diff options
author | Chris Palmer <palmer@google.com> | 2014-06-20 16:30:49 -0700 |
---|---|---|
committer | Chris Palmer <palmer@google.com> | 2014-06-20 16:30:49 -0700 |
commit | d9713f05fdcecab8428d39034c6b84cd0bbd2920 (patch) | |
tree | 1bf7cf8f0aff9f917f4e7e0bec1dc51e974c9832 /third_party | |
parent | 63412bf0ec2f6bab77e60dddfb5fc65d0dd95a74 (diff) | |
download | pdfium-d9713f05fdcecab8428d39034c6b84cd0bbd2920.tar.xz |
Import Chromium base/numerics to resolve integer overflow.
We'll use this for integer overflows going forward.
BUG=382606
R=bo_xu@foxitsoftware.com, jschuh@chromium.org
Review URL: https://codereview.chromium.org/341533007
Diffstat (limited to 'third_party')
-rw-r--r-- | third_party/logging.h | 18 | ||||
-rw-r--r-- | third_party/macros.h | 87 | ||||
-rw-r--r-- | third_party/numerics/OWNERS | 3 | ||||
-rw-r--r-- | third_party/numerics/safe_conversions.h | 64 | ||||
-rw-r--r-- | third_party/numerics/safe_conversions_impl.h | 217 | ||||
-rw-r--r-- | third_party/numerics/safe_math.h | 271 | ||||
-rw-r--r-- | third_party/numerics/safe_math_impl.h | 502 | ||||
-rw-r--r-- | third_party/template_util.h | 33 |
8 files changed, 1195 insertions, 0 deletions
diff --git a/third_party/logging.h b/third_party/logging.h new file mode 100644 index 0000000000..3629e84d4a --- /dev/null +++ b/third_party/logging.h @@ -0,0 +1,18 @@ +// Copyright (c) 2014 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef BASE_LOGGING_H_ +#define BASE_LOGGING_H_ + +#include <stdlib.h> + +#define CHECK(condition) \ + if (!(condition)) { \ + abort(); \ + *(reinterpret_cast<volatile char*>(NULL) + 42) = 0x42; \ + } + +#define NOTREACHED() abort() + +#endif // BASE_LOGGING_H_ diff --git a/third_party/macros.h b/third_party/macros.h new file mode 100644 index 0000000000..93c44857a9 --- /dev/null +++ b/third_party/macros.h @@ -0,0 +1,87 @@ +// Copyright 2014 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +// This file contains macros and macro-like constructs (e.g., templates) that +// are commonly used throughout Chromium source. (It may also contain things +// that are closely related to things that are commonly used that belong in this +// file.) + +#ifndef BASE_MACROS_H_ +#define BASE_MACROS_H_ + +// The COMPILE_ASSERT macro can be used to verify that a compile time +// expression is true. For example, you could use it to verify the +// size of a static array: +// +// COMPILE_ASSERT(ARRAYSIZE_UNSAFE(content_type_names) == CONTENT_NUM_TYPES, +// content_type_names_incorrect_size); +// +// or to make sure a struct is smaller than a certain size: +// +// COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large); +// +// The second argument to the macro is the name of the variable. If +// the expression is false, most compilers will issue a warning/error +// containing the name of the variable. + +#undef COMPILE_ASSERT + +#if __cplusplus >= 201103L + +// Under C++11, just use static_assert. +#define COMPILE_ASSERT(expr, msg) static_assert(expr, #msg) + +#else + +template <bool> +struct CompileAssert { +}; + +#define COMPILE_ASSERT(expr, msg) \ + typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1] ALLOW_UNUSED + +// Implementation details of COMPILE_ASSERT: +// +// - COMPILE_ASSERT works by defining an array type that has -1 +// elements (and thus is invalid) when the expression is false. +// +// - The simpler definition +// +// #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1] +// +// does not work, as gcc supports variable-length arrays whose sizes +// are determined at run-time (this is gcc's extension and not part +// of the C++ standard). As a result, gcc fails to reject the +// following code with the simple definition: +// +// int foo; +// COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is +// // not a compile-time constant. +// +// - By using the type CompileAssert<(bool(expr))>, we ensures that +// expr is a compile-time constant. (Template arguments must be +// determined at compile-time.) +// +// - The outer parentheses in CompileAssert<(bool(expr))> are necessary +// to work around a bug in gcc 3.4.4 and 4.0.1. If we had written +// +// CompileAssert<bool(expr)> +// +// instead, these compilers will refuse to compile +// +// COMPILE_ASSERT(5 > 0, some_message); +// +// (They seem to think the ">" in "5 > 0" marks the end of the +// template argument list.) +// +// - The array size is (bool(expr) ? 1 : -1), instead of simply +// +// ((expr) ? 