summaryrefslogtreecommitdiff
path: root/core/fpdfapi/page/fpdf_page_func.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'core/fpdfapi/page/fpdf_page_func.cpp')
-rw-r--r--core/fpdfapi/page/fpdf_page_func.cpp845
1 files changed, 845 insertions, 0 deletions
diff --git a/core/fpdfapi/page/fpdf_page_func.cpp b/core/fpdfapi/page/fpdf_page_func.cpp
new file mode 100644
index 0000000000..e11d8dd754
--- /dev/null
+++ b/core/fpdfapi/page/fpdf_page_func.cpp
@@ -0,0 +1,845 @@
+// Copyright 2014 PDFium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
+
+#include "core/fpdfapi/page/pageint.h"
+
+#include <limits.h>
+
+#include <algorithm>
+#include <memory>
+#include <utility>
+#include <vector>
+
+#include "core/fpdfapi/fpdf_parser/cpdf_array.h"
+#include "core/fpdfapi/fpdf_parser/cpdf_dictionary.h"
+#include "core/fpdfapi/fpdf_parser/cpdf_simple_parser.h"
+#include "core/fpdfapi/fpdf_parser/cpdf_stream.h"
+#include "core/fpdfapi/fpdf_parser/cpdf_stream_acc.h"
+#include "core/fpdfapi/page/cpdf_psengine.h"
+#include "core/fxcrt/fx_safe_types.h"
+#include "third_party/base/numerics/safe_conversions_impl.h"
+
+class CPDF_PSOP {
+ public:
+ explicit CPDF_PSOP(PDF_PSOP op) : m_op(op), m_value(0) {
+ ASSERT(m_op != PSOP_CONST);
+ ASSERT(m_op != PSOP_PROC);
+ }
+ explicit CPDF_PSOP(FX_FLOAT value) : m_op(PSOP_CONST), m_value(value) {}
+ explicit CPDF_PSOP(std::unique_ptr<CPDF_PSProc> proc)
+ : m_op(PSOP_PROC), m_value(0), m_proc(std::move(proc)) {}
+
+ FX_FLOAT GetFloatValue() const {
+ if (m_op == PSOP_CONST)
+ return m_value;
+
+ ASSERT(false);
+ return 0;
+ }
+ CPDF_PSProc* GetProc() const {
+ if (m_op == PSOP_PROC)
+ return m_proc.get();
+ ASSERT(false);
+ return nullptr;
+ }
+
+ PDF_PSOP GetOp() const { return m_op; }
+
+ private:
+ const PDF_PSOP m_op;
+ const FX_FLOAT m_value;
+ std::unique_ptr<CPDF_PSProc> m_proc;
+};
+
+FX_BOOL CPDF_PSEngine::Execute() {
+ return m_MainProc.Execute(this);
+}
+
+CPDF_PSProc::CPDF_PSProc() {}
+CPDF_PSProc::~CPDF_PSProc() {}
+
+FX_BOOL CPDF_PSProc::Execute(CPDF_PSEngine* pEngine) {
+ for (size_t i = 0; i < m_Operators.size(); ++i) {
+ const PDF_PSOP op = m_Operators[i]->GetOp();
+ if (op == PSOP_PROC)
+ continue;
+
+ if (op == PSOP_CONST) {
+ pEngine->Push(m_Operators[i]->GetFloatValue());
+ continue;
+ }
+
+ if (op == PSOP_IF) {
+ if (i == 0 || m_Operators[i - 1]->GetOp() != PSOP_PROC)
+ return FALSE;
+
+ if (static_cast<int>(pEngine->Pop()))
+ m_Operators[i - 1]->GetProc()->Execute(pEngine);
+ } else if (op == PSOP_IFELSE) {
+ if (i < 2 || m_Operators[i - 1]->GetOp() != PSOP_PROC ||
+ m_Operators[i - 2]->GetOp() != PSOP_PROC) {
+ return FALSE;
+ }
+ size_t offset = static_cast<int>(pEngine->Pop()) ? 2 : 1;
+ m_Operators[i - offset]->GetProc()->Execute(pEngine);
+ } else {
