#ifdef INCOMPLETE_TYPES_BROKEN
-#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */
-struct jvirt_sarray_control { long dummy; };
-struct jvirt_barray_control { long dummy; };
-#endif
-#endif /* INCOMPLETE_TYPES_BROKEN */
diff --git a/core/src/fxcodec/libjpeg/jpeglib.h b/core/src/fxcodec/libjpeg/jpeglib.h
deleted file mode 100644
index 7de5ab726e..0000000000
--- a/core/src/fxcodec/libjpeg/jpeglib.h
+++ /dev/null
@@ -1,1165 +0,0 @@
-/*
- * jpeglib.h
- *
- * Copyright (C) 1991-1998, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file defines the application interface for the JPEG library.
- * Most applications using the library need only include this file,
- * and perhaps jerror.h if they want to know the exact error codes.
- */
-
-#ifndef JPEGLIB_H
-#define JPEGLIB_H
-
-#define FOXIT_PREFIX(origName) FPDFAPIJPEG_##origName
-
-#define jcopy_block_row FOXIT_PREFIX(jcopy_block_row)
-#define jcopy_sample_rows FOXIT_PREFIX(jcopy_sample_rows)
-#define jdiv_round_up FOXIT_PREFIX(jdiv_round_up)
-#define jinit_1pass_quantizer FOXIT_PREFIX(jinit_1pass_quantizer)
-#define jinit_2pass_quantizer FOXIT_PREFIX(jinit_2pass_quantizer)
-#define jinit_color_deconverter FOXIT_PREFIX(jinit_color_deconverter)
-#define jinit_d_coef_controller FOXIT_PREFIX(jinit_d_coef_controller)
-#define jinit_d_main_controller FOXIT_PREFIX(jinit_d_main_controller)
-#define jinit_d_post_controller FOXIT_PREFIX(jinit_d_post_controller)
-#define jinit_huff_decoder FOXIT_PREFIX(jinit_huff_decoder)
-#define jinit_input_controller FOXIT_PREFIX(jinit_input_controller)
-#define jinit_inverse_dct FOXIT_PREFIX(jinit_inverse_dct)
-#define jinit_marker_reader FOXIT_PREFIX(jinit_marker_reader)
-#define jinit_master_decompress FOXIT_PREFIX(jinit_master_decompress)
-#define jinit_memory_mgr FOXIT_PREFIX(jinit_memory_mgr)
-#define jinit_merged_upsampler FOXIT_PREFIX(jinit_merged_upsampler)
-#define jinit_phuff_decoder FOXIT_PREFIX(jinit_phuff_decoder)
-#define jinit_upsampler FOXIT_PREFIX(jinit_upsampler)
-#define jpeg_CreateDecompress FOXIT_PREFIX(jpeg_CreateDecompress)
-#define jpeg_abort FOXIT_PREFIX(jpeg_abort)
-#define jpeg_abort_decompress FOXIT_PREFIX(jpeg_abort_decompress)
-#define jpeg_alloc_huff_table FOXIT_PREFIX(jpeg_alloc_huff_table)
-#define jpeg_alloc_quant_table FOXIT_PREFIX(jpeg_alloc_quant_table)
-#define jpeg_calc_output_dimensions FOXIT_PREFIX(jpeg_calc_output_dimensions)
-#define jpeg_consume_input FOXIT_PREFIX(jpeg_consume_input)
-#define jpeg_destroy FOXIT_PREFIX(jpeg_destroy)
-#define jpeg_destroy_decompress FOXIT_PREFIX(jpeg_destroy_decompress)
-#define jpeg_fill_bit_buffer FOXIT_PREFIX(jpeg_fill_bit_buffer)
-#define jpeg_finish_decompress FOXIT_PREFIX(jpeg_finish_decompress)
-#define jpeg_finish_output FOXIT_PREFIX(jpeg_finish_output)
-#define jpeg_free_large FOXIT_PREFIX(jpeg_free_large)
-#define jpeg_free_small FOXIT_PREFIX(jpeg_free_small)
-#define jpeg_get_large FOXIT_PREFIX(jpeg_get_large)
-#define jpeg_get_small FOXIT_PREFIX(jpeg_get_small)
-#define jpeg_has_multiple_scans FOXIT_PREFIX(jpeg_has_multiple_scans)
-#define jpeg_huff_decode FOXIT_PREFIX(jpeg_huff_decode)
-#define jpeg_idct_1x1 FOXIT_PREFIX(jpeg_idct_1x1)
-#define jpeg_idct_2x2 FOXIT_PREFIX(jpeg_idct_2x2)
-#define jpeg_idct_4x4 FOXIT_PREFIX(jpeg_idct_4x4)
-#define jpeg_idct_float FOXIT_PREFIX(jpeg_idct_float)
-#define jpeg_idct_ifast FOXIT_PREFIX(jpeg_idct_ifast)
-#define jpeg_idct_islow FOXIT_PREFIX(jpeg_idct_islow)
-#define jpeg_input_complete FOXIT_PREFIX(jpeg_input_complete)
-#define jpeg_make_d_derived_tbl FOXIT_PREFIX(jpeg_make_d_derived_tbl)
-#define jpeg_mem_available FOXIT_PREFIX(jpeg_mem_available)
-#define jpeg_mem_init FOXIT_PREFIX(jpeg_mem_init)
-#define jpeg_mem_term FOXIT_PREFIX(jpeg_mem_term)
-#define jpeg_natural_order FOXIT_PREFIX(jpeg_natural_order)
-#define jpeg_new_colormap FOXIT_PREFIX(jpeg_new_colormap)
-#define jpeg_open_backing_store FOXIT_PREFIX(jpeg_open_backing_store)
-#define jpeg_read_coefficients FOXIT_PREFIX(jpeg_read_coefficients)
-#define jpeg_read_header FOXIT_PREFIX(jpeg_read_header)
-#define jpeg_read_raw_data FOXIT_PREFIX(jpeg_read_raw_data)
-#define jpeg_read_scanlines FOXIT_PREFIX(jpeg_read_scanlines)
-#define jpeg_resync_to_restart FOXIT_PREFIX(jpeg_resync_to_restart)
-#define jpeg_save_markers FOXIT_PREFIX(jpeg_save_markers)
-#define jpeg_set_marker_processor FOXIT_PREFIX(jpeg_set_marker_processor)
-#define jpeg_start_decompress FOXIT_PREFIX(jpeg_start_decompress)
-#define jpeg_start_output FOXIT_PREFIX(jpeg_start_output)
-#define jpeg_std_error FOXIT_PREFIX(jpeg_std_error)
-#define jpeg_std_message_table FOXIT_PREFIX(jpeg_std_message_table)
-#define jpeg_stdio_src FOXIT_PREFIX(jpeg_stdio_src)
-#define jround_up FOXIT_PREFIX(jround_up)
-#define jzero_far FOXIT_PREFIX(jzero_far)
-
- /*
- * First we include the configuration files that record how this
- * installation of the JPEG library is set up. jconfig.h can be
- * generated automatically for many systems. jmorecfg.h contains
- * manual configuration options that most people need not worry about.
- */
-
-#ifndef JCONFIG_INCLUDED /* in case jinclude.h already did */
-#include "jconfig.h" /* widely used configuration options */
-#endif
-#include "jmorecfg.h" /* seldom changed options */
-
-
-/* Version ID for the JPEG library.
- * Might be useful for tests like "#if JPEG_LIB_VERSION >= 60".
- */
-
-#define JPEG_LIB_VERSION 62 /* Version 6b */
-
-
-/* Various constants determining the sizes of things.
- * All of these are specified by the JPEG standard, so don't change them
- * if you want to be compatible.