1 : -1). +// +// This is to avoid running into a bug in MS VC 7.1, which +// causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1. + +#endif + +#endif // BASE_MACROS_H_ diff --git a/third_party/numerics/OWNERS b/third_party/numerics/OWNERS new file mode 100644 index 0000000000..f7816afe81 --- /dev/null +++ b/third_party/numerics/OWNERS @@ -0,0 +1,3 @@ +jschuh@chromium.org +tsepez@chromium.org +palmer@chromium.org diff --git a/third_party/numerics/safe_conversions.h b/third_party/numerics/safe_conversions.h new file mode 100644 index 0000000000..681dc0a9cc --- /dev/null +++ b/third_party/numerics/safe_conversions.h @@ -0,0 +1,64 @@ +// Copyright 2014 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef BASE_SAFE_CONVERSIONS_H_ +#define BASE_SAFE_CONVERSIONS_H_ + +#include <limits> + +#include "../logging.h" +#include "safe_conversions_impl.h" + +namespace base { + +// Convenience function that returns true if the supplied value is in range +// for the destination type. +template <typename Dst, typename Src> +inline bool IsValueInRangeForNumericType(Src value) { + return internal::DstRangeRelationToSrcRange<Dst>(value) == + internal::RANGE_VALID; +} + +// checked_cast<> is analogous to static_cast<> for numeric types, +// except that it CHECKs that the specified numeric conversion will not +// overflow or underflow. NaN source will always trigger a CHECK. +template <typename Dst, typename Src> +inline Dst checked_cast(Src value) { + CHECK(IsValueInRangeForNumericType<Dst>(value)); + return static_cast<Dst>(value); +} + +// saturated_cast<> is analogous to static_cast<> for numeric types, except +// that the specified numeric conversion will saturate rather than overflow or +// underflow. NaN assignment to an integral will trigger a CHECK condition. +template <typename Dst, typename Src> +inline Dst saturated_cast(Src value) { + // Optimization for floating point values, which already saturate. + if (std::numeric_limits<Dst>::is_iec559) + return static_cast<Dst>(value); + + switch (internal::DstRangeRelationToSrcRange<Dst>(value)) { + case internal::RANGE_VALID: + return static_cast<Dst>(value); + + case internal::RANGE_UNDERFLOW: + return std::numeric_limits<Dst>::min(); + + case internal::RANGE_OVERFLOW: + return std::numeric_limits<Dst>::max(); + + // Should fail only on attempting to assign NaN to a saturated integer. + case internal::RANGE_INVALID: + CHECK(false); + return std::numeric_limits<Dst>::max(); + } + + NOTREACHED(); + return static_cast<Dst>(value); +} + +} // namespace base + +#endif // BASE_SAFE_CONVERSIONS_H_ + diff --git a/third_party/numerics/safe_conversions_impl.h b/third_party/numerics/safe_conversions_impl.h new file mode 100644 index 0000000000..a357e518d1 --- /dev/null +++ b/third_party/numerics/safe_conversions_impl.h @@ -0,0 +1,217 @@ +// Copyright 2014 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef BASE_SAFE_CONVERSIONS_IMPL_H_ +#define BASE_SAFE_CONVERSIONS_IMPL_H_ + +#include <limits> + +#include "../macros.h" +#include "../template_util.h" + +namespace base { +namespace internal { + +// The std library doesn't provide a binary max_exponent for integers, however +// we can compute one by adding one to the number of non-sign bits. This allows +// for accurate range comparisons between floating point and integer types. +template <typename NumericType> +struct MaxExponent { + static const int value = std::numeric_limits<NumericType>::is_iec559 + ? std::numeric_limits<NumericType>::max_exponent + : (sizeof(NumericType) * 8 + 1 - + std::numeric_limits<NumericType>::is_signed); +}; + +enum IntegerRepresentation { + INTEGER_REPRESENTATION_UNSIGNED, + INTEGER_REPRESENTATION_SIGNED +}; + +// A range for a given nunmeric Src type is contained for a given numeric Dst +// type if both numeric_limits<Src>::max() <= numeric_limits<Dst>::max() and +// numeric_limits<Src>::min() >= numeric_limits<Dst>::min() are true. +// We implement this as template specializations rather than simple static +// comparisons to ensure type correctness in our comparisons. +enum NumericRangeRepresentation { + NUMERIC_RANGE_NOT_CONTAINED, + NUMERIC_RANGE_CONTAINED +}; + +// Helper templates to statically determine if our destination type can contain +// maximum and minimum values represented by the source type. + +template < + typename Dst, + typename Src, + IntegerRepresentation DstSign = std::numeric_limits<Dst>::is_signed + ? INTEGER_REPRESENTATION_SIGNED + : INTEGER_REPRESENTATION_UNSIGNED, + IntegerRepresentation SrcSign = + std::numeric_limits<Src>::is_signed + ? INTEGER_REPRESENTATION_SIGNED + : INTEGER_REPRESENTATION_UNSIGNED > +struct StaticDstRangeRelationToSrcRange; + +// Same sign: Dst is guaranteed to contain Src only if its range is equal or +// larger. +template <typename Dst, typename Src, IntegerRepresentation Sign> +struct StaticDstRangeRelationToSrcRange<Dst, Src, Sign, Sign> { + static const NumericRangeRepresentation value = + MaxExponent<Dst>::value >= MaxExponent<Src>::value + ? NUMERIC_RANGE_CONTAINED + : NUMERIC_RANGE_NOT_CONTAINED; +}; + +// Unsigned to signed: Dst is guaranteed to contain source only if its range is +// larger. +template <typename Dst, typename Src> +struct StaticDstRangeRelationToSrcRange<Dst, + Src, + INTEGER_REPRESENTATION_SIGNED, + INTEGER_REPRESENTATION_UNSIGNED> { + static const NumericRangeRepresentation value = + MaxExponent<Dst>::value > MaxExponent<Src>::value + ? NUMERIC_RANGE_CONTAINED + : NUMERIC_RANGE_NOT_CONTAINED; +}; + +// Signed to unsigned: Dst cannot be statically determined to contain Src. +template <typename Dst, typename Src> +struct StaticDstRangeRelationToSrcRange<Dst, + Src, + INTEGER_REPRESENTATION_UNSIGNED, + INTEGER_REPRESENTATION_SIGNED> { + static const NumericRangeRepresentation value = NUMERIC_RANGE_NOT_CONTAINED; +}; + +enum RangeConstraint { + RANGE_VALID = 0x0, // Value can be represented by the destination type. + RANGE_UNDERFLOW = 0x1, // Value would overflow. + RANGE_OVERFLOW = 0x2, // Value would underflow. + RANGE_INVALID = RANGE_UNDERFLOW | RANGE_OVERFLOW // Invalid (i.e. NaN). +}; + +// Helper function for coercing an int back to a RangeContraint. +inline RangeConstraint GetRangeConstraint(int integer_range_constraint) { + assert(integer_range_constraint >= RANGE_VALID && + integer_range_constraint <= RANGE_INVALID); + return static_cast<RangeConstraint>(integer_range_constraint); +} + +// This function creates a RangeConstraint from an upper and lower bound +// check by taking advantage of the fact that only NaN can be out of range in +// both directions at once. +inline RangeConstraint GetRangeConstraint(bool is_in_upper_bound, + bool is_in_lower_bound) { + return GetRangeConstraint((is_in_upper_bound ? 