+ pEngine->DoOperator(op);
+ }
+ }
+ return TRUE;
+}
+
+CPDF_PSEngine::CPDF_PSEngine() {
+ m_StackCount = 0;
+}
+CPDF_PSEngine::~CPDF_PSEngine() {}
+void CPDF_PSEngine::Push(FX_FLOAT v) {
+ if (m_StackCount == PSENGINE_STACKSIZE) {
+ return;
+ }
+ m_Stack[m_StackCount++] = v;
+}
+FX_FLOAT CPDF_PSEngine::Pop() {
+ if (m_StackCount == 0) {
+ return 0;
+ }
+ return m_Stack[--m_StackCount];
+}
+const struct PDF_PSOpName {
+ const FX_CHAR* name;
+ PDF_PSOP op;
+} PDF_PSOpNames[] = {{"add", PSOP_ADD}, {"sub", PSOP_SUB},
+ {"mul", PSOP_MUL}, {"div", PSOP_DIV},
+ {"idiv", PSOP_IDIV}, {"mod", PSOP_MOD},
+ {"neg", PSOP_NEG}, {"abs", PSOP_ABS},
+ {"ceiling", PSOP_CEILING}, {"floor", PSOP_FLOOR},
+ {"round", PSOP_ROUND}, {"truncate", PSOP_TRUNCATE},
+ {"sqrt", PSOP_SQRT}, {"sin", PSOP_SIN},
+ {"cos", PSOP_COS}, {"atan", PSOP_ATAN},
+ {"exp", PSOP_EXP}, {"ln", PSOP_LN},
+ {"log", PSOP_LOG}, {"cvi", PSOP_CVI},
+ {"cvr", PSOP_CVR}, {"eq", PSOP_EQ},
+ {"ne", PSOP_NE}, {"gt", PSOP_GT},
+ {"ge", PSOP_GE}, {"lt", PSOP_LT},
+ {"le", PSOP_LE}, {"and", PSOP_AND},
+ {"or", PSOP_OR}, {"xor", PSOP_XOR},
+ {"not", PSOP_NOT}, {"bitshift", PSOP_BITSHIFT},
+ {"true", PSOP_TRUE}, {"false", PSOP_FALSE},
+ {"if", PSOP_IF}, {"ifelse", PSOP_IFELSE},
+ {"pop", PSOP_POP}, {"exch", PSOP_EXCH},
+ {"dup", PSOP_DUP}, {"copy", PSOP_COPY},
+ {"index", PSOP_INDEX}, {"roll", PSOP_ROLL}};
+
+FX_BOOL CPDF_PSEngine::Parse(const FX_CHAR* str, int size) {
+ CPDF_SimpleParser parser((uint8_t*)str, size);
+ CFX_ByteStringC word = parser.GetWord();
+ if (word != "{") {
+ return FALSE;
+ }
+ return m_MainProc.Parse(&parser, 0);
+}
+
+FX_BOOL CPDF_PSProc::Parse(CPDF_SimpleParser* parser, int depth) {
+ if (depth > kMaxDepth)
+ return FALSE;
+
+ while (1) {
+ CFX_ByteStringC word = parser->GetWord();
+ if (word.IsEmpty()) {
+ return FALSE;
+ }
+ if (word == "}") {
+ return TRUE;
+ }
+ if (word == "{") {
+ std::unique_ptr<CPDF_PSProc> proc(new CPDF_PSProc);
+ std::unique_ptr<CPDF_PSOP> op(new CPDF_PSOP(std::move(proc)));
+ m_Operators.push_back(std::move(op));
+ if (!m_Operators.back()->GetProc()->Parse(parser, depth + 1)) {
+ return FALSE;
+ }
+ } else {
+ bool found = false;
+ for (const PDF_PSOpName& op_name : PDF_PSOpNames) {
+ if (word == CFX_ByteStringC(op_name.name)) {
+ std::unique_ptr<CPDF_PSOP> op(new CPDF_PSOP(op_name.op));
+ m_Operators.push_back(std::move(op));
+ found = true;
+ break;
+ }
+ }
+ if (!found) {
+ std::unique_ptr<CPDF_PSOP> op(new CPDF_PSOP(FX_atof(word)));
+ m_Operators.push_back(std::move(op));
+ }
+ }
+ }
+}
+
+FX_BOOL CPDF_PSEngine::DoOperator(PDF_PSOP op) {
+ int i1, i2;
+ FX_FLOAT d1, d2;
+ switch (op) {
+ case PSOP_ADD:
+ d1 = Pop();
+ d2 = Pop();
+ Push(d1 + d2);
+ break;
+ case PSOP_SUB:
+ d2 = Pop();
+ d1 = Pop();
+ Push(d1 - d2);
