summaryrefslogtreecommitdiff
path: root/core/src/fxcodec/lcms2/lcms2-2.6/src/cmsopt.c
diff options
context:
space:
mode:
Diffstat (limited to 'core/src/fxcodec/lcms2/lcms2-2.6/src/cmsopt.c')
-rw-r--r--core/src/fxcodec/lcms2/lcms2-2.6/src/cmsopt.c1795
1 files changed, 0 insertions, 1795 deletions
diff --git a/core/src/fxcodec/lcms2/lcms2-2.6/src/cmsopt.c b/core/src/fxcodec/lcms2/lcms2-2.6/src/cmsopt.c
deleted file mode 100644
index f885ef3f60..0000000000
--- a/core/src/fxcodec/lcms2/lcms2-2.6/src/cmsopt.c
+++ /dev/null
@@ -1,1795 +0,0 @@
-//---------------------------------------------------------------------------------
-//
-// Little Color Management System
-// Copyright (c) 1998-2011 Marti Maria Saguer
-//
-// Permission is hereby granted, free of charge, to any person obtaining
-// a copy of this software and associated documentation files (the "Software"),
-// to deal in the Software without restriction, including without limitation
-// the rights to use, copy, modify, merge, publish, distribute, sublicense,
-// and/or sell copies of the Software, and to permit persons to whom the Software
-// is furnished to do so, subject to the following conditions:
-//
-// The above copyright notice and this permission notice shall be included in
-// all copies or substantial portions of the Software.
-//
-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
-// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
-// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
-// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
-// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-//
-//---------------------------------------------------------------------------------
-//
-
-#include "lcms2_internal.h"
-
-
-//----------------------------------------------------------------------------------
-
-// Optimization for 8 bits, Shaper-CLUT (3 inputs only)
-typedef struct {
-
- cmsContext ContextID;
-
- const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer.
-
- cmsUInt16Number rx[256], ry[256], rz[256];
- cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data
-
-
-} Prelin8Data;
-
-
-// Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
-typedef struct {
-
- cmsContext ContextID;
-
- // Number of channels
- int nInputs;
- int nOutputs;
-
- _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance
- cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
-
- _cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid
- const cmsInterpParams* CLUTparams; // (not-owned pointer)
-
-
- _cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer)
- cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer)
-
-
-} Prelin16Data;
-
-
-// Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
-
-typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits!
-
-#define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
-
-typedef struct {
-
- cmsContext ContextID;
-
- cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0)
- cmsS1Fixed14Number Shaper1G[256];
- cmsS1Fixed14Number Shaper1B[256];
-
- cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that)
- cmsS1Fixed14Number Off[3];
-
- cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255
- cmsUInt16Number Shaper2G[16385];
- cmsUInt16Number Shaper2B[16385];
-
-} MatShaper8Data;
-
-// Curves, optimization is shared between 8 and 16 bits
-typedef struct {
-
- cmsContext ContextID;
-
- int nCurves; // Number of curves
- int nElements; // Elements in curves
- cmsUInt16Number** Curves; // Points to a dynamically allocated array
-
-} Curves16Data;
-
-
-// Simple optimizations ----------------------------------------------------------------------------------------------------------
-
-
-// Remove an element in linked chain
-static
-void _RemoveElement(cmsStage** head)
-{
- cmsStage* mpe = *head;
- cmsStage* next = mpe ->Next;
- *head = next;
- cmsStageFree(mpe);
-}
-
-// Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
-static
-cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
-{
- cmsStage** pt = &Lut ->Elements;
- cmsBool AnyOpt = FALSE;
-
- while (*pt != NULL) {
-
- if ((*pt) ->Implements == UnaryOp) {
- _RemoveElement(pt);
- AnyOpt = TRUE;
- }
- else
- pt = &((*pt) -> Next);
- }
-
- return AnyOpt;
-}
-
-// Same, but only if two adjacent elements are found
-static
-cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
-{
- cmsStage** pt1;
- cmsStage** pt2;
- cmsBool AnyOpt = FALSE;
-
- pt1 = &Lut ->Elements;
- if (*pt1 == NULL) return AnyOpt;
-
- while (*pt1 != NULL) {
-
- pt2 = &((*pt1) -> Next);
- if (*pt2 == NULL) return AnyOpt;
-
- if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
- _RemoveElement(pt2);
- _RemoveElement(pt1);
- AnyOpt = TRUE;
- }
- else
- pt1 = &((*pt1) -> Next);
- }
-
- return AnyOpt;
-}
-
-// Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
-// by a v4 to v2 and vice-versa. The elements are then discarded.