- */
-
-#define DCTSIZE 8 /* The basic DCT block is 8x8 samples */
-#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */
-#define NUM_QUANT_TBLS 4 /* Quantization tables are numbered 0..3 */
-#define NUM_HUFF_TBLS 4 /* Huffman tables are numbered 0..3 */
-#define NUM_ARITH_TBLS 16 /* Arith-coding tables are numbered 0..15 */
-#define MAX_COMPS_IN_SCAN 4 /* JPEG limit on # of components in one scan */
-#define MAX_SAMP_FACTOR 4 /* JPEG limit on sampling factors */
-/* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard;
- * the PostScript DCT filter can emit files with many more than 10 blocks/MCU.
- * If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU
- * to handle it. We even let you do this from the jconfig.h file. However,
- * we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe
- * sometimes emits noncompliant files doesn't mean you should too.
- */
-#define C_MAX_BLOCKS_IN_MCU 10 /* compressor's limit on blocks per MCU */
-#ifndef D_MAX_BLOCKS_IN_MCU
-#define D_MAX_BLOCKS_IN_MCU 10 /* decompressor's limit on blocks per MCU */
-#endif
-
-
-/* Data structures for images (arrays of samples and of DCT coefficients).
- * On 80x86 machines, the image arrays are too big for near pointers,
- * but the pointer arrays can fit in near memory.
- */
-
-typedef JSAMPLE *JSAMPROW; /* ptr to one image row of pixel samples. */
-typedef JSAMPROW *JSAMPARRAY; /* ptr to some rows (a 2-D sample array) */
-typedef JSAMPARRAY *JSAMPIMAGE; /* a 3-D sample array: top index is color */
-
-typedef JCOEF JBLOCK[DCTSIZE2]; /* one block of coefficients */
-typedef JBLOCK *JBLOCKROW; /* pointer to one row of coefficient blocks */
-typedef JBLOCKROW *JBLOCKARRAY; /* a 2-D array of coefficient blocks */
-typedef JBLOCKARRAY *JBLOCKIMAGE; /* a 3-D array of coefficient blocks */
-
-typedef JCOEF *JCOEFPTR; /* useful in a couple of places */
-
-
-/* Types for JPEG compression parameters and working tables. */
-
-
-/* DCT coefficient quantization tables. */
-
-typedef struct {
- /* This array gives the coefficient quantizers in natural array order
- * (not the zigzag order in which they are stored in a JPEG DQT marker).
- * CAUTION: IJG versions prior to v6a kept this array in zigzag order.
- */
- UINT16 quantval[DCTSIZE2]; /* quantization step for each coefficient */
- /* This field is used only during compression. It's initialized FALSE when
- * the table is created, and set TRUE when it's been output to the file.
- * You could suppress output of a table by setting this to TRUE.
- * (See jpeg_suppress_tables for an example.)
- */
- boolean sent_table; /* TRUE when table has been output */
-} JQUANT_TBL;
-
-
-/* Huffman coding tables. */
-
-typedef struct {
- /* These two fields directly represent the contents of a JPEG DHT marker */
- UINT8 bits[17]; /* bits[k] = # of symbols with codes of */
- /* length k bits; bits[0] is unused */
- UINT8 huffval[256]; /* The symbols, in order of incr code length */
- /* This field is used only during compression. It's initialized FALSE when
- * the table is created, and set TRUE when it's been output to the file.
- * You could suppress output of a table by setting this to TRUE.
- * (See jpeg_suppress_tables for an example.)
- */
- boolean sent_table; /* TRUE when table has been output */
-} JHUFF_TBL;
-
-
-/* Basic info about one component (color channel). */
-
-typedef struct {
- /* These values are fixed over the whole image. */
- /* For compression, they must be supplied by parameter setup; */
- /* for decompression, they are read from the SOF marker. */
- int component_id; /* identifier for this component (0..255) */
- int component_index; /* its index in SOF or cinfo->comp_info[] */
- int h_samp_factor; /* horizontal sampling factor (1..4) */
- int v_samp_factor; /* vertical sampling factor (1..4) */
- int quant_tbl_no; /* quantization table selector (0..3) */
- /* These values may vary between scans. */
- /* For compression, they must be supplied by parameter setup; */
- /* for decompression, they are read from the SOS marker. */
- /* The decompressor output side may not use these variables. */
- int dc_tbl_no; /* DC entropy table selector (0..3) */
- int ac_tbl_no; /* AC entropy table selector (0..3) */
-
- /* Remaining fields should be treated as private by applications. */
-
- /* These values are computed during compression or decompression startup: */
- /* Component's size in DCT blocks.
- * Any dummy blocks added to complete an MCU are not counted; therefore
- * these values do not depend on whether a scan is interleaved or not.
- */
- JDIMENSION width_in_blocks;
- JDIMENSION height_in_blocks;
- /* Size of a DCT block in samples. Always DCTSIZE for compression.
- * For decompression this is the size of the output from one DCT block,
- * reflecting any scaling we choose to apply during the IDCT step.
- * Values of 1,2,4,8 are likely to be supported. Note that different
- * components may receive different IDCT scalings.
- */
- int DCT_scaled_size;
- /* The downsampled dimensions are the component's actual, unpadded number
- * of samples at the main buffer (preprocessing/compression interface), thus
- * downsampled_width = ceil(image_width * Hi/Hmax)
- * and similarly for height. For decompression, IDCT scaling is included, so
- * downsampled_width = ceil(image_width * Hi/Hmax * DCT_scaled_size/DCTSIZE)
- */
- JDIMENSION downsampled_width; /* actual width in samples */
- JDIMENSION downsampled_height; /* actual height in samples */
- /* This flag is used only for decompression. In cases where some of the
- * components will be ignored (eg grayscale output from YCbCr image),
- * we can skip most computations for the unused components.
- */
- boolean component_needed; /* do we need the value of this component? */
-
- /* These values are computed before starting a scan of the component. */
- /* The decompressor output side may not use these variables. */
- int MCU_width; /* number of blocks per MCU, horizontally */
- int MCU_height; /* number of blocks per MCU, vertically */
- int MCU_blocks; /* MCU_width * MCU_height */
- int MCU_sample_width; /* MCU width in samples, MCU_width*DCT_scaled_size */
- int last_col_width; /* # of non-dummy blocks across in last MCU */
- int last_row_height; /* # of non-dummy blocks down in last MCU */
-
- /* Saved quantization table for component; NULL if none yet saved.
- * See jdinput.c comments about the need for this information.
- * This field is currently used only for decompression.