+ break;
+ case PSOP_MUL:
+ d1 = Pop();
+ d2 = Pop();
+ Push(d1 * d2);
+ break;
+ case PSOP_DIV:
+ d2 = Pop();
+ d1 = Pop();
+ Push(d1 / d2);
+ break;
+ case PSOP_IDIV:
+ i2 = (int)Pop();
+ i1 = (int)Pop();
+ Push(i2 ? i1 / i2 : 0);
+ break;
+ case PSOP_MOD:
+ i2 = (int)Pop();
+ i1 = (int)Pop();
+ Push(i2 ? i1 % i2 : 0);
+ break;
+ case PSOP_NEG:
+ d1 = Pop();
+ Push(-d1);
+ break;
+ case PSOP_ABS:
+ d1 = Pop();
+ Push((FX_FLOAT)FXSYS_fabs(d1));
+ break;
+ case PSOP_CEILING:
+ d1 = Pop();
+ Push((FX_FLOAT)FXSYS_ceil(d1));
+ break;
+ case PSOP_FLOOR:
+ d1 = Pop();
+ Push((FX_FLOAT)FXSYS_floor(d1));
+ break;
+ case PSOP_ROUND:
+ d1 = Pop();
+ Push(FXSYS_round(d1));
+ break;
+ case PSOP_TRUNCATE:
+ i1 = (int)Pop();
+ Push(i1);
+ break;
+ case PSOP_SQRT:
+ d1 = Pop();
+ Push((FX_FLOAT)FXSYS_sqrt(d1));
+ break;
+ case PSOP_SIN:
+ d1 = Pop();
+ Push((FX_FLOAT)FXSYS_sin(d1 * FX_PI / 180.0f));
+ break;
+ case PSOP_COS:
+ d1 = Pop();
+ Push((FX_FLOAT)FXSYS_cos(d1 * FX_PI / 180.0f));
+ break;
+ case PSOP_ATAN:
+ d2 = Pop();
+ d1 = Pop();
+ d1 = (FX_FLOAT)(FXSYS_atan2(d1, d2) * 180.0 / FX_PI);
+ if (d1 < 0) {
+ d1 += 360;
+ }
+ Push(d1);
+ break;
+ case PSOP_EXP:
+ d2 = Pop();
+ d1 = Pop();
+ Push((FX_FLOAT)FXSYS_pow(d1, d2));
+ break;
+ case PSOP_LN:
+ d1 = Pop();
+ Push((FX_FLOAT)FXSYS_log(d1));
+ break;
+ case PSOP_LOG:
+ d1 = Pop();
+ Push((FX_FLOAT)FXSYS_log10(d1));
+ break;
+ case PSOP_CVI:
+ i1 = (int)Pop();
+ Push(i1);
+ break;
+ case PSOP_CVR:
+ break;
+ case PSOP_EQ:
+ d2 = Pop();
+ d1 = Pop();
+ Push((int)(d1 == d2));
+ break;
+ case PSOP_NE:
+ d2 = Pop();
+ d1 = Pop();
+ Push((int)(d1 != d2));
+ break;
+ case PSOP_GT:
+ d2 = Pop();
+ d1 = Pop();
+ Push((int)(d1 > d2));
+ break;
+ case PSOP_GE:
+ d2 = Pop();
+ d1 = Pop();
+ Push((int)(d1 >= d2));
+ break;
+ case PSOP_LT:
+ d2 = Pop();
+ d1 = Pop();
+ Push((int)(d1 < d2));
+ break;
+ case PSOP_LE:
+ d2 = Pop();
+ d1 = Pop();
+ Push((int)(d1 <= d2));
+ break;
+ case PSOP_AND:
+ i1 = (int)Pop();
+ i2 = (int)Pop();
+ Push(i1 & i2);
+ break;
+ case PSOP_OR:
+ i1 = (int)Pop();
+ i2 = (int)Pop();
+ Push(i1 | i2);
+ break;
+ case PSOP_XOR:
+ i1 = (int)Pop();
+ i2 = (int)Pop();
+ Push(i1 ^ i2);
+ break;
+ case PSOP_NOT:
+ i1 = (int)Pop();
+ Push((int)!i1);
+ break;
+ case PSOP_BITSHIFT: {
+ int shift = (int)Pop();
+ int i = (int)Pop();
+ if (shift > 0) {
+ Push(i << shift);
+ } else {
+ Push(i >> -shift);
+ }
+ break;
+ }
+ case PSOP_TRUE:
+ Push(1);
+ break;
+ case PSOP_FALSE:
+ Push(0);
+ break;
+ case PSOP_POP:
+ Pop();
+ break;
+ case PSOP_EXCH:
+ d2 = Pop();
+ d1 = Pop();
+ Push(d2);
+ Push(d1);
+ break;
+ case PSOP_DUP:
+ d1 = Pop();
+ Push(d1);
+ Push(d1);
+ break;
+ case PSOP_COPY: {
+ int n = static_cast<int>(Pop());
+ if (n < 0 || m_StackCount + n > PSENGINE_STACKSIZE ||