0 : RANGE_OVERFLOW) | + (is_in_lower_bound ? 0 : RANGE_UNDERFLOW)); +} + +template < + typename Dst, + typename Src, + IntegerRepresentation DstSign = std::numeric_limits<Dst>::is_signed + ? INTEGER_REPRESENTATION_SIGNED + : INTEGER_REPRESENTATION_UNSIGNED, + IntegerRepresentation SrcSign = std::numeric_limits<Src>::is_signed + ? INTEGER_REPRESENTATION_SIGNED + : INTEGER_REPRESENTATION_UNSIGNED, + NumericRangeRepresentation DstRange = + StaticDstRangeRelationToSrcRange<Dst, Src>::value > +struct DstRangeRelationToSrcRangeImpl; + +// The following templates are for ranges that must be verified at runtime. We +// split it into checks based on signedness to avoid confusing casts and +// compiler warnings on signed an unsigned comparisons. + +// Dst range is statically determined to contain Src: Nothing to check. +template <typename Dst, + typename Src, + IntegerRepresentation DstSign, + IntegerRepresentation SrcSign> +struct DstRangeRelationToSrcRangeImpl<Dst, + Src, + DstSign, + SrcSign, + NUMERIC_RANGE_CONTAINED> { + static RangeConstraint Check(Src value) { return RANGE_VALID; } +}; + +// Signed to signed narrowing: Both the upper and lower boundaries may be +// exceeded. +template <typename Dst, typename Src> +struct DstRangeRelationToSrcRangeImpl<Dst, + Src, + INTEGER_REPRESENTATION_SIGNED, + INTEGER_REPRESENTATION_SIGNED, + NUMERIC_RANGE_NOT_CONTAINED> { + static RangeConstraint Check(Src value) { + return std::numeric_limits<Dst>::is_iec559 + ? GetRangeConstraint(value <= std::numeric_limits<Dst>::max(), + value >= -std::numeric_limits<Dst>::max()) + : GetRangeConstraint(value <= std::numeric_limits<Dst>::max(), + value >= std::numeric_limits<Dst>::min()); + } +}; + +// Unsigned to unsigned narrowing: Only the upper boundary can be exceeded. +template <typename Dst, typename Src> +struct DstRangeRelationToSrcRangeImpl<Dst, + Src, + INTEGER_REPRESENTATION_UNSIGNED, + INTEGER_REPRESENTATION_UNSIGNED, + NUMERIC_RANGE_NOT_CONTAINED> { + static RangeConstraint Check(Src value) { + return GetRangeConstraint(value <= std::numeric_limits<Dst>::max(), true); + } +}; + +// Unsigned to signed: The upper boundary may be exceeded. +template <typename Dst, typename Src> +struct DstRangeRelationToSrcRangeImpl<Dst, + Src, + INTEGER_REPRESENTATION_SIGNED, + INTEGER_REPRESENTATION_UNSIGNED, + NUMERIC_RANGE_NOT_CONTAINED> { + static RangeConstraint Check(Src value) { + return sizeof(Dst) > sizeof(Src) + ? RANGE_VALID + : GetRangeConstraint( + value <= static_cast<Src>(std::numeric_limits<Dst>::max()), + true); + } +}; + +// Signed to unsigned: The upper boundary may be exceeded for a narrower Dst, +// and any negative value exceeds the lower boundary. +template <typename Dst, typename Src> +struct DstRangeRelationToSrcRangeImpl<Dst, + Src, + INTEGER_REPRESENTATION_UNSIGNED, + INTEGER_REPRESENTATION_SIGNED, + NUMERIC_RANGE_NOT_CONTAINED> { + static RangeConstraint Check(Src value) { + return (MaxExponent<Dst>::value >= MaxExponent<Src>::value) + ? GetRangeConstraint(true, value >= static_cast<Src>(0)) + : GetRangeConstraint( + value <= static_cast<Src>(std::numeric_limits<Dst>::max()), + value >= static_cast<Src>(0)); + } +}; + +template <typename Dst, typename Src> +inline RangeConstraint DstRangeRelationToSrcRange(Src value) { + COMPILE_ASSERT(std::numeric_limits<Src>::is_specialized, + argument_must_be_numeric); + COMPILE_ASSERT(std::numeric_limits<Dst>::is_specialized, + result_must_be_numeric); + return DstRangeRelationToSrcRangeImpl<Dst, Src>::Check(value); +} + +} // namespace internal +} // namespace base + +#endif // BASE_SAFE_CONVERSIONS_IMPL_H_ + diff --git a/third_party/numerics/safe_math.h b/third_party/numerics/safe_math.h new file mode 100644 index 0000000000..4b38ff2b1f --- /dev/null +++ b/third_party/numerics/safe_math.h @@ -0,0 +1,271 @@ +// Copyright 2014 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef BASE_SAFE_MATH_H_ +#define BASE_SAFE_MATH_H_ + +#include "safe_math_impl.h" + +namespace base { + +namespace internal { + +// CheckedNumeric implements all the logic and operators for detecting integer +// boundary conditions such as overflow, underflow, and invalid conversions. +// The CheckedNumeric type implicitly converts from floating point and integer +// data types, and contains overloads for basic arithmetic operations (i.e.: +, +// -, *, /, %). +// +// The following methods convert from CheckedNumeric to standard numeric values: +// IsValid() - Returns true if