- */
- JQUANT_TBL * quant_table;
-
- /* Private per-component storage for DCT or IDCT subsystem. */
- void * dct_table;
-} jpeg_component_info;
-
-
-/* The script for encoding a multiple-scan file is an array of these: */
-
-typedef struct {
- int comps_in_scan; /* number of components encoded in this scan */
- int component_index[MAX_COMPS_IN_SCAN]; /* their SOF/comp_info[] indexes */
- int Ss, Se; /* progressive JPEG spectral selection parms */
- int Ah, Al; /* progressive JPEG successive approx. parms */
-} jpeg_scan_info;
-
-/* The decompressor can save APPn and COM markers in a list of these: */
-
-typedef struct jpeg_marker_struct * jpeg_saved_marker_ptr;
-
-struct jpeg_marker_struct {
- jpeg_saved_marker_ptr next; /* next in list, or NULL */
- UINT8 marker; /* marker code: JPEG_COM, or JPEG_APP0+n */
- unsigned int original_length; /* # bytes of data in the file */
- unsigned int data_length; /* # bytes of data saved at data[] */
- JOCTET * data; /* the data contained in the marker */
- /* the marker length word is not counted in data_length or original_length */
-};
-
-/* Known color spaces. */
-
-typedef enum {
- JCS_UNKNOWN, /* error/unspecified */
- JCS_GRAYSCALE, /* monochrome */
- JCS_RGB, /* red/green/blue */
- JCS_YCbCr, /* Y/Cb/Cr (also known as YUV) */
- JCS_CMYK, /* C/M/Y/K */
- JCS_YCCK /* Y/Cb/Cr/K */
-} J_COLOR_SPACE;
-
-/* DCT/IDCT algorithm options. */
-
-typedef enum {
- JDCT_ISLOW, /* slow but accurate integer algorithm */
- JDCT_IFAST, /* faster, less accurate integer method */
- JDCT_FLOAT /* floating-point: accurate, fast on fast HW */
-} J_DCT_METHOD;
-
-#ifndef JDCT_DEFAULT /* may be overridden in jconfig.h */
-#define JDCT_DEFAULT JDCT_ISLOW
-#endif
-#ifndef JDCT_FASTEST /* may be overridden in jconfig.h */
-#define JDCT_FASTEST JDCT_IFAST
-#endif
-
-/* Dithering options for decompression. */
-
-typedef enum {
- JDITHER_NONE, /* no dithering */
- JDITHER_ORDERED, /* simple ordered dither */
- JDITHER_FS /* Floyd-Steinberg error diffusion dither */
-} J_DITHER_MODE;
-
-
-/* Common fields between JPEG compression and decompression master structs. */
-
-#define jpeg_common_fields \
- struct jpeg_error_mgr * err; /* Error handler module */\
- struct jpeg_memory_mgr * mem; /* Memory manager module */\
- struct jpeg_progress_mgr * progress; /* Progress monitor, or NULL if none */\
- void * client_data; /* Available for use by application */\
- boolean is_decompressor; /* So common code can tell which is which */\
- int global_state /* For checking call sequence validity */
-
-/* Routines that are to be used by both halves of the library are declared
- * to receive a pointer to this structure. There are no actual instances of
- * jpeg_common_struct, only of jpeg_compress_struct and jpeg_decompress_struct.
- */
-struct jpeg_common_struct {
- jpeg_common_fields; /* Fields common to both master struct types */
- /* Additional fields follow in an actual jpeg_compress_struct or
- * jpeg_decompress_struct. All three structs must agree on these
- * initial fields! (This would be a lot cleaner in C++.)
- */
-};
-
-typedef struct jpeg_common_struct * j_common_ptr;
-typedef struct jpeg_compress_struct * j_compress_ptr;
-typedef struct jpeg_decompress_struct * j_decompress_ptr;
-
-
-/* Master record for a compression instance */
-
-struct jpeg_compress_struct {
- jpeg_common_fields; /* Fields shared with jpeg_decompress_struct */
-
- /* Destination for compressed data */
- struct jpeg_destination_mgr * dest;
-
- /* Description of source image --- these fields must be filled in by
- * outer application before starting compression. in_color_space must
- * be correct before you can even call jpeg_set_defaults().
- */
-
- JDIMENSION image_width; /* input image width */
- JDIMENSION image_height; /* input image height */
- int input_components; /* # of color components in input image */
- J_COLOR_SPACE in_color_space; /* colorspace of input image */
-
- double input_gamma; /* image gamma of input image */
-
- /* Compression parameters --- these fields must be set before calling
- * jpeg_start_compress(). We recommend calling jpeg_set_defaults() to
- * initialize everything to reasonable defaults, then changing anything
- * the application specifically wants to change. That way you won't get
- * burnt when new parameters are added. Also note that there are several
- * helper routines to simplify changing parameters.
- */
-
- int data_precision; /* bits of precision in image data */
-
- int num_components; /* # of color components in JPEG image */
- J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
-
- jpeg_component_info * comp_info;
- /* comp_info[i] describes component that appears i'th in SOF */
-
- JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
- /* ptrs to coefficient quantization tables, or NULL if not defined */
-
- JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
- JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
- /* ptrs to Huffman coding tables, or NULL if not defined */
-
- UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
- UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
- UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
-
- int num_scans; /* # of entries in scan_info array */
- const jpeg_scan_info * scan_info; /* script for multi-scan file, or NULL */
- /* The default value of scan_info is NULL, which causes a single-scan
- * sequential JPEG file to be emitted. To create a multi-scan file,
- * set num_scans and scan_info to point to an array of scan definitions.
- */
-
- boolean raw_data_in; /* TRUE=caller supplies downsampled data */
- boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
- boolean optimize_coding; /* TRUE=optimize entropy encoding parms */
- boolean CCIR601_sampling; /* TRUE=first samples are cosited */
- int smoothing_factor; /* 1..100, or 0 for no input smoothing */
- J_DCT_METHOD dct_method; /* DCT algorithm selector */
-
- /* The restart interval can be specified in absolute MCUs by setting
- * restart_interval, or in MCU rows by setting restart_in_rows
- * (in which case the correct restart_interval will be figured
- * for each scan).
- */
- unsigned int restart_interval; /* MCUs per restart, or 0 for no restart */
- int restart_in_rows; /* if > 0, MCU rows per restart interval */
-
- /* Parameters controlling emission of special markers. */
-
- boolean write_JFIF_header; /* should a JFIF marker be written? */
- UINT8 JFIF_major_version; /* What to write for the JFIF version number */
- UINT8 JFIF_minor_version;
- /* These three values are not used by the JPEG code, merely copied */
- /* into the JFIF APP0 marker. density_unit can be 0 for unknown, */
- /* 1 for dots/inch, or 2 for dots/cm. Note that the pixel aspect */
- /* ratio is defined by X_density/Y_density even when density_unit=0. */
- UINT8 density_unit; /* JFIF code for pixel size units */
- UINT16 X_density; /* Horizontal pixel density */
- UINT16 Y_density; /* Vertical pixel density */
- boolean write_Adobe_marker; /* should an Adobe marker be written? */
-
- /* State variable: index of next scanline to be written to
- * jpeg_write_scanlines(). Application may use this to control its
- * processing loop, e.g., "while (next_scanline < image_height)".
- */
-
- JDIMENSION next_scanline; /* 0 .. image_height-1 */
-
- /* Remaining fields are known throughout compressor, but generally
- * should not be touched by a surrounding application.
- */
-
- /*
- * These fields are computed during compression startup
- */
- boolean progressive_mode; /* TRUE if scan script uses progressive mode */
- int max_h_samp_factor; /* largest h_samp_factor */
- int max_v_samp_factor; /* largest v_samp_factor */
-
- JDIMENSION total_iMCU_rows; /* # of iMCU rows to be input to coef ctlr */
- /* The coefficient controller receives data in units of MCU rows as defined
- * for fully interleaved scans (whether the JPEG file is interleaved or not).
- * There are v_samp_factor * DCTSIZE sample rows of each component in an
- * "iMCU" (interleaved MCU) row.
- */
-
- /*
- * These fields are valid during any one scan.
- * They describe the components and MCUs actually appearing in the scan.
- */
- int comps_in_scan; /* # of JPEG components in this scan */
- jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
- /* *cur_comp_info[i] describes component that appears i'th in SOS */
-
- JDIMENSION MCUs_per_row; /* # of MCUs across the image */
- JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
-
- int blocks_in_MCU; /* # of DCT blocks per MCU */
- int MCU_membership[C_MAX_BLOCKS_IN_MCU];
- /* MCU_membership[i] is index in cur_comp_info of component owning */
- /* i'th block in an MCU */
-
- int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */
-
- /*
- * Links to compression subobjects (methods and private variables of modules)
- */
- struct jpeg_comp_master * master;
- struct jpeg_c_main_controller * main;
- struct jpeg_c_prep_controller * prep;
- struct jpeg_c_coef_controller * coef;
- struct jpeg_marker_writer * marker;
- struct jpeg_color_converter * cconvert;
- struct jpeg_downsampler * downsample;
- struct jpeg_forward_dct * fdct;
- struct jpeg_entropy_encoder * entropy;
- jpeg_scan_info * script_space; /* workspace for jpeg_simple_progression */
- int script_space_size;
-};
-
-
-/* Master record for a decompression instance */
-
-struct jpeg_decompress_struct {
- jpeg_common_fields; /* Fields shared with jpeg_compress_struct */
-
- /* Source of compressed data */
- struct jpeg_source_mgr * src;
-
- /* Basic description of image --- filled in by jpeg_read_header(). */
- /* Application may inspect these values to decide how to process image. */
-
- JDIMENSION image_width; /* nominal image width (from SOF marker) */
- JDIMENSION image_height; /* nominal image height */
- int num_components; /* # of color components in JPEG image */
- J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
-
- /* Decompression processing parameters --- these fields must be set before
- * calling jpeg_start_decompress(). Note that jpeg_read_header() initializes
- * them to default values.