-static
-cmsBool PreOptimize(cmsPipeline* Lut)
-{
- cmsBool AnyOpt = FALSE, Opt;
-
- do {
-
- Opt = FALSE;
-
- // Remove all identities
- Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
-
- // Remove XYZ2Lab followed by Lab2XYZ
- Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
-
- // Remove Lab2XYZ followed by XYZ2Lab
- Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
-
- // Remove V4 to V2 followed by V2 to V4
- Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
-
- // Remove V2 to V4 followed by V4 to V2
- Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
-
- // Remove float pcs Lab conversions
- Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
-
- // Remove float pcs Lab conversions
- Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
-
- if (Opt) AnyOpt = TRUE;
-
- } while (Opt);
-
- return AnyOpt;
-}
-
-static
-void Eval16nop1D(register const cmsUInt16Number Input[],
- register cmsUInt16Number Output[],
- register const struct _cms_interp_struc* p)
-{
- Output[0] = Input[0];
-
- cmsUNUSED_PARAMETER(p);
-}
-
-static
-void PrelinEval16(register const cmsUInt16Number Input[],
- register cmsUInt16Number Output[],
- register const void* D)
-{
- Prelin16Data* p16 = (Prelin16Data*) D;
- cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS];
- cmsUInt16Number StageDEF[cmsMAXCHANNELS];
- int i;
-
- for (i=0; i < p16 ->nInputs; i++) {
-
- p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
- }
-
- p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
-
- for (i=0; i < p16 ->nOutputs; i++) {
-
- p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
- }
-}
-
-
-static
-void PrelinOpt16free(cmsContext ContextID, void* ptr)
-{
- Prelin16Data* p16 = (Prelin16Data*) ptr;
-
- _cmsFree(ContextID, p16 ->EvalCurveOut16);
- _cmsFree(ContextID, p16 ->ParamsCurveOut16);
-
- _cmsFree(ContextID, p16);
-}
-
-static
-void* Prelin16dup(cmsContext ContextID, const void* ptr)
-{
- Prelin16Data* p16 = (Prelin16Data*) ptr;
- Prelin16Data* Duped = _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
-
- if (Duped == NULL) return NULL;
-
- Duped ->EvalCurveOut16 = (_cmsInterpFn16*)_cmsDupMem(ContextID, p16 ->EvalCurveOut16, p16 ->nOutputs * sizeof(_cmsInterpFn16));
- Duped ->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16 ->ParamsCurveOut16, p16 ->nOutputs * sizeof(cmsInterpParams* ));
-
- return Duped;
-}
-
-
-static
-Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
- const cmsInterpParams* ColorMap,
- int nInputs, cmsToneCurve** In,
- int nOutputs, cmsToneCurve** Out )
-{
- int i;
- Prelin16Data* p16 = _cmsMallocZero(ContextID, sizeof(Prelin16Data));
- if (p16 == NULL) return NULL;
-
- p16 ->nInputs = nInputs;
- p16 -> nOutputs = nOutputs;
-
-
- for (i=0; i < nInputs; i++) {
-
- if (In == NULL) {
- p16 -> ParamsCurveIn16[i] = NULL;
- p16 -> EvalCurveIn16[i] = Eval16nop1D;
-
- }
- else {
- p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
- p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
- }
- }
-
- p16 ->CLUTparams = ColorMap;
- p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16;
-
-
- p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
- p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
-
- for (i=0; i < nOutputs; i++) {
-
- if (Out == NULL) {
- p16 ->ParamsCurveOut16[i] = NULL;
- p16 -> EvalCurveOut16[i] = Eval16nop1D;
- }
- else {
-
- p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
- p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
- }
- }
-
- return p16;
-}
-
-
-
-// Resampling ---------------------------------------------------------------------------------
-
-#define PRELINEARIZATION_POINTS 4096
-
-// Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
-// almost any transform. We use floating point precision and then convert from floating point to 16 bits.