+ n > static_cast<int>(m_StackCount))
+ break;
+ for (int i = 0; i < n; i++)
+ m_Stack[m_StackCount + i] = m_Stack[m_StackCount + i - n];
+ m_StackCount += n;
+ break;
+ }
+ case PSOP_INDEX: {
+ int n = static_cast<int>(Pop());
+ if (n < 0 || n >= static_cast<int>(m_StackCount))
+ break;
+ Push(m_Stack[m_StackCount - n - 1]);
+ break;
+ }
+ case PSOP_ROLL: {
+ int j = static_cast<int>(Pop());
+ int n = static_cast<int>(Pop());
+ if (m_StackCount == 0)
+ break;
+ if (n < 0 || n > static_cast<int>(m_StackCount))
+ break;
+ if (j < 0) {
+ for (int i = 0; i < -j; i++) {
+ FX_FLOAT first = m_Stack[m_StackCount - n];
+ for (int ii = 0; ii < n - 1; ii++)
+ m_Stack[m_StackCount - n + ii] = m_Stack[m_StackCount - n + ii + 1];
+ m_Stack[m_StackCount - 1] = first;
+ }
+ } else {
+ for (int i = 0; i < j; i++) {
+ FX_FLOAT last = m_Stack[m_StackCount - 1];
+ int ii;
+ for (ii = 0; ii < n - 1; ii++)
+ m_Stack[m_StackCount - ii - 1] = m_Stack[m_StackCount - ii - 2];
+ m_Stack[m_StackCount - ii - 1] = last;
+ }
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ return TRUE;
+}
+
+// See PDF Reference 1.7, page 170, table 3.36.
+bool IsValidBitsPerSample(uint32_t x) {
+ switch (x) {
+ case 1:
+ case 2:
+ case 4:
+ case 8:
+ case 12:
+ case 16:
+ case 24:
+ case 32:
+ return true;
+ default:
+ return false;
+ }
+}
+
+// See PDF Reference 1.7, page 170.
+FX_FLOAT PDF_Interpolate(FX_FLOAT x,
+ FX_FLOAT xmin,
+ FX_FLOAT xmax,
+ FX_FLOAT ymin,
+ FX_FLOAT ymax) {
+ FX_FLOAT divisor = xmax - xmin;
+ return ymin + (divisor ? (x - xmin) * (ymax - ymin) / divisor : 0);
+}
+
+class CPDF_PSFunc : public CPDF_Function {
+ public:
+ CPDF_PSFunc() : CPDF_Function(Type::kType4PostScript) {}
+ ~CPDF_PSFunc() override {}
+
+ // CPDF_Function
+ FX_BOOL v_Init(CPDF_Object* pObj) override;
+ FX_BOOL v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const override;
+
+ private:
+ CPDF_PSEngine m_PS;
+};
+
+FX_BOOL CPDF_PSFunc::v_Init(CPDF_Object* pObj) {
+ CPDF_StreamAcc acc;
+ acc.LoadAllData(pObj->AsStream(), FALSE);
+ return m_PS.Parse(reinterpret_cast<const FX_CHAR*>(acc.GetData()),
+ acc.GetSize());
+}
+
+FX_BOOL CPDF_PSFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const {
+ CPDF_PSEngine& PS = const_cast<CPDF_PSEngine&>(m_PS);
+ PS.Reset();
+ for (uint32_t i = 0; i < m_nInputs; i++)
+ PS.Push(inputs[i]);
+ PS.Execute();
+ if (PS.GetStackSize() < m_nOutputs)
+ return FALSE;
+ for (uint32_t i = 0; i < m_nOutputs; i++)
+ results[m_nOutputs - i - 1] = PS.Pop();
+ return TRUE;
+}
+
+CPDF_SampledFunc::CPDF_SampledFunc() : CPDF_Function(Type::kType0Sampled) {}
+
+CPDF_SampledFunc::~CPDF_SampledFunc() {}
+
+FX_BOOL CPDF_SampledFunc::v_Init(CPDF_Object* pObj) {
+ CPDF_Stream* pStream = pObj->AsStream();