- */
-
- J_COLOR_SPACE out_color_space; /* colorspace for output */
-
- unsigned int scale_num, scale_denom; /* fraction by which to scale image */
-
- double output_gamma; /* image gamma wanted in output */
-
- boolean buffered_image; /* TRUE=multiple output passes */
- boolean raw_data_out; /* TRUE=downsampled data wanted */
-
- J_DCT_METHOD dct_method; /* IDCT algorithm selector */
- boolean do_fancy_upsampling; /* TRUE=apply fancy upsampling */
- boolean do_block_smoothing; /* TRUE=apply interblock smoothing */
-
- boolean quantize_colors; /* TRUE=colormapped output wanted */
- /* the following are ignored if not quantize_colors: */
- J_DITHER_MODE dither_mode; /* type of color dithering to use */
- boolean two_pass_quantize; /* TRUE=use two-pass color quantization */
- int desired_number_of_colors; /* max # colors to use in created colormap */
- /* these are significant only in buffered-image mode: */
- boolean enable_1pass_quant; /* enable future use of 1-pass quantizer */
- boolean enable_external_quant;/* enable future use of external colormap */
- boolean enable_2pass_quant; /* enable future use of 2-pass quantizer */
-
- /* Description of actual output image that will be returned to application.
- * These fields are computed by jpeg_start_decompress().
- * You can also use jpeg_calc_output_dimensions() to determine these values
- * in advance of calling jpeg_start_decompress().
- */
-
- JDIMENSION output_width; /* scaled image width */
- JDIMENSION output_height; /* scaled image height */
- int out_color_components; /* # of color components in out_color_space */
- int output_components; /* # of color components returned */
- /* output_components is 1 (a colormap index) when quantizing colors;
- * otherwise it equals out_color_components.
- */
- int rec_outbuf_height; /* min recommended height of scanline buffer */
- /* If the buffer passed to jpeg_read_scanlines() is less than this many rows
- * high, space and time will be wasted due to unnecessary data copying.
- * Usually rec_outbuf_height will be 1 or 2, at most 4.
- */
-
- /* When quantizing colors, the output colormap is described by these fields.
- * The application can supply a colormap by setting colormap non-NULL before
- * calling jpeg_start_decompress; otherwise a colormap is created during
- * jpeg_start_decompress or jpeg_start_output.
- * The map has out_color_components rows and actual_number_of_colors columns.
- */
- int actual_number_of_colors; /* number of entries in use */
- JSAMPARRAY colormap; /* The color map as a 2-D pixel array */
-
- /* State variables: these variables indicate the progress of decompression.
- * The application may examine these but must not modify them.
- */
-
- /* Row index of next scanline to be read from jpeg_read_scanlines().
- * Application may use this to control its processing loop, e.g.,
- * "while (output_scanline < output_height)".
- */
- JDIMENSION output_scanline; /* 0 .. output_height-1 */
-
- /* Current input scan number and number of iMCU rows completed in scan.
- * These indicate the progress of the decompressor input side.
- */
- int input_scan_number; /* Number of SOS markers seen so far */
- JDIMENSION input_iMCU_row; /* Number of iMCU rows completed */
-
- /* The "output scan number" is the notional scan being displayed by the
- * output side. The decompressor will not allow output scan/row number
- * to get ahead of input scan/row, but it can fall arbitrarily far behind.
- */
- int output_scan_number; /* Nominal scan number being displayed */
- JDIMENSION output_iMCU_row; /* Number of iMCU rows read */
-
- /* Current progression status. coef_bits[c][i] indicates the precision
- * with which component c's DCT coefficient i (in zigzag order) is known.
- * It is -1 when no data has yet been received, otherwise it is the point
- * transform (shift) value for the most recent scan of the coefficient
- * (thus, 0 at completion of the progression).
- * This pointer is NULL when reading a non-progressive file.
- */
- int (*coef_bits)[DCTSIZE2]; /* -1 or current Al value for each coef */
-
- /* Internal JPEG parameters --- the application usually need not look at
- * these fields. Note that the decompressor output side may not use
- * any parameters that can change between scans.
- */
-
- /* Quantization and Huffman tables are carried forward across input
- * datastreams when processing abbreviated JPEG datastreams.
- */
-
- JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
- /* ptrs to coefficient quantization tables, or NULL if not defined */
-
- JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
- JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
- /* ptrs to Huffman coding tables, or NULL if not defined */
-
- /* These parameters are never carried across datastreams, since they
- * are given in SOF/SOS markers or defined to be reset by SOI.
- */
-
- int data_precision; /* bits of precision in image data */
-
- jpeg_component_info * comp_info;
- /* comp_info[i] describes component that appears i'th in SOF */
-
- boolean progressive_mode; /* TRUE if SOFn specifies progressive mode */
- boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
-
- UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
- UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
- UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
-
- unsigned int restart_interval; /* MCUs per restart interval, or 0 for no restart */
-
- /* These fields record data obtained from optional markers recognized by
- * the JPEG library.
- */
- boolean saw_JFIF_marker; /* TRUE iff a JFIF APP0 marker was found */
- /* Data copied from JFIF marker; only valid if saw_JFIF_marker is TRUE: */
- UINT8 JFIF_major_version; /* JFIF version number */
- UINT8 JFIF_minor_version;
- UINT8 density_unit; /* JFIF code for pixel size units */
- UINT16 X_density; /* Horizontal pixel density */
- UINT16 Y_density; /* Vertical pixel density */
- boolean saw_Adobe_marker; /* TRUE iff an Adobe APP14 marker was found */
- UINT8 Adobe_transform; /* Color transform code from Adobe marker */
-
- boolean CCIR601_sampling; /* TRUE=first samples are cosited */
-
- /* Aside from the specific data retained from APPn markers known to the
- * library, the uninterpreted contents of any or all APPn and COM markers
- * can be saved in a list for examination by the application.
- */
- jpeg_saved_marker_ptr marker_list; /* Head of list of saved markers */
-
- /* Remaining fields are known throughout decompressor, but generally
- * should not be touched by a surrounding application.
- */
-
- /*
- * These fields are computed during decompression startup
- */
- int max_h_samp_factor; /* largest h_samp_factor */
- int max_v_samp_factor; /* largest v_samp_factor */
-
- int min_DCT_scaled_size; /* smallest DCT_scaled_size of any component */
-
- JDIMENSION total_iMCU_rows; /* # of iMCU rows in image */
- /* The coefficient controller's input and output progress is measured in
- * units of "iMCU" (interleaved MCU) rows. These are the same as MCU rows
- * in fully interleaved JPEG scans, but are used whether the scan is
- * interleaved or not. We define an iMCU row as v_samp_factor DCT block
- * rows of each component. Therefore, the IDCT output contains
- * v_samp_factor*DCT_scaled_size sample rows of a component per iMCU row.
- */
-
- JSAMPLE * sample_range_limit; /* table for fast range-limiting */
-
- /*
- * These fields are valid during any one scan.
- * They describe the components and MCUs actually appearing in the scan.
- * Note that the decompressor output side must not use these fields.
- */
- int comps_in_scan; /* # of JPEG components in this scan */
- jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
- /* *cur_comp_info[i] describes component that appears i'th in SOS */
-
- JDIMENSION MCUs_per_row; /* # of MCUs across the image */
- JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
-
- int blocks_in_MCU; /* # of DCT blocks per MCU */
- int MCU_membership[D_MAX_BLOCKS_IN_MCU];
- /* MCU_membership[i] is index in cur_comp_info of component owning */
- /* i'th block in an MCU */
-
- int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */
-
- /* This field is shared between entropy decoder and marker parser.