-static
-int XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
-{
- cmsPipeline* Lut = (cmsPipeline*) Cargo;
- cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
- cmsUInt32Number i;
-
- _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
- _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
-
- // From 16 bit to floating point
- for (i=0; i < Lut ->InputChannels; i++)
- InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
-
- // Evaluate in floating point
- cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
-
- // Back to 16 bits representation
- for (i=0; i < Lut ->OutputChannels; i++)
- Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
-
- // Always succeed
- return TRUE;
-}
-
-// Try to see if the curves of a given MPE are linear
-static
-cmsBool AllCurvesAreLinear(cmsStage* mpe)
-{
- cmsToneCurve** Curves;
- cmsUInt32Number i, n;
-
- Curves = _cmsStageGetPtrToCurveSet(mpe);
- if (Curves == NULL) return FALSE;
-
- n = cmsStageOutputChannels(mpe);
-
- for (i=0; i < n; i++) {
- if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
- }
-
- return TRUE;
-}
-
-// This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
-// is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
-static
-cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
- int nChannelsOut, int nChannelsIn)
-{
- _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
- cmsInterpParams* p16 = Grid ->Params;
- cmsFloat64Number px, py, pz, pw;
- int x0, y0, z0, w0;
- int i, index;
-
- if (CLUT -> Type != cmsSigCLutElemType) {
- cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
- return FALSE;
- }
-
- if (nChannelsIn != 1 && nChannelsIn != 3 && nChannelsIn != 4) {
- cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
- return FALSE;
- }
- if (nChannelsIn == 4) {
-
- px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
- py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
- pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
- pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
-
- x0 = (int) floor(px);
- y0 = (int) floor(py);
- z0 = (int) floor(pz);
- w0 = (int) floor(pw);
-
- if (((px - x0) != 0) ||
- ((py - y0) != 0) ||
- ((pz - z0) != 0) ||
- ((pw - w0) != 0)) return FALSE; // Not on exact node
-
- index = p16 -> opta[3] * x0 +
- p16 -> opta[2] * y0 +
- p16 -> opta[1] * z0 +
- p16 -> opta[0] * w0;
- }
- else
- if (nChannelsIn == 3) {
-
- px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
- py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
- pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
-
- x0 = (int) floor(px);
- y0 = (int) floor(py);
- z0 = (int) floor(pz);
-
- if (((px - x0) != 0) ||
- ((py - y0) != 0) ||
- ((pz - z0) != 0)) return FALSE; // Not on exact node
-
- index = p16 -> opta[2] * x0 +
- p16 -> opta[1] * y0 +
- p16 -> opta[0] * z0;
- }
- else
- if (nChannelsIn == 1) {
-
- px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
-
- x0 = (int) floor(px);
-
- if (((px - x0) != 0)) return FALSE; // Not on exact node
-
- index = p16 -> opta[0] * x0;
- }
- else {
- cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
- return FALSE;
- }
-
- for (i=0; i < nChannelsOut; i++)
- Grid -> Tab.T[index + i] = Value[i];
-
- return TRUE;
-}
-
-// Auxiliar, to see if two values are equal or very different
-static
-cmsBool WhitesAreEqual(int n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
-{
- int i;
-
- for (i=0; i < n; i++) {
-
- if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremly different that the fixup should be avoided
- if (White1[i] != White2[i]) return FALSE;
- }
- return TRUE;
-}
-
-
-// Locate the node for the white point and fix it to pure white in order to avoid scum dot.
-static
-cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
-{
- cmsUInt16Number *WhitePointIn, *WhitePointOut;
- cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
- cmsUInt32Number i, nOuts, nIns;
- cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
-
- if (!_cmsEndPointsBySpace(EntryColorSpace,
- &WhitePointIn, NULL, &nIns)) return FALSE;
-
- if (!_cmsEndPointsBySpace(ExitColorSpace,
- &WhitePointOut, NULL, &nOuts)) return FALSE;
-
- // It needs to be fixed?
- if (Lut ->InputChannels != nIns) return FALSE;
- if (Lut ->OutputChannels != nOuts) return FALSE;
-
- cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
-
- if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
-
- // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
- if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
- if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
- if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
- if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
- return FALSE;
-
- // We need to interpolate white points of both, pre and post curves
- if (PreLin) {
-
- cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
-
- for (i=0; i < nIns; i++) {
- WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
- }
- }
- else {
- for (i=0; i < nIns; i++)
- WhiteIn[i] = WhitePointIn[i];
- }
-
- // If any post-linearization, we need to find how is represented white before the curve, do
- // a reverse interpolation in this case.