the underlying numeric value is valid (i.e. has +// has not wrapped and is not the result of an invalid conversion). +// ValueOrDie() - Returns the underlying value. If the state is not valid this +// call will crash on a CHECK. +// ValueOrDefault() - Returns the current value, or the supplied default if the +// state is not valid. +// ValueFloating() - Returns the underlying floating point value (valid only +// only for floating point CheckedNumeric types). +// +// Bitwise operations are explicitly not supported, because correct +// handling of some cases (e.g. sign manipulation) is ambiguous. Comparison +// operations are explicitly not supported because they could result in a crash +// on a CHECK condition. You should use patterns like the following for these +// operations: +// Bitwise operation: +// CheckedNumeric<int> checked_int = untrusted_input_value; +// int x = checked_int.ValueOrDefault(0) | kFlagValues; +// Comparison: +// CheckedNumeric<size_t> checked_size; +// CheckedNumeric<int> checked_size = untrusted_input_value; +// checked_size = checked_size + HEADER LENGTH; +// if (checked_size.IsValid() && checked_size.ValueOrDie() < buffer_size) +// Do stuff... +template <typename T> +class CheckedNumeric { + public: + typedef T type; + + CheckedNumeric() {} + + // Copy constructor. + template <typename Src> + CheckedNumeric(const CheckedNumeric<Src>& rhs) + : state_(rhs.ValueUnsafe(), rhs.validity()) {} + + template <typename Src> + CheckedNumeric(Src value, RangeConstraint validity) + : state_(value, validity) {} + + // This is not an explicit constructor because we implicitly upgrade regular + // numerics to CheckedNumerics to make them easier to use. + template <typename Src> + CheckedNumeric(Src value) + : state_(value) { + COMPILE_ASSERT(std::numeric_limits<Src>::is_specialized, + argument_must_be_numeric); + } + + // IsValid() is the public API to test if a CheckedNumeric is currently valid. + bool IsValid() const { return validity() == RANGE_VALID; } + + // ValueOrDie() The primary accessor for the underlying value. If the current + // state is not valid it will CHECK and crash. + T ValueOrDie() const { + CHECK(IsValid()); + return state_.value(); + } + + // ValueOrDefault(T default_value) A convenience method that returns the + // current value if the state is valid, and the supplied default_value for + // any other state. + T ValueOrDefault(T default_value) const { + return IsValid() ? state_.value() : default_value; + } + + // ValueFloating() - Since floating point values include their validity state, + // we provide an easy method for extracting them directly, without a risk of + // crashing on a CHECK. + T ValueFloating() const { + COMPILE_ASSERT(std::numeric_limits<T>::is_iec559, argument_must_be_float); + return CheckedNumeric<T>::cast(*this).ValueUnsafe(); + } + + // validity() - DO NOT USE THIS IN EXTERNAL CODE - It is public right now for + // tests and to avoid a big matrix of friend operator overloads. But the + // values it returns are likely to change in the future. + // Returns: current validity state (i.e. valid, overflow, underflow, nan). + // TODO(jschuh): crbug.com/332611 Figure out and implement semantics for + // saturation/wrapping so we can expose this state consistently and implement + // saturated arithmetic. + RangeConstraint validity() const { return state_.validity(); } + + // ValueUnsafe() - DO NOT USE THIS IN EXTERNAL CODE - It is public right now + // for tests and to avoid a big matrix of friend operator overloads. But the + // values it returns are likely to change in the future. + // Returns: the raw numeric value, regardless of the current state. + // TODO(jschuh): crbug.com/332611 Figure out and implement semantics for + // saturation/wrapping so we can expose this state consistently and implement + // saturated arithmetic. + T ValueUnsafe() const { return state_.value(); } + + // Prototypes for the supported arithmetic operator overloads. + template <typename Src> CheckedNumeric& operator+=(Src rhs); + template <typename Src> CheckedNumeric& operator-=(Src rhs); + template <typename Src> CheckedNumeric& operator*=(Src rhs); + template <typename Src> CheckedNumeric& operator/=(Src rhs); + template <typename Src> CheckedNumeric& operator%=(Src rhs); + + CheckedNumeric operator-() const { + RangeConstraint validity; + T value = CheckedNeg(state_.value(), &validity); + // Negation is always valid for floating point. + if (std::numeric_limits<T>::is_iec559) + return CheckedNumeric<T>(value); + + validity = GetRangeConstraint(state_.validity() | validity); + return CheckedNumeric<T>(value, validity); + } + + CheckedNumeric Abs() const { + RangeConstraint validity; + T value = CheckedAbs(state_.value(), &validity); + // Absolute value is always valid for floating point. + if (std::numeric_limits<T>::is_iec559) + return CheckedNumeric<T>(value); + + validity = GetRangeConstraint(state_.validity() | validity); + return CheckedNumeric<T>(value, validity); + } + + CheckedNumeric& operator++() { + *this += 1; + return *this; + } + + CheckedNumeric operator++(int) { + CheckedNumeric value = *this; + *this += 1; + return value; + } + + CheckedNumeric& operator--() { + *this -= 