- * It is either zero or the code of a JPEG marker that has been
- * read from the data source, but has not yet been processed.
- */
- int unread_marker;
-
- /*
- * Links to decompression subobjects (methods, private variables of modules)
- */
- struct jpeg_decomp_master * master;
- struct jpeg_d_main_controller * main;
- struct jpeg_d_coef_controller * coef;
- struct jpeg_d_post_controller * post;
- struct jpeg_input_controller * inputctl;
- struct jpeg_marker_reader * marker;
- struct jpeg_entropy_decoder * entropy;
- struct jpeg_inverse_dct * idct;
- struct jpeg_upsampler * upsample;
- struct jpeg_color_deconverter * cconvert;
- struct jpeg_color_quantizer * cquantize;
-};
-
-
-/* "Object" declarations for JPEG modules that may be supplied or called
- * directly by the surrounding application.
- * As with all objects in the JPEG library, these structs only define the
- * publicly visible methods and state variables of a module. Additional
- * private fields may exist after the public ones.
- */
-
-
-/* Error handler object */
-
-struct jpeg_error_mgr {
- /* Error exit handler: does not return to caller */
- JMETHOD(void, error_exit, (j_common_ptr cinfo));
- /* Conditionally emit a trace or warning message */
- JMETHOD(void, emit_message, (j_common_ptr cinfo, int msg_level));
- /* Routine that actually outputs a trace or error message */
- JMETHOD(void, output_message, (j_common_ptr cinfo));
- /* Format a message string for the most recent JPEG error or message */
- JMETHOD(void, format_message, (j_common_ptr cinfo, char * buffer));
-#define JMSG_LENGTH_MAX 200 /* recommended size of format_message buffer */
- /* Reset error state variables at start of a new image */
- JMETHOD(void, reset_error_mgr, (j_common_ptr cinfo));
-
- /* The message ID code and any parameters are saved here.
- * A message can have one string parameter or up to 8 int parameters.
- */
- int msg_code;
-#define JMSG_STR_PARM_MAX 80
- union {
- int i[8];
- char s[JMSG_STR_PARM_MAX];
- } msg_parm;
-
- /* Standard state variables for error facility */
-
- int trace_level; /* max msg_level that will be displayed */
-
- /* For recoverable corrupt-data errors, we emit a warning message,
- * but keep going unless emit_message chooses to abort. emit_message
- * should count warnings in num_warnings. The surrounding application
- * can check for bad data by seeing if num_warnings is nonzero at the
- * end of processing.
- */
- long num_warnings; /* number of corrupt-data warnings */
-
- /* These fields point to the table(s) of error message strings.
- * An application can change the table pointer to switch to a different
- * message list (typically, to change the language in which errors are
- * reported). Some applications may wish to add additional error codes
- * that will be handled by the JPEG library error mechanism; the second
- * table pointer is used for this purpose.
- *
- * First table includes all errors generated by JPEG library itself.
- * Error code 0 is reserved for a "no such error string" message.
- */
- const char * const * jpeg_message_table; /* Library errors */
- int last_jpeg_message; /* Table contains strings 0..last_jpeg_message */
- /* Second table can be added by application (see cjpeg/djpeg for example).
- * It contains strings numbered first_addon_message..last_addon_message.
- */
- const char * const * addon_message_table; /* Non-library errors */
- int first_addon_message; /* code for first string in addon table */
- int last_addon_message; /* code for last string in addon table */
-};
-
-
-/* Progress monitor object */
-
-struct jpeg_progress_mgr {
- JMETHOD(void, progress_monitor, (j_common_ptr cinfo));
-
- long pass_counter; /* work units completed in this pass */
- long pass_limit; /* total number of work units in this pass */
- int completed_passes; /* passes completed so far */
- int total_passes; /* total number of passes expected */
-};
-
-
-/* Data destination object for compression */
-
-struct jpeg_destination_mgr {
- JOCTET * next_output_byte; /* => next byte to write in buffer */
- size_t free_in_buffer; /* # of byte spaces remaining in buffer */
-
- JMETHOD(void, init_destination, (j_compress_ptr cinfo));
- JMETHOD(boolean, empty_output_buffer, (j_compress_ptr cinfo));
- JMETHOD(void, term_destination, (j_compress_ptr cinfo));
-};
-
-
-/* Data source object for decompression */
-
-struct jpeg_source_mgr {
- const JOCTET * next_input_byte; /* => next byte to read from buffer */
- size_t bytes_in_buffer; /* # of bytes remaining in buffer */
-
- JMETHOD(void, init_source, (j_decompress_ptr cinfo));
- JMETHOD(boolean, fill_input_buffer, (j_decompress_ptr cinfo));
- JMETHOD(void, skip_input_data, (j_decompress_ptr cinfo, long num_bytes));
- JMETHOD(boolean, resync_to_restart, (j_decompress_ptr cinfo, int desired));
- JMETHOD(void, term_source, (j_decompress_ptr cinfo));
-};
-
-
-/* Memory manager object.
- * Allocates "small" objects (a few K total), "large" objects (tens of K),
- * and "really big" objects (virtual arrays with backing store if needed).
- * The memory manager does not allow individual objects to be freed; rather,
- * each created object is assigned to a pool, and whole pools can be freed
- * at once. This is faster and more convenient than remembering exactly what
- * to free, especially where malloc()/free() are not too speedy.
- * NB: alloc routines never return NULL. They exit to error_exit if not
- * successful.
- */
-
-#define JPOOL_PERMANENT 0 /* lasts until master record is destroyed */
-#define JPOOL_IMAGE 1 /* lasts until done with image/datastream */
-#define JPOOL_NUMPOOLS 2
-
-typedef struct jvirt_sarray_control * jvirt_sarray_ptr;
-typedef struct jvirt_barray_control * jvirt_barray_ptr;
-
-
-struct jpeg_memory_mgr {
- /* Method pointers */
- JMETHOD(void *, alloc_small, (j_common_ptr cinfo, int pool_id,
- size_t sizeofobject));
- JMETHOD(void *, alloc_large, (j_common_ptr cinfo, int pool_id,
- size_t sizeofobject));
- JMETHOD(JSAMPARRAY, alloc_sarray, (j_common_ptr cinfo, int pool_id,
- JDIMENSION samplesperrow,
- JDIMENSION numrows));
- JMETHOD(JBLOCKARRAY, alloc_barray, (j_common_ptr cinfo, int pool_id,
- JDIMENSION blocksperrow,
- JDIMENSION numrows));
- JMETHOD(jvirt_sarray_ptr, request_virt_sarray, (j_common_ptr cinfo,
- int pool_id,
- boolean pre_zero,
- JDIMENSION samplesperrow,
- JDIMENSION numrows,
- JDIMENSION maxaccess));
- JMETHOD(jvirt_barray_ptr, request_virt_barray, (j_common_ptr cinfo,
- int pool_id,
- boolean pre_zero,
- JDIMENSION blocksperrow,
- JDIMENSION numrows,
- JDIMENSION maxaccess));
- JMETHOD(void, realize_virt_arrays, (j_common_ptr cinfo));
- JMETHOD(JSAMPARRAY, access_virt_sarray, (j_common_ptr cinfo,
- jvirt_sarray_ptr ptr,
- JDIMENSION start_row,
- JDIMENSION num_rows,
- boolean writable));
- JMETHOD(JBLOCKARRAY, access_virt_barray, (j_common_ptr cinfo,
- jvirt_barray_ptr ptr,
- JDIMENSION start_row,
- JDIMENSION num_rows,
- boolean writable));
- JMETHOD(void, free_pool, (j_common_ptr cinfo, int pool_id));
- JMETHOD(void, self_destruct, (j_common_ptr cinfo));
-
- /* Limit on memory allocation for this JPEG object. (Note that this is
- * merely advisory, not a guaranteed maximum; it only affects the space
- * used for virtual-array buffers.) May be changed by outer application
- * after creating the JPEG object.