+ if (!pStream)
+ return false;
+
+ CPDF_Dictionary* pDict = pStream->GetDict();
+ CPDF_Array* pSize = pDict->GetArrayFor("Size");
+ CPDF_Array* pEncode = pDict->GetArrayFor("Encode");
+ CPDF_Array* pDecode = pDict->GetArrayFor("Decode");
+ m_nBitsPerSample = pDict->GetIntegerFor("BitsPerSample");
+ if (!IsValidBitsPerSample(m_nBitsPerSample))
+ return FALSE;
+
+ m_SampleMax = 0xffffffff >> (32 - m_nBitsPerSample);
+ m_pSampleStream.reset(new CPDF_StreamAcc);
+ m_pSampleStream->LoadAllData(pStream, FALSE);
+ FX_SAFE_UINT32 nTotalSampleBits = 1;
+ m_EncodeInfo.resize(m_nInputs);
+ for (uint32_t i = 0; i < m_nInputs; i++) {
+ m_EncodeInfo[i].sizes = pSize ? pSize->GetIntegerAt(i) : 0;
+ if (!pSize && i == 0)
+ m_EncodeInfo[i].sizes = pDict->GetIntegerFor("Size");
+ nTotalSampleBits *= m_EncodeInfo[i].sizes;
+ if (pEncode) {
+ m_EncodeInfo[i].encode_min = pEncode->GetFloatAt(i * 2);
+ m_EncodeInfo[i].encode_max = pEncode->GetFloatAt(i * 2 + 1);
+ } else {
+ m_EncodeInfo[i].encode_min = 0;
+ m_EncodeInfo[i].encode_max =
+ m_EncodeInfo[i].sizes == 1 ? 1 : (FX_FLOAT)m_EncodeInfo[i].sizes - 1;
+ }
+ }
+ nTotalSampleBits *= m_nBitsPerSample;
+ nTotalSampleBits *= m_nOutputs;
+ FX_SAFE_UINT32 nTotalSampleBytes = nTotalSampleBits;
+ nTotalSampleBytes += 7;
+ nTotalSampleBytes /= 8;
+ if (!nTotalSampleBytes.IsValid() || nTotalSampleBytes.ValueOrDie() == 0 ||
+ nTotalSampleBytes.ValueOrDie() > m_pSampleStream->GetSize()) {
+ return FALSE;
+ }
+ m_DecodeInfo.resize(m_nOutputs);
+ for (uint32_t i = 0; i < m_nOutputs; i++) {
+ if (pDecode) {
+ m_DecodeInfo[i].decode_min = pDecode->GetFloatAt(2 * i);
+ m_DecodeInfo[i].decode_max = pDecode->GetFloatAt(2 * i + 1);
+ } else {
+ m_DecodeInfo[i].decode_min = m_pRanges[i * 2];
+ m_DecodeInfo[i].decode_max = m_pRanges[i * 2 + 1];
+ }
+ }
+ return TRUE;
+}
+
+FX_BOOL CPDF_SampledFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const {
+ int pos = 0;
+ CFX_FixedBufGrow<FX_FLOAT, 16> encoded_input_buf(m_nInputs);
+ FX_FLOAT* encoded_input = encoded_input_buf;
+ CFX_FixedBufGrow<uint32_t, 32> int_buf(m_nInputs * 2);
+ uint32_t* index = int_buf;
+ uint32_t* blocksize = index + m_nInputs;
+ for (uint32_t i = 0; i < m_nInputs; i++) {
+ if (i == 0)
+ blocksize[i] = 1;
+ else
+ blocksize[i] = blocksize[i - 1] * m_EncodeInfo[i - 1].sizes;
+ encoded_input[i] =
+ PDF_Interpolate(inputs[i], m_pDomains[i * 2], m_pDomains[i * 2 + 1],
+ m_EncodeInfo[i].encode_min, m_EncodeInfo[i].encode_max);
+ index[i] = std::min((uint32_t)std::max(0.f, encoded_input[i]),
+ m_EncodeInfo[i].sizes - 1);
+ pos += index[i] * blocksize[i];
+ }
+ FX_SAFE_INT32 bits_to_output = m_nOutputs;
+ bits_to_output *= m_nBitsPerSample;
+ if (!bits_to_output.IsValid())
+ return FALSE;
+
+ FX_SAFE_INT32 bitpos = pos;