1; + return *this; + } + + CheckedNumeric operator--(int) { + CheckedNumeric value = *this; + *this -= 1; + return value; + } + + // These static methods behave like a convenience cast operator targeting + // the desired CheckedNumeric type. As an optimization, a reference is + // returned when Src is the same type as T. + template <typename Src> + static CheckedNumeric<T> cast( + Src u, + typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type = + 0) { + return u; + } + + template <typename Src> + static CheckedNumeric<T> cast( + const CheckedNumeric<Src>& u, + typename enable_if<!is_same<Src, T>::value, int>::type = 0) { + return u; + } + + static const CheckedNumeric<T>& cast(const CheckedNumeric<T>& u) { return u; } + + private: + CheckedNumericState<T> state_; +}; + +// This is the boilerplate for the standard arithmetic operator overloads. A +// macro isn't the prettiest solution, but it beats rewriting these five times. +// Some details worth noting are: +// * We apply the standard arithmetic promotions. +// * We skip range checks for floating points. +// * We skip range checks for destination integers with sufficient range. +// TODO(jschuh): extract these out into templates. +#define BASE_NUMERIC_ARITHMETIC_OPERATORS(NAME, OP, COMPOUND_OP) \ + /* Binary arithmetic operator for CheckedNumerics of the same type. */ \ + template <typename T> \ + CheckedNumeric<typename ArithmeticPromotion<T>::type> operator OP( \ + const CheckedNumeric<T>& lhs, const CheckedNumeric<T>& rhs) { \ + typedef typename ArithmeticPromotion<T>::type Promotion; \ + /* Floating point always takes the fast path */ \ + if (std::numeric_limits<T>::is_iec559) \ + return CheckedNumeric<T>(lhs.ValueUnsafe() OP rhs.ValueUnsafe()); \ + if (IsIntegerArithmeticSafe<Promotion, T, T>::value) \ + return CheckedNumeric<Promotion>( \ + lhs.ValueUnsafe() OP rhs.ValueUnsafe(), \ + GetRangeConstraint(rhs.validity() | lhs.validity())); \ + RangeConstraint validity = RANGE_VALID; \ + T result = Checked##NAME(static_cast<Promotion>(lhs.ValueUnsafe()), \ + static_cast<Promotion>(rhs.ValueUnsafe()), \ + &validity); \ + return CheckedNumeric<Promotion>( \ + result, \ + GetRangeConstraint(validity | lhs.validity() | rhs.validity())); \ + } \ + /* Assignment arithmetic operator implementation from CheckedNumeric. */ \ + template <typename T> \ + template <typename Src> \ + CheckedNumeric<T>& CheckedNumeric<T>::operator COMPOUND_OP(Src rhs) { \ + *this = CheckedNumeric<T>::cast(*this) OP CheckedNumeric<Src>::cast(rhs); \ + return *this; \ + } \ + /* Binary arithmetic operator for CheckedNumeric of different type. */ \ + template <typename T, typename Src> \ + CheckedNumeric<typename ArithmeticPromotion<T, Src>::type> operator OP( \ + const CheckedNumeric<Src>& lhs, const CheckedNumeric<T>& rhs) { \ + typedef typename ArithmeticPromotion<T, Src>::type Promotion; \ + if (IsIntegerArithmeticSafe<Promotion, T, Src>::value) \ + return CheckedNumeric<Promotion>( \ + lhs.ValueUnsafe() OP rhs.ValueUnsafe(), \ + GetRangeConstraint(rhs.validity() | lhs.validity())); \ + return CheckedNumeric<Promotion>::cast(lhs) \ + OP CheckedNumeric<Promotion>::cast(rhs); \ + } \ + /* Binary arithmetic operator for left CheckedNumeric and right numeric. */ \ + template <typename T, typename Src> \ + CheckedNumeric<typename ArithmeticPromotion<T, Src>::type> operator OP( \ + const CheckedNumeric<T>& lhs, Src rhs) { \ + typedef typename ArithmeticPromotion<T, Src>::type Promotion; \ + if (IsIntegerArithmeticSafe<Promotion, T, Src>::value) \ + return CheckedNumeric<Promotion>(lhs.ValueUnsafe() OP rhs, \ + lhs.validity()); \ + return CheckedNumeric<Promotion>::cast(lhs) \ + OP CheckedNumeric<Promotion>::cast(rhs); \ + } \ + /* Binary arithmetic operator for right numeric and left CheckedNumeric. */ \ + template <typename T, typename Src> \ + CheckedNumeric<typename ArithmeticPromotion<T, Src>::type> operator OP( \ + Src lhs, const CheckedNumeric<T>& rhs) { \ + typedef typename ArithmeticPromotion<T, Src>::type Promotion; \ + if (IsIntegerArithmeticSafe<Promotion, T, Src>::value) \ + return CheckedNumeric<Promotion>(lhs OP rhs.ValueUnsafe(), \ + rhs.validity()); \ + return CheckedNumeric<Promotion>::cast(lhs) \ + OP CheckedNumeric<Promotion>::cast(rhs); \ + } + +BASE_NUMERIC_ARITHMETIC_OPERATORS(Add, +, += ) +BASE_NUMERIC_ARITHMETIC_OPERATORS(Sub, -, -= ) +BASE_NUMERIC_ARITHMETIC_OPERATORS(Mul, *, *= ) +BASE_NUMERIC_ARITHMETIC_OPERATORS(Div, /, /= ) +BASE_NUMERIC_ARITHMETIC_OPERATORS(Mod, %, %= ) + +#undef BASE_NUMERIC_ARITHMETIC_OPERATORS + +} // namespace internal + +using internal::CheckedNumeric; + +} // namespace base + +#endif // BASE_SAFE_MATH_H_ diff --git a/third_party/numerics/safe_math_impl.h b/third_party/numerics/safe_math_impl.h new file mode 100644 index 0000000000..4bf59e64e0 --- /dev/null +++ b/third_party/numerics/safe_math_impl.h @@ -0,0 +1,502 @@ +// Copyright 2014 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef SAFE_MATH_IMPL_H_ +#define SAFE_MATH_IMPL_H_ + +#include <stdint.h> + +#include <cmath> +#include <cstdlib> +#include <limits> + +#include "../macros.h" +#include "../template_util.h" +#include "safe_conversions.h" + +namespace base { +namespace internal { + +// Everything from here up to the floating point operations is portable C++, +// but it may not be fast. This code could be split based on +// platform/architecture and replaced with potentially faster implementations. + +// Integer promotion templates used by the portable checked integer arithmetic. +template <size_t Size, bool IsSigned> +struct IntegerForSizeAndSign; +template <> +struct IntegerForSizeAndSign<1, true> { + typedef int8_t type; +}; +template <> +struct IntegerForSizeAndSign<1, false> { + typedef uint8_t type; +}; +template <> +struct IntegerForSizeAndSign<2, true> { + typedef int16_t type; +}; +template <> +struct IntegerForSizeAndSign<2, false> { + typedef uint16_t type; +}; +template <> +struct IntegerForSizeAndSign<4, true> { + typedef int32_t type; +}; +template <> +struct IntegerForSizeAndSign<4, false> { + typedef uint32_t type; +}; +template <> +struct IntegerForSizeAndSign<8, true> { + typedef int64_t type; +}; +template <> +struct IntegerForSizeAndSign<8, false> { + typedef uint64_t type; +}; + +// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to +// support 128-bit math, then the ArithmeticPromotion template below will need +// to be updated (or more likely replaced with a decltype expression). + +template <typename Integer> +struct UnsignedIntegerForSize { + typedef typename enable_if< + std::numeric_limits<Integer>::is_integer, + typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type; +}; + +template <typename Integer> +struct SignedIntegerForSize { + typedef typename enable_if< + std::numeric_limits<Integer>::is_integer, + typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type; +}; + +template <typename Integer> +struct TwiceWiderInteger { + typedef typename enable_if< + std::numeric_limits<Integer>::is_integer, + typename IntegerForSizeAndSign< + sizeof(Integer) * 2, + std::numeric_limits<Integer>::is_signed>::type>::type type; +}; + +template <typename Integer> +struct PositionOfSignBit { + static const typename enable_if<std::numeric_limits<Integer>::is_integer, + size_t>::type value = 8 * sizeof(Integer) - 1; +}; + +// Helper templates for integer manipulations. + +template <typename T> +bool HasSignBit(T x) { + // Cast to unsigned since right shift on signed is undefined. + return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >> + PositionOfSignBit<T>::value); +} + +// This wrapper undoes the standard integer promotions. +template <typename T> +T BinaryComplement(T x) { + return ~x; +} + +// Here are the actual portable checked integer math implementations. +// TODO(jschuh): Break this code out from the enable_if pattern and find a clean +// way to coalesce things into the CheckedNumericState specializations below. + +template <typename T> +typename enable_if<std::numeric_limits<T>::is_integer, T>::type +CheckedAdd(T x, T y, RangeConstraint* validity) { + // Since the value of x+y is undefined if we have a signed type, we compute + // it using the unsigned type of the same size. + typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; + UnsignedDst ux = static_cast<UnsignedDst>(x); + UnsignedDst uy = static_cast<UnsignedDst>(y); + UnsignedDst uresult = ux + uy; + // Addition is valid if the sign of (x + y) is equal to either that of x or + // that of y. + if (std::numeric_limits<T>::is_signed) { + if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy)))) + *validity = RANGE_VALID; + else // Direction of wrap is inverse of result sign. + *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; + + } else { // Unsigned is either valid or overflow. + *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW; + } + return static_cast<T>(uresult); +} + +template <typename T> +typename enable_if<std::numeric_limits<T>::is_integer, T>::type +CheckedSub(T x, T y, RangeConstraint* validity) { + // Since the value of x+y is undefined if we have a signed type, we compute + // it using the unsigned type of the same size. + typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; + UnsignedDst ux = static_cast<UnsignedDst>(x); + UnsignedDst uy = static_cast<UnsignedDst>(y); + UnsignedDst uresult = ux - uy; + // Subtraction is valid if either x and y have same sign, or (x-y) and x have + // the same sign. + if (std::numeric_limits<T>::is_signed) { + if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy)))) + *validity = RANGE_VALID; + else // Direction of wrap is inverse of result sign. + *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; + + } else { // Unsigned is either valid or underflow. + *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW; + } + return static_cast<T>(uresult); +} + +// Integer multiplication is a bit complicated. In the fast case we just +// we just promote to a twice wider type, and range check the result. In the +// slow case we need to manually check that the result won't be truncated by +// checking with division against the appropriate bound. +template <typename T> +typename enable_if< + std::numeric_limits<T>::is_integer && sizeof(T) * 2 <= sizeof(uintmax_t), + T>::type +CheckedMul(T x, T y, RangeConstraint* validity) { + typedef typename TwiceWiderInteger<T>::type IntermediateType; + IntermediateType tmp = + static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y); + *validity = DstRangeRelationToSrcRange<T>(tmp); + return static_cast<T>(tmp); +} + +template <typename T> +typename enable_if<std::numeric_limits<T>::is_integer&& std::numeric_limits< + T>::is_signed&&(sizeof(T) * 2 > sizeof(uintmax_t)), + T>::type +CheckedMul(T x, T y, RangeConstraint* validity) { + // if either side is zero then the result will be zero. + if (!(x || y)) { + return RANGE_VALID; + + } else if (x > 0) { + if (y > 0) + *validity = + x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW; + else + *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID + : RANGE_UNDERFLOW; + + } else { + if (y > 0) + *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID + : RANGE_UNDERFLOW; + else + *validity = + y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW; + } + + return x * y; +} + +template <typename T> +typename enable_if<std::numeric_limits<T>::is_integer && + !std::numeric_limits<T>::is_signed && + (sizeof(T) * 2 > sizeof(uintmax_t)), + T>::type +CheckedMul(T x, T y, RangeConstraint* validity) { + *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y) + ? RANGE_VALID + : RANGE_OVERFLOW; + return x * y; +} + +// Division just requires a check for an invalid negation on signed min/-1. +template <typename T> +T CheckedDiv( + T x, + T y, + RangeConstraint* validity, + typename enable_if<std::numeric_limits<T>::is_integer, int>::type = 0) { + if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() && + y == static_cast<T>(-1)) { + *validity = RANGE_OVERFLOW; + return std::numeric_limits<T>::min(); + } + + *validity = RANGE_VALID; + return x / y; +} + +template <typename T> +typename enable_if< + std::numeric_limits<T>::is_integer&& std::numeric_limits<T>::is_signed, + T>::type +CheckedMod(T x, T y, RangeConstraint* validity) { + *validity = y > 0 ? RANGE_VALID : RANGE_INVALID; + return x % y; +} + +template <typename T> +typename enable_if< + std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed, + T>::type +CheckedMod(T x, T y, RangeConstraint* validity) { + *validity = RANGE_VALID; + return x % y; +} + +template <typename T> +typename enable_if< + std::numeric_limits<T>::is_integer&& std::numeric_limits<T>::is_signed, + T>::type +CheckedNeg(T value, RangeConstraint* validity) { + *validity = + value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; + // The negation of signed min is min, so catch that one. + return -value; +} + +template <typename T> +typename enable_if< + std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed, + T>::type +CheckedNeg(T value, RangeConstraint* validity) { + // The only legal unsigned negation is zero. + *validity = value ? RANGE_UNDERFLOW : RANGE_VALID; + return static_cast<T>( + -static_cast<typename SignedIntegerForSize<T>::type>(value)); +} + +template <typename T> +typename enable_if< + std::numeric_limits<T>::is_integer&& std::numeric_limits<T>::is_signed, + T>::type +CheckedAbs(T value, RangeConstraint* validity) { + *validity = + value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; + return std::abs(value); +} + +template <typename T> +typename enable_if< + std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed, + T>::type +CheckedAbs(T value, RangeConstraint* validity) { + // Absolute value of a positive is just its identiy. + *validity = RANGE_VALID; + return value; +} + +// These are the floating point stubs that the compiler needs to see. Only the +// negation operation is ever called. +#define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \ + template <typename T> \ + typename enable_if<std::numeric_limits<T>::is_iec559, T>::type \ + Checked##NAME(T, T, RangeConstraint*) { \ + NOTREACHED(); \ + return 0; \ + } + +BASE_FLOAT_ARITHMETIC_STUBS(Add) +BASE_FLOAT_ARITHMETIC_STUBS(Sub) +BASE_FLOAT_ARITHMETIC_STUBS(Mul) +BASE_FLOAT_ARITHMETIC_STUBS(Div) +BASE_FLOAT_ARITHMETIC_STUBS(Mod) + +#undef BASE_FLOAT_ARITHMETIC_STUBS + +template <typename T> +typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg( + T value, + RangeConstraint*) { + return -value; +} + +template <typename T> +typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs( + T value, + RangeConstraint*) { + return std::abs(value); +} + +// Floats carry around their validity state with them, but integers do not. So, +// we wrap the underlying value in a specialization in order to hide that detail +// and expose an interface via accessors. +enum NumericRepresentation { + NUMERIC_INTEGER, + NUMERIC_FLOATING, + NUMERIC_UNKNOWN +}; + +template <typename NumericType> +struct GetNumericRepresentation { + static const NumericRepresentation value = + std::numeric_limits<NumericType>::is_integer + ? NUMERIC_INTEGER + : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING + : NUMERIC_UNKNOWN); +}; + +template <typename T, NumericRepresentation type = + GetNumericRepresentation<T>::value> +class CheckedNumericState {}; + +// Integrals require quite a bit of additional housekeeping to manage state. +template <typename T> +class CheckedNumericState<T, NUMERIC_INTEGER> { + private: + T value_; + RangeConstraint validity_; + + public: + template <typename Src, NumericRepresentation type> + friend class CheckedNumericState; + + CheckedNumericState() : value_(0), validity_(RANGE_VALID) {} + + template <typename Src> + CheckedNumericState(Src value, RangeConstraint validity) + : value_(value), + validity_(GetRangeConstraint(validity | + DstRangeRelationToSrcRange<T>(value))) { + COMPILE_ASSERT(std::numeric_limits<Src>::is_specialized, + argument_must_be_numeric); + } + + // Copy constructor. + template <typename Src> + CheckedNumericState(const CheckedNumericState<Src>& rhs) + : value_(static_cast<T>(rhs.value())), + validity_(GetRangeConstraint( + rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {} + + template <typename Src> + explicit CheckedNumericState( + Src value, + typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type = + 0) + : value_(static_cast<T>(value)), + validity_(DstRangeRelationToSrcRange<T>(value)) {} + + RangeConstraint validity() const { return validity_; } + T value() const { return value_; } +}; + +// Floating points maintain their own validity, but need translation wrappers. +template <typename T> +class CheckedNumericState<T, NUMERIC_FLOATING> { + private: + T value_; + + public: + template <typename Src, NumericRepresentation type> + friend class CheckedNumericState; + + CheckedNumericState() : value_(0.0) {} + + template <typename Src> + CheckedNumericState( + Src value, + RangeConstraint validity, + typename enable_if<std::numeric_limits<Src>::is_integer, int>::type = 0) { + switch (DstRangeRelationToSrcRange<T>(value)) { + case RANGE_VALID: + value_ = static_cast<T>(value); + break; + + case RANGE_UNDERFLOW: + value_ = -std::numeric_limits<T>::infinity(); + break; + + case RANGE_OVERFLOW: + value_ = std::numeric_limits<T>::infinity(); + break; + + case RANGE_INVALID: + value_ = std::numeric_limits<T>::quiet_NaN(); + break; + + default: + NOTREACHED(); + } + } + + template <typename Src> + explicit CheckedNumericState( + Src value, + typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type = + 0) + : value_(static_cast<T>(value)) {} + + // Copy constructor. + template <typename Src> + CheckedNumericState(const CheckedNumericState<Src>& rhs) + : value_(static_cast<T>(rhs.value())) {} + + RangeConstraint validity() const { + return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(), + value_ >= -std::numeric_limits<T>::max()); + } + T value() const { return value_; } +}; + +// For integers less than 128-bit and floats 32-bit or larger, we can distil +// C/C++ arithmetic promotions down to two simple rules: +// 1. The type with the larger maximum exponent always takes precedence. +// 2. The resulting type must be promoted to at least an int. +// The following template specializations implement that promotion logic. +enum ArithmeticPromotionCategory { + LEFT_PROMOTION, + RIGHT_PROMOTION, + DEFAULT_PROMOTION +}; + +template <typename Lhs, + typename Rhs = Lhs, + ArithmeticPromotionCategory Promotion = + (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value) + ? (MaxExponent<Lhs>::value > MaxExponent<int>::value + ? LEFT_PROMOTION + : DEFAULT_PROMOTION) + : (MaxExponent<Rhs>::value > MaxExponent<int>::value + ? RIGHT_PROMOTION + : DEFAULT_PROMOTION) > +struct ArithmeticPromotion; + +template <typename Lhs, typename Rhs> +struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> { + typedef Lhs type; +}; + +template <typename Lhs, typename Rhs> +struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> { + typedef Rhs type; +}; + +template <typename Lhs, typename Rhs> +struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> { + typedef int type; +}; + +// We can statically check if operations on the provided types can wrap, so we +// can skip the checked operations if they're not needed. So, for an integer we +// care if the destination type preserves the sign and is twice the width of +// the source. +template <typename T, typename Lhs, typename Rhs> +struct IsIntegerArithmeticSafe { + static const bool value = !std::numeric_limits<T>::is_iec559 && + StaticDstRangeRelationToSrcRange<T, Lhs>::value == + NUMERIC_RANGE_CONTAINED && + sizeof(T) >= (2 * sizeof(Lhs)) && + StaticDstRangeRelationToSrcRange<T, Rhs>::value != + NUMERIC_RANGE_CONTAINED && + sizeof(T) >= (2 * sizeof(Rhs)); +}; + +} // namespace internal +} // namespace base + +#endif // SAFE_MATH_IMPL_H_ diff --git a/third_party/template_util.h b/third_party/template_util.h new file mode 100644 index 0000000000..d4508dd696 --- /dev/null +++ b/third_party/template_util.h @@ -0,0 +1,33 @@ +// Copyright (c) 2011 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef BASE_TEMPLATE_UTIL_H_ +#define BASE_TEMPLATE_UTIL_H_ + +#include <cstddef> // For size_t. + +namespace base { + +template<class T, T v> +struct integral_constant { + static const T value = v; + typedef T value_type; + typedef integral_constant<T, v> type; +}; + +typedef integral_constant<bool, true> true_type; +typedef integral_constant<bool, false> false_type; + +template <class T, class U> struct is_same : public false_type {}; +template <class T> struct is_same<T,T> : true_type {}; + +template<bool B, class T = void> +struct enable_if {}; + +template<class T> +struct enable_if<true, T> { typedef T type; }; + +} // namespace base + +#endif // BASE_TEMPLATE_UTIL_H_ |