- */
- long max_memory_to_use;
-
- /* Maximum allocation request accepted by alloc_large. */
- long max_alloc_chunk;
-};
-
-
-/* Routine signature for application-supplied marker processing methods.
- * Need not pass marker code since it is stored in cinfo->unread_marker.
- */
-typedef JMETHOD(boolean, jpeg_marker_parser_method, (j_decompress_ptr cinfo));
-
-
-/* Declarations for routines called by application.
- * The JPP macro hides prototype parameters from compilers that can't cope.
- * Note JPP requires double parentheses.
- */
-
-#ifdef HAVE_PROTOTYPES
-#define JPP(arglist) arglist
-#else
-#define JPP(arglist) ()
-#endif
-
-
-/* Short forms of external names for systems with brain-damaged linkers.
- * We shorten external names to be unique in the first six letters, which
- * is good enough for all known systems.
- * (If your compiler itself needs names to be unique in less than 15
- * characters, you are out of luck. Get a better compiler.)
- */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jpeg_std_error jStdError
-#define jpeg_CreateCompress jCreaCompress
-#define jpeg_CreateDecompress jCreaDecompress
-#define jpeg_destroy_compress jDestCompress
-#define jpeg_destroy_decompress jDestDecompress
-#define jpeg_stdio_dest jStdDest
-#define jpeg_stdio_src jStdSrc
-#define jpeg_set_defaults jSetDefaults
-#define jpeg_set_colorspace jSetColorspace
-#define jpeg_default_colorspace jDefColorspace
-#define jpeg_set_quality jSetQuality
-#define jpeg_set_linear_quality jSetLQuality
-#define jpeg_add_quant_table jAddQuantTable
-#define jpeg_quality_scaling jQualityScaling
-#define jpeg_simple_progression jSimProgress
-#define jpeg_suppress_tables jSuppressTables
-#define jpeg_alloc_quant_table jAlcQTable
-#define jpeg_alloc_huff_table jAlcHTable
-#define jpeg_start_compress jStrtCompress
-#define jpeg_write_scanlines jWrtScanlines
-#define jpeg_finish_compress jFinCompress
-#define jpeg_write_raw_data jWrtRawData
-#define jpeg_write_marker jWrtMarker
-#define jpeg_write_m_header jWrtMHeader
-#define jpeg_write_m_byte jWrtMByte
-#define jpeg_write_tables jWrtTables
-#define jpeg_read_header jReadHeader
-#define jpeg_start_decompress jStrtDecompress
-#define jpeg_read_scanlines jReadScanlines
-#define jpeg_finish_decompress jFinDecompress
-#define jpeg_read_raw_data jReadRawData
-#define jpeg_has_multiple_scans jHasMultScn
-#define jpeg_start_output jStrtOutput
-#define jpeg_finish_output jFinOutput
-#define jpeg_input_complete jInComplete
-#define jpeg_new_colormap jNewCMap
-#define jpeg_consume_input jConsumeInput
-#define jpeg_calc_output_dimensions jCalcDimensions
-#define jpeg_save_markers jSaveMarkers
-#define jpeg_set_marker_processor jSetMarker
-#define jpeg_read_coefficients jReadCoefs
-#define jpeg_write_coefficients jWrtCoefs
-#define jpeg_copy_critical_parameters jCopyCrit
-#define jpeg_abort_compress jAbrtCompress
-#define jpeg_abort_decompress jAbrtDecompress
-#define jpeg_abort jAbort
-#define jpeg_destroy jDestroy
-#define jpeg_resync_to_restart jResyncRestart
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-
-/* Default error-management setup */
-EXTERN(struct jpeg_error_mgr *) jpeg_std_error
- JPP((struct jpeg_error_mgr * err));
-
-/* Initialization of JPEG compression objects.
- * jpeg_create_compress() and jpeg_create_decompress() are the exported
- * names that applications should call. These expand to calls on
- * jpeg_CreateCompress and jpeg_CreateDecompress with additional information
- * passed for version mismatch checking.
- * NB: you must set up the error-manager BEFORE calling jpeg_create_xxx.
- */
-#define jpeg_create_compress(cinfo) \
- jpeg_CreateCompress((cinfo), JPEG_LIB_VERSION, \
- (size_t) sizeof(struct jpeg_compress_struct))
-#define jpeg_create_decompress(cinfo) \
- jpeg_CreateDecompress((cinfo), JPEG_LIB_VERSION, \
- (size_t) sizeof(struct jpeg_decompress_struct))
-EXTERN(void) jpeg_CreateCompress JPP((j_compress_ptr cinfo,
- int version, size_t structsize));
-EXTERN(void) jpeg_CreateDecompress JPP((j_decompress_ptr cinfo,
- int version, size_t structsize));
-/* Destruction of JPEG compression objects */
-EXTERN(void) jpeg_destroy_compress JPP((j_compress_ptr cinfo));
-EXTERN(void) jpeg_destroy_decompress JPP((j_decompress_ptr cinfo));
-
-#if 0
-/* Standard data source and destination managers: stdio streams. */
-/* Caller is responsible for opening the file before and closing after. */
-EXTERN(void) jpeg_stdio_dest JPP((j_compress_ptr cinfo, FXSYS_FILE * outfile));
-EXTERN(void) jpeg_stdio_src JPP((j_decompress_ptr cinfo, FXSYS_FILE * infile));
-#endif
-
-/* Default parameter setup for compression */
-EXTERN(void) jpeg_set_defaults JPP((j_compress_ptr cinfo));
-/* Compression parameter setup aids */
-EXTERN(void) jpeg_set_colorspace JPP((j_compress_ptr cinfo,
- J_COLOR_SPACE colorspace));
-EXTERN(void) jpeg_default_colorspace JPP((j_compress_ptr cinfo));
-EXTERN(void) jpeg_set_quality JPP((j_compress_ptr cinfo, int quality,
- boolean force_baseline));
-EXTERN(void) jpeg_set_linear_quality JPP((j_compress_ptr cinfo,
- int scale_factor,
- boolean force_baseline));
-EXTERN(void) jpeg_add_quant_table JPP((j_compress_ptr cinfo, int which_tbl,
- const unsigned int *basic_table,
- int scale_factor,
- boolean force_baseline));
-EXTERN(int) jpeg_quality_scaling JPP((int quality));
-EXTERN(void) jpeg_simple_progression JPP((j_compress_ptr cinfo));
-EXTERN(void) jpeg_suppress_tables JPP((j_compress_ptr cinfo,
- boolean suppress));
-EXTERN(JQUANT_TBL *) jpeg_alloc_quant_table JPP((j_common_ptr cinfo));
-EXTERN(JHUFF_TBL *) jpeg_alloc_huff_table JPP((j_common_ptr cinfo));
-
-/* Main entry points for compression */
-EXTERN(void) jpeg_start_compress JPP((j_compress_ptr cinfo,
- boolean write_all_tables));
-EXTERN(JDIMENSION) jpeg_write_scanlines JPP((j_compress_ptr cinfo,
- JSAMPARRAY scanlines,
- JDIMENSION num_lines));
-EXTERN(void) jpeg_finish_compress JPP((j_compress_ptr cinfo));
-
-/* Replaces jpeg_write_scanlines when writing raw downsampled data. */
-EXTERN(JDIMENSION) jpeg_write_raw_data JPP((j_compress_ptr cinfo,
- JSAMPIMAGE data,
- JDIMENSION num_lines));
-
-/* Write a special marker. See libjpeg.doc concerning safe usage. */
-EXTERN(void) jpeg_write_marker
- JPP((j_compress_ptr cinfo, int marker,
- const JOCTET * dataptr, unsigned int datalen));
-/* Same, but piecemeal. */
-EXTERN(void) jpeg_write_m_header
- JPP((j_compress_ptr cinfo, int marker, unsigned int datalen));
-EXTERN(void) jpeg_write_m_byte
- JPP((j_compress_ptr cinfo, int val));
-
-/* Alternate compression function: just write an abbreviated table file */
-EXTERN(void) jpeg_write_tables JPP((j_compress_ptr cinfo));
-
-/* Decompression startup: read start of JPEG datastream to see what's there */
-EXTERN(int) jpeg_read_header JPP((j_decompress_ptr cinfo,
- boolean require_image));
-/* Return value is one of: */
-#define JPEG_SUSPENDED 0 /* Suspended due to lack of input data */
-#define JPEG_HEADER_OK 1 /* Found valid image datastream */
-#define JPEG_HEADER_TABLES_ONLY 2 /* Found valid table-specs-only datastream */
-/* If you pass require_image = TRUE (normal case), you need not check for
- * a TABLES_ONLY return code; an abbreviated file will cause an error exit.