+ bitpos *= bits_to_output.ValueOrDie();
+ if (!bitpos.IsValid())
+ return FALSE;
+
+ FX_SAFE_INT32 range_check = bitpos;
+ range_check += bits_to_output.ValueOrDie();
+ if (!range_check.IsValid())
+ return FALSE;
+
+ const uint8_t* pSampleData = m_pSampleStream->GetData();
+ if (!pSampleData)
+ return FALSE;
+
+ for (uint32_t j = 0; j < m_nOutputs; j++) {
+ uint32_t sample =
+ GetBits32(pSampleData, bitpos.ValueOrDie() + j * m_nBitsPerSample,
+ m_nBitsPerSample);
+ FX_FLOAT encoded = (FX_FLOAT)sample;
+ for (uint32_t i = 0; i < m_nInputs; i++) {
+ if (index[i] == m_EncodeInfo[i].sizes - 1) {
+ if (index[i] == 0)
+ encoded = encoded_input[i] * (FX_FLOAT)sample;
+ } else {
+ FX_SAFE_INT32 bitpos2 = blocksize[i];
+ bitpos2 += pos;
+ bitpos2 *= m_nOutputs;
+ bitpos2 += j;
+ bitpos2 *= m_nBitsPerSample;
+ if (!bitpos2.IsValid())
+ return FALSE;
+ uint32_t sample1 =
+ GetBits32(pSampleData, bitpos2.ValueOrDie(), m_nBitsPerSample);
+ encoded += (encoded_input[i] - index[i]) *
+ ((FX_FLOAT)sample1 - (FX_FLOAT)sample);
+ }
+ }
+ results[j] =
+ PDF_Interpolate(encoded, 0, (FX_FLOAT)m_SampleMax,
+ m_DecodeInfo[j].decode_min, m_DecodeInfo[j].decode_max);
+ }
+ return TRUE;
+}
+
+CPDF_ExpIntFunc::CPDF_ExpIntFunc()
+ : CPDF_Function(Type::kType2ExpotentialInterpolation),
+ m_pBeginValues(nullptr),
+ m_pEndValues(nullptr) {}
+
+CPDF_ExpIntFunc::~CPDF_ExpIntFunc() {
+ FX_Free(m_pBeginValues);
+ FX_Free(m_pEndValues);
+}
+FX_BOOL CPDF_ExpIntFunc::v_Init(CPDF_Object* pObj) {
+ CPDF_Dictionary* pDict = pObj->GetDict();
+ if (!pDict) {
+ return FALSE;
+ }
+ CPDF_Array* pArray0 = pDict->GetArrayFor("C0");
+ if (m_nOutputs == 0) {
+ m_nOutputs = 1;
+ if (pArray0) {
+ m_nOutputs = pArray0->GetCount();
+ }
+ }
+ CPDF_Array* pArray1 = pDict->GetArrayFor("C1");
+ m_pBeginValues = FX_Alloc2D(FX_FLOAT, m_nOutputs, 2);
+ m_pEndValues = FX_Alloc2D(FX_FLOAT, m_nOutputs, 2);
+ for (uint32_t i = 0; i < m_nOutputs; i++) {
+ m_pBeginValues[i] = pArray0 ? pArray0->GetFloatAt(i) : 0.0f;
+ m_pEndValues[i] = pArray1 ? pArray1->GetFloatAt(i) : 1.0f;
+ }
+ m_Exponent = pDict->GetFloatFor("N");
+ m_nOrigOutputs = m_nOutputs;
+ if (m_nOutputs && m_nInputs > INT_MAX / m_nOutputs) {
+ return FALSE;
+ }
+ m_nOutputs *= m_nInputs;
+ return TRUE;
+}
+FX_BOOL CPDF_ExpIntFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const {
+ for (uint32_t i = 0; i < m_nInputs; i++)
+ for (uint32_t j = 0; j < m_nOrigOutputs; j++) {
+ results[i * m_nOrigOutputs + j] =
+ m_pBeginValues[j] +
+ (FX_FLOAT)FXSYS_pow(inputs[i], m_Exponent) *
+ (m_pEndValues[j] - m_pBeginValues[j]);
+ }
+ return TRUE;
+}
+
+CPDF_StitchFunc::CPDF_StitchFunc()
+ : CPDF_Function(Type::kType3Stitching),
+ m_pBounds(nullptr),
+ m_pEncode(nullptr) {}
+
+CPDF_StitchFunc::~CPDF_StitchFunc() {