- if (PostLin) {
-
- cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
-
- for (i=0; i < nOuts; i++) {
-
- cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
- if (InversePostLin == NULL) {
- WhiteOut[i] = WhitePointOut[i];
-
- } else {
-
- WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
- cmsFreeToneCurve(InversePostLin);
- }
- }
- }
- else {
- for (i=0; i < nOuts; i++)
- WhiteOut[i] = WhitePointOut[i];
- }
-
- // Ok, proceed with patching. May fail and we don't care if it fails
- PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
-
- return TRUE;
-}
-
-// -----------------------------------------------------------------------------------------------------------------------------------------------
-// This function creates simple LUT from complex ones. The generated LUT has an optional set of
-// prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
-// These curves have to exist in the original LUT in order to be used in the simplified output.
-// Caller may also use the flags to allow this feature.
-// LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
-// This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
-// -----------------------------------------------------------------------------------------------------------------------------------------------
-
-static
-cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
-{
- cmsPipeline* Src = NULL;
- cmsPipeline* Dest = NULL;
- cmsStage* mpe;
- cmsStage* CLUT;
- cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
- int nGridPoints;
- cmsColorSpaceSignature ColorSpace, OutputColorSpace;
- cmsStage *NewPreLin = NULL;
- cmsStage *NewPostLin = NULL;
- _cmsStageCLutData* DataCLUT;
- cmsToneCurve** DataSetIn;
- cmsToneCurve** DataSetOut;
- Prelin16Data* p16;
-
- // This is a loosy optimization! does not apply in floating-point cases
- if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
-
- ColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
- OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
- nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
-
- // For empty LUTs, 2 points are enough
- if (cmsPipelineStageCount(*Lut) == 0)
- nGridPoints = 2;
-
- Src = *Lut;
-
- // Named color pipelines cannot be optimized either
- for (mpe = cmsPipelineGetPtrToFirstStage(Src);
- mpe != NULL;
- mpe = cmsStageNext(mpe)) {
- if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
- }
-
- // Allocate an empty LUT
- Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
- if (!Dest) return FALSE;
-
- // Prelinearization tables are kept unless indicated by flags
- if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
-
- // Get a pointer to the prelinearization element
- cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
-
- // Check if suitable
- if (PreLin ->Type == cmsSigCurveSetElemType) {
-
- // Maybe this is a linear tram, so we can avoid the whole stuff
- if (!AllCurvesAreLinear(PreLin)) {
-
- // All seems ok, proceed.
- NewPreLin = cmsStageDup(PreLin);
- if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
- goto Error;
-
- // Remove prelinearization. Since we have duplicated the curve
- // in destination LUT, the sampling shoud be applied after this stage.
- cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
- }
- }
- }
-
- // Allocate the CLUT
- CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
- if (CLUT == NULL) return FALSE;
-
- // Add the CLUT to the destination LUT
- if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
- goto Error;
- }
-
- // Postlinearization tables are kept unless indicated by flags
- if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
-
- // Get a pointer to the postlinearization if present
- cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
-
- // Check if suitable
- if (cmsStageType(PostLin) == cmsSigCurveSetElemType) {
-
- // Maybe this is a linear tram, so we can avoid the whole stuff
- if (!AllCurvesAreLinear(PostLin)) {
-
- // All seems ok, proceed.
- NewPostLin = cmsStageDup(PostLin);
- if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
- goto Error;
-
- // In destination LUT, the sampling shoud be applied after this stage.
- cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
- }
- }
- }
-
- // Now its time to do the sampling. We have to ignore pre/post linearization
- // The source LUT whithout pre/post curves is passed as parameter.
- if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
-Error:
- // Ops, something went wrong, Restore stages
- if (KeepPreLin != NULL) {
- if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
- _cmsAssert(0); // This never happens
- }
- }
- if (KeepPostLin != NULL) {
- if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) {
- _cmsAssert(0); // This never happens
- }
- }
- cmsPipelineFree(Dest);
- return FALSE;
- }
-
- // Done.
-
- if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
- if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
- cmsPipelineFree(Src);
-
- DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
-
- if (NewPreLin == NULL) DataSetIn = NULL;
- else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
-
- if (NewPostLin == NULL) DataSetOut = NULL;
- else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
-
-
- if (DataSetIn == NULL && DataSetOut == NULL) {
-
- _cmsPipelineSetOptimizationParameters(Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
- }
- else {
-
- p16 = PrelinOpt16alloc(Dest ->ContextID,
- DataCLUT ->Params,
- Dest ->InputChannels,
- DataSetIn,
- Dest ->OutputChannels,
- DataSetOut);
-
- _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
- }
-
-
- // Don't fix white on absolute colorimetric
- if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
- *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
-
- if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
-
- FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
- }
-
- *Lut = Dest;
- return TRUE;
-
- cmsUNUSED_