- * JPEG_SUSPENDED is only possible if you use a data source module that can
- * give a suspension return (the stdio source module doesn't).
- */
-
-/* Main entry points for decompression */
-EXTERN(boolean) jpeg_start_decompress JPP((j_decompress_ptr cinfo));
-EXTERN(JDIMENSION) jpeg_read_scanlines JPP((j_decompress_ptr cinfo,
- JSAMPARRAY scanlines,
- JDIMENSION max_lines));
-EXTERN(boolean) jpeg_finish_decompress JPP((j_decompress_ptr cinfo));
-
-/* Replaces jpeg_read_scanlines when reading raw downsampled data. */
-EXTERN(JDIMENSION) jpeg_read_raw_data JPP((j_decompress_ptr cinfo,
- JSAMPIMAGE data,
- JDIMENSION max_lines));
-
-/* Additional entry points for buffered-image mode. */
-EXTERN(boolean) jpeg_has_multiple_scans JPP((j_decompress_ptr cinfo));
-EXTERN(boolean) jpeg_start_output JPP((j_decompress_ptr cinfo,
- int scan_number));
-EXTERN(boolean) jpeg_finish_output JPP((j_decompress_ptr cinfo));
-EXTERN(boolean) jpeg_input_complete JPP((j_decompress_ptr cinfo));
-EXTERN(void) jpeg_new_colormap JPP((j_decompress_ptr cinfo));
-EXTERN(int) jpeg_consume_input JPP((j_decompress_ptr cinfo));
-/* Return value is one of: */
-/* #define JPEG_SUSPENDED 0 Suspended due to lack of input data */
-#define JPEG_REACHED_SOS 1 /* Reached start of new scan */
-#define JPEG_REACHED_EOI 2 /* Reached end of image */
-#define JPEG_ROW_COMPLETED 3 /* Completed one iMCU row */
-#define JPEG_SCAN_COMPLETED 4 /* Completed last iMCU row of a scan */
-
-/* Precalculate output dimensions for current decompression parameters. */
-EXTERN(void) jpeg_calc_output_dimensions JPP((j_decompress_ptr cinfo));
-
-/* Control saving of COM and APPn markers into marker_list. */
-EXTERN(void) jpeg_save_markers
- JPP((j_decompress_ptr cinfo, int marker_code,
- unsigned int length_limit));
-
-/* Install a special processing method for COM or APPn markers. */
-EXTERN(void) jpeg_set_marker_processor
- JPP((j_decompress_ptr cinfo, int marker_code,
- jpeg_marker_parser_method routine));
-
-/* Read or write raw DCT coefficients --- useful for lossless transcoding. */
-EXTERN(jvirt_barray_ptr *) jpeg_read_coefficients JPP((j_decompress_ptr cinfo));
-EXTERN(void) jpeg_write_coefficients JPP((j_compress_ptr cinfo,
- jvirt_barray_ptr * coef_arrays));
-EXTERN(void) jpeg_copy_critical_parameters JPP((j_decompress_ptr srcinfo,
- j_compress_ptr dstinfo));
-
-/* If you choose to abort compression or decompression before completing
- * jpeg_finish_(de)compress, then you need to clean up to release memory,
- * temporary files, etc. You can just call jpeg_destroy_(de)compress
- * if you're done with the JPEG object, but if you want to clean it up and
- * reuse it, call this:
- */
-EXTERN(void) jpeg_abort_compress JPP((j_compress_ptr cinfo));
-EXTERN(void) jpeg_abort_decompress JPP((j_decompress_ptr cinfo));
-
-/* Generic versions of jpeg_abort and jpeg_destroy that work on either
- * flavor of JPEG object. These may be more convenient in some places.
- */
-EXTERN(void) jpeg_abort JPP((j_common_ptr cinfo));
-EXTERN(void) jpeg_destroy JPP((j_common_ptr cinfo));
-
-/* Default restart-marker-resync procedure for use by data source modules */
-EXTERN(boolean) jpeg_resync_to_restart JPP((j_decompress_ptr cinfo,
- int desired));
-
-
-/* These marker codes are exported since applications and data source modules
- * are likely to want to use them.
- */
-
-#define JPEG_RST0 0xD0 /* RST0 marker code */
-#define JPEG_EOI 0xD9 /* EOI marker code */
-#define JPEG_APP0 0xE0 /* APP0 marker code */
-#define JPEG_COM 0xFE /* COM marker code */
-
-
-/* If we have a brain-damaged compiler that emits warnings (or worse, errors)
- * for structure definitions that are never filled in, keep it quiet by
- * supplying dummy definitions for the various substructures.
- */
-
-#ifdef INCOMPLETE_TYPES_BROKEN
-#ifndef JPEG_INTERNALS /* will be defined in jpegint.h */
-struct jvirt_sarray_control { long dummy; };
-struct jvirt_barray_control { long dummy; };
-struct jpeg_comp_master { long dummy; };
-struct jpeg_c_main_controller { long dummy; };
-struct jpeg_c_prep_controller { long dummy; };
-struct jpeg_c_coef_controller { long dummy; };
-struct jpeg_marker_writer { long dummy; };
-struct jpeg_color_converter { long dummy; };
-struct jpeg_downsampler { long dummy; };
-struct jpeg_forward_dct { long dummy; };
-struct jpeg_entropy_encoder { long dummy; };
-struct jpeg_decomp_master { long dummy; };
-struct jpeg_d_main_controller { long dummy; };
-struct jpeg_d_coef_controller { long dummy; };
-struct jpeg_d_post_controller { long dummy; };
-struct jpeg_input_controller { long dummy; };
-struct jpeg_marker_reader { long dummy; };
-struct jpeg_entropy_decoder { long dummy; };
-struct jpeg_inverse_dct { long dummy; };
-struct jpeg_upsampler { long dummy; };
-struct jpeg_color_deconverter { long dummy; };
-struct jpeg_color_quantizer { long dummy; };
-#endif /* JPEG_INTERNALS */
-#endif /* INCOMPLETE_TYPES_BROKEN */
-
-
-/*
- * The JPEG library modules define JPEG_INTERNALS before including this file.
- * The internal structure declarations are read only when that is true.
- * Applications using the library should not include jpegint.h, but may wish
- * to include jerror.h.
- */
-
-#ifdef JPEG_INTERNALS
-#include "jpegint.h" /* fetch private declarations */
-#include "jerror.h" /* fetch error codes too */
-#endif
-
-#endif /* JPEGLIB_H */
diff --git a/core/src/fxcodec/libjpeg/jversion.h b/core/src/fxcodec/libjpeg/jversion.h
deleted file mode 100644
index 6472c58d35..0000000000
--- a/core/src/fxcodec/libjpeg/jversion.h
+++ /dev/null
@@ -1,14 +0,0 @@
-/*
- * jversion.h
- *
- * Copyright (C) 1991-1998, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains software version identification.
- */
-
-
-#define JVERSION "6b 27-Mar-1998"
-
-#define JCOPYRIGHT "Copyright (C) 1998, Thomas G. Lane"
diff --git a/core/src/fxcodec/libjpeg/makefile b/core/src/fxcodec/libjpeg/makefile
deleted file mode 100644
index 777d83b15a..0000000000
--- a/core/src/fxcodec/libjpeg/makefile
+++ /dev/null
@@ -1,8 +0,0 @@
-sources = fpdfapi_jcapimin.c fpdfapi_jcapistd.c fpdfapi_jccoefct.c fpdfapi_jccolor.c fpdfapi_jcdctmgr.c fpdfapi_jchuff.c fpdfapi_jcinit.c fpdfapi_jcmainct.c fpdfapi_jcmarker.c fpdfapi_jcmaster.c \
- fpdfapi_jcomapi.c fpdfapi_jcparam.c fpdfapi_jcphuff.c fpdfapi_jcprepct.c fpdfapi_jcsample.c fpdfapi_jctrans.c fpdfapi_jdapimin.c fpdfapi_jdapistd.c fpdfapi_jdcoefct.c \
- fpdfapi_jdcolor.c fpdfapi_jddctmgr.c fpdfapi_jdhuff.c fpdfapi_jdinput.c fpdfapi_jdmainct.c fpdfapi_jdmarker.c fpdfapi_jdmaster.c fpdfapi_jdmerge.c fpdfapi_jdphuff.c fpdfapi_jdpostct.c fpdfapi_jdsample.c \
- fpdfapi_jdtrans.c fpdfapi_jerror.c fpdfapi_jfdctfst.c fpdfapi_jfdctint.c fpdfapi_jcapimin.c fpdfapi_jidctfst.c fpdfapi_jidctint.c fpdfapi_jidctred.c fpdfapi_jmemmgr.c \
- fpdfapi_jmemnobs.c fpdfapi_jutils.c
-armsources=$(sources)
-armsourcesc=$(sources)
-include ../../src/makefile
diff --git a/core/src/fxcodec/libjpeg/transupp.h b/core/src/fxcodec/libjpeg/transupp.h
deleted file mode 100644
index 5c2d32aff5..0000000000
--- a/core/src/fxcodec/libjpeg/transupp.h
+++ /dev/null
@@ -1,135 +0,0 @@
-/*
- * transupp.h
- *
- * Copyright (C) 1997, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains declarations for image transformation routines and
- * other utility code used by the jpegtran sample application. These are
- * NOT part of the core JPEG library. But we keep these routines separate
- * from jpegtran.c to ease the task of maintaining jpegtran-like programs
- * that have other user interfaces.
- *
- * NOTE: all the routines declared here have very specific requirements
- * about when they are to be executed during the reading and writing of the
- * source and destination files. See the comments in transupp.c, or see
- * jpegtran.c for an example of correct usage.
- */
-
-/* If you happen not to want the image transform support, disable it here */
-#ifndef TRANSFORMS_SUPPORTED
-#define TRANSFORMS_SUPPORTED 1 /* 0 disables transform code */
-#endif
-
-/* Short forms of external names for systems with brain-damaged linkers. */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jtransform_request_workspace jTrRequest
-#define jtransform_adjust_parameters jTrAdjust
-#define jtransform_execute_transformation jTrExec
-#define jcopy_markers_setup jCMrkSetup
-#define jcopy_markers_execute jCMrkExec
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-
-/*
- * Codes for supported types of image transformations.
- */
-
-typedef enum {
- JXFORM_NONE, /* no transformation */
- JXFORM_FLIP_H, /* horizontal flip */
- JXFORM_FLIP_V, /* vertical flip */
- JXFORM_TRANSPOSE, /* transpose across UL-to-LR axis */
- JXFORM_TRANSVERSE, /* transpose across UR-to-LL axis */
- JXFORM_ROT_90, /* 90-degree clockwise rotation */
- JXFORM_ROT_180, /* 180-degree rotation */
- JXFORM_ROT_270 /* 270-degree clockwise (or 90 ccw) */
-} JXFORM_CODE;
-
-/*
- * Although rotating and flipping data expressed as DCT coefficients is not
- * hard, there is an asymmetry in the JPEG format specification for images
- * whose dimensions aren't multiples of the iMCU size. The right and bottom
- * image edges are padded out to the next iMCU boundary with junk data; but
- * no padding is possible at the top and left edges. If we were to flip
- * the whole image including the pad data, then pad garbage would become
- * visible at the top and/or left, and real pixels would disappear into the
- * pad margins --- perhaps permanently, since encoders & decoders may not
- * bother to preserve DCT blocks that appear to be completely outside the
- * nominal image area. So, we have to exclude any partial iMCUs from the
- * basic transformation.
- *
- * Transpose is the only transformation that can handle partial iMCUs at the
- * right and bottom edges completely cleanly. flip_h can flip partial iMCUs
- * at the bottom, but leaves any partial iMCUs at the right edge untouched.
- * Similarly flip_v leaves any partial iMCUs at the bottom edge untouched.
- * The other transforms are defined as combinations of these basic transforms
- * and process edge blocks in a way that preserves the equivalence.
- *
- * The "trim" option causes untransformable partial iMCUs to be dropped;
- * this is not strictly lossless, but it usually gives the best-looking
- * result for odd-size images. Note that when this option is active,
- * the expected mathematical equivalences between the transforms may not hold.
- * (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim
- * followed by -rot 180 -trim trims both edges.)
- *
- * We also offer a "force to grayscale" option, which simply discards the
- * chrominance channels of a YCbCr image. This is lossless in the sense that
- * the luminance channel is preserved exactly. It's not the same kind of
- * thing as the rotate/flip transformations, but it's convenient to handle it
- * as part of this package, mainly because the transformation routines have to
- * be aware of the option to know how many components to work on.
- */
-
-typedef struct {
- /* Options: set by caller */
- JXFORM_CODE transform; /* image transform operator */
- boolean trim; /* if TRUE, trim partial MCUs as needed */
- boolean force_grayscale; /* if TRUE, convert color image to grayscale */
-
- /* Internal workspace: caller should not touch these */
- int num_components; /* # of components in workspace */
- jvirt_barray_ptr * workspace_coef_arrays; /* workspace for transformations */
-} jpeg_transform_info;
-
-
-#if TRANSFORMS_SUPPORTED
-
-/* Request any required workspace */
-EXTERN(void) jtransform_request_workspace
- JPP((j_decompress_ptr srcinfo, jpeg_transform_info *info));
-/* Adjust output image parameters */
-EXTERN(jvirt_barray_ptr *) jtransform_adjust_parameters
- JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
- jvirt_barray_ptr *src_coef_arrays,
- jpeg_transform_info *info));
-/* Execute the actual transformation, if any */
-EXTERN(void) jtransform_execute_transformation
- JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
- jvirt_barray_ptr *src_coef_arrays,
- jpeg_transform_info *info));
-
-#endif /* TRANSFORMS_SUPPORTED */
-
-
-/*
- * Support for copying optional markers from source to destination file.
- */
-
-typedef enum {
- JCOPYOPT_NONE, /* copy no optional markers */
- JCOPYOPT_COMMENTS, /* copy only comment (COM) markers */
- JCOPYOPT_ALL /* copy all optional markers */
-} JCOPY_OPTION;
-
-#define JCOPYOPT_DEFAULT JCOPYOPT_COMMENTS /* recommended default */
-
-/* Setup decompression object to save desired markers in memory */
-EXTERN(void) jcopy_markers_setup
- JPP((j_decompress_ptr srcinfo, JCOPY_OPTION option));
-/* Copy markers saved in the given source object to the destination object */
-EXTERN(void) jcopy_markers_execute
- JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
- JCOPY_OPTION option));