+ FX_Free(m_pBounds);
+ FX_Free(m_pEncode);
+}
+
+FX_BOOL CPDF_StitchFunc::v_Init(CPDF_Object* pObj) {
+ CPDF_Dictionary* pDict = pObj->GetDict();
+ if (!pDict) {
+ return FALSE;
+ }
+ if (m_nInputs != kRequiredNumInputs) {
+ return FALSE;
+ }
+ CPDF_Array* pArray = pDict->GetArrayFor("Functions");
+ if (!pArray) {
+ return FALSE;
+ }
+ uint32_t nSubs = pArray->GetCount();
+ if (nSubs == 0)
+ return FALSE;
+ m_nOutputs = 0;
+ for (uint32_t i = 0; i < nSubs; i++) {
+ CPDF_Object* pSub = pArray->GetDirectObjectAt(i);
+ if (pSub == pObj)
+ return FALSE;
+ std::unique_ptr<CPDF_Function> pFunc(CPDF_Function::Load(pSub));
+ if (!pFunc)
+ return FALSE;
+ // Check that the input dimensionality is 1, and that all output
+ // dimensionalities are the same.
+ if (pFunc->CountInputs() != kRequiredNumInputs)
+ return FALSE;
+ if (pFunc->CountOutputs() != m_nOutputs) {
+ if (m_nOutputs)
+ return FALSE;
+
+ m_nOutputs = pFunc->CountOutputs();
+ }
+
+ m_pSubFunctions.push_back(std::move(pFunc));
+ }
+ m_pBounds = FX_Alloc(FX_FLOAT, nSubs + 1);
+ m_pBounds[0] = m_pDomains[0];
+ pArray = pDict->GetArrayFor("Bounds");
+ if (!pArray)
+ return FALSE;
+ for (uint32_t i = 0; i < nSubs - 1; i++)
+ m_pBounds[i + 1] = pArray->GetFloatAt(i);
+ m_pBounds[nSubs] = m_pDomains[1];
+ m_pEncode = FX_Alloc2D(FX_FLOAT, nSubs, 2);
+ pArray = pDict->GetArrayFor("Encode");
+ if (!pArray)
+ return FALSE;
+
+ for (uint32_t i = 0; i < nSubs * 2; i++)
+ m_pEncode[i] = pArray->GetFloatAt(i);
+ return TRUE;
+}
+
+FX_BOOL CPDF_StitchFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* outputs) const {
+ FX_FLOAT input = inputs[0];
+ size_t i;
+ for (i = 0; i < m_pSubFunctions.size() - 1; i++) {
+ if (input < m_pBounds[i + 1])
+ break;
+ }
+ input = PDF_Interpolate(input, m_pBounds[i], m_pBounds[i + 1],
+ m_pEncode[i * 2], m_pEncode[i * 2 + 1]);
+ int nresults;
+ m_pSubFunctions[i]->Call(&input, kRequiredNumInputs, outputs, nresults);
+ return TRUE;
+}
+
+// static
+std::unique_ptr<CPDF_Function> CPDF_Function::Load(CPDF_Object* pFuncObj) {
+ std::unique_ptr<CPDF_Function> pFunc;
+ if (!pFuncObj)
+ return pFunc;
+
+ int iType = -1;
+ if (CPDF_Stream* pStream = pFuncObj->AsStream())
+ iType = pStream->GetDict()->GetIntegerFor("FunctionType");
+ else if (CPDF_Dictionary* pDict = pFuncObj->AsDictionary())
+ iType = pDict->GetIntegerFor("FunctionType");
+
+ Type type = IntegerToFunctionType(iType);
+ if (type == Type::kType0Sampled)
+ pFunc.reset(new CPDF_SampledFunc());
+ else if (type == Type::kType2ExpotentialInterpolation)
+ pFunc.reset(new CPDF_ExpIntFunc());
+ else if (type == Type::kType3Stitching)
+ pFunc.reset(new CPDF_StitchFunc());
+ else if (type == Type::kType4PostScript)
+ pFunc.reset(new CPDF_PSFunc());
+
+ if (!pFunc || !pFunc->Init(pFuncObj))
+ return std::unique_ptr<CPDF_Function>();
+ return pFunc;
+}
+
+// static
+CPDF_Function::Type CPDF_Function::IntegerToFunctionType(int iType) {
+ switch (iType) {
+ case 0:
+ case 2:
+ case 3:
+ case 4:
+ return static_cast<Type>(iType);
+ default:
+ return Type::kTypeInvalid;
+ }
+}
+
+CPDF_Function::CPDF_Function(Type type)
+ : m_pDomains(nullptr), m_pRanges(nullptr), m_Type(type) {}
+
+CPDF_Function::~CPDF_Function() {
+ FX_Free(m_pDomains);
+ FX_Free(m_pRanges);
+}
+
+FX_BOOL CPDF_Function::Init(CPDF_Object* pObj) {
+ CPDF_Stream* pStream = pObj->AsStream();
+ CPDF_Dictionary* pDict = pStream ? pStream->GetDict() : pObj->AsDictionary();
+
+ CPDF_Array* pDomains = pDict->GetArrayFor("Domain");
+ if (!pDomains)
+ return FALSE;
+
+ m_nInputs = pDomains->GetCount() / 2;
+ if (m_nInputs == 0)
+ return FALSE;
+
+ m_pDomains = FX_Alloc2D(FX_FLOAT, m_nInputs, 2);
+ for (uint32_t i = 0; i < m_nInputs * 2; i++) {
+ m_pDomains[i] = pDomains->GetFloatAt(i);
+ }
+ CPDF_Array* pRanges = pDict->GetArrayFor("Range");
+ m_nOutputs = 0;
+ if (pRanges) {
+ m_nOutputs = pRanges->GetCount() / 2;
+ m_pRanges = FX_Alloc2D(FX_FLOAT, m_nOutputs, 2);
+ for (uint32_t i = 0; i < m_nOutputs * 2; i++)
+ m_pRanges[i] = pRanges->GetFloatAt(i);
+ }
+ uint32_t old_outputs = m_nOutputs;
+ if (!v_Init(pObj))
+ return FALSE;
+ if (m_pRanges && m_nOutputs > old_outputs) {
+ m_pRanges = FX_Realloc(FX_FLOAT, m_pRanges, m_nOutputs * 2);
+ if (m_pRanges) {
+ FXSYS_memset(m_pRanges + (old_outputs * 2), 0,
+ sizeof(FX_FLOAT) * (m_nOutputs - old_outputs) * 2);
+ }
+ }
+ return TRUE;
+}
+
+FX_BOOL CPDF_Function::Call(FX_FLOAT* inputs,
+ uint32_t ninputs,
+ FX_FLOAT* results,
+ int& nresults) const {
+ if (m_nInputs != ninputs) {
+ return FALSE;
+ }
+ nresults = m_nOutputs;
+ for (uint32_t i = 0; i < m_nInputs; i++) {
+ if (inputs[i] < m_pDomains[i * 2])
+ inputs[i] = m_pDomains[i * 2];
+ else if (inputs[i] > m_pDomains[i * 2 + 1])
+ inputs[i] = m_pDomains[i * 2] + 1;
+ }
+ v_Call(inputs, results);
+ if (m_pRanges) {
+ for (uint32_t i = 0; i < m_nOutputs; i++) {
+ if (results[i] < m_pRanges[i * 2])
+ results[i] = m_pRanges[i * 2];
+ else if (results[i] > m_pRanges[i * 2 + 1])
+ results[i] = m_pRanges[i * 2 + 1];
+ }
+ }
+ return TRUE;
+}
+
+const CPDF_SampledFunc* CPDF_Function::ToSampledFunc() const {
+ return m_Type == Type::kType0Sampled
+ ? static_cast<const CPDF_SampledFunc*>(this)
+ : nullptr;
+}
+
+const CPDF_ExpIntFunc* CPDF_Function::ToExpIntFunc() const {
+ return m_Type == Type::kType2ExpotentialInterpolation
+ ? static_cast<const CPDF_ExpIntFunc*>(this)
+ : nullptr;
+}
+
+const CPDF_StitchFunc* CPDF_Function::ToStitchFunc() const {
+ return m_Type == Type::kType3Stitching
+ ? static_cast<const CPDF_StitchFunc*>(this)
+ : nullptr;
+}