diff options
author | Bo Xu <bo_xu@foxitsoftware.com> | 2014-12-02 13:06:22 -0800 |
---|---|---|
committer | Bo Xu <bo_xu@foxitsoftware.com> | 2014-12-02 13:06:22 -0800 |
commit | 7504b3d87d6143661746d85c3c3e4052939b4e52 (patch) | |
tree | 3baa8695a001c3226719409b666db31c3153f039 /third_party/bigint/BigIntegerAlgorithms.cc | |
parent | 4643533ca3dabe945fd174caf892a3ccb6cf2fd6 (diff) | |
download | pdfium-7504b3d87d6143661746d85c3c3e4052939b4e52.tar.xz |
Initial check in of big integer library, v2010.04.30
R=tsepez@chromium.org
Review URL: https://codereview.chromium.org/773443004
Diffstat (limited to 'third_party/bigint/BigIntegerAlgorithms.cc')
-rw-r--r-- | third_party/bigint/BigIntegerAlgorithms.cc | 70 |
1 files changed, 70 insertions, 0 deletions
diff --git a/third_party/bigint/BigIntegerAlgorithms.cc b/third_party/bigint/BigIntegerAlgorithms.cc new file mode 100644 index 0000000000..7edebda76a --- /dev/null +++ b/third_party/bigint/BigIntegerAlgorithms.cc @@ -0,0 +1,70 @@ +#include "BigIntegerAlgorithms.hh" + +BigUnsigned gcd(BigUnsigned a, BigUnsigned b) { + BigUnsigned trash; + // Neat in-place alternating technique. + for (;;) { + if (b.isZero()) + return a; + a.divideWithRemainder(b, trash); + if (a.isZero()) + return b; + b.divideWithRemainder(a, trash); + } +} + +void extendedEuclidean(BigInteger m, BigInteger n, + BigInteger &g, BigInteger &r, BigInteger &s) { + if (&g == &r || &g == &s || &r == &s) + throw "BigInteger extendedEuclidean: Outputs are aliased"; + BigInteger r1(1), s1(0), r2(0), s2(1), q; + /* Invariants: + * r1*m(orig) + s1*n(orig) == m(current) + * r2*m(orig) + s2*n(orig) == n(current) */ + for (;;) { + if (n.isZero()) { + r = r1; s = s1; g = m; + return; + } + // Subtract q times the second invariant from the first invariant. + m.divideWithRemainder(n, q); + r1 -= q*r2; s1 -= q*s2; + + if (m.isZero()) { + r = r2; s = s2; g = n; + return; + } + // Subtract q times the first invariant from the second invariant. + n.divideWithRemainder(m, q); + r2 -= q*r1; s2 -= q*s1; + } +} + +BigUnsigned modinv(const BigInteger &x, const BigUnsigned &n) { + BigInteger g, r, s; + extendedEuclidean(x, n, g, r, s); + if (g == 1) + // r*x + s*n == 1, so r*x === 1 (mod n), so r is the answer. + return (r % n).getMagnitude(); // (r % n) will be nonnegative + else + throw "BigInteger modinv: x and n have a common factor"; +} + +BigUnsigned modexp(const BigInteger &base, const BigUnsigned &exponent, + const BigUnsigned &modulus) { + BigUnsigned ans = 1, base2 = (base % modulus).getMagnitude(); + BigUnsigned::Index i = exponent.bitLength(); + // For each bit of the exponent, most to least significant... + while (i > 0) { + i--; + // Square. + ans *= ans; + ans %= modulus; + // And multiply if the bit is a 1. + if (exponent.getBit(i)) { + ans *= base2; + ans %= modulus; + } + } + return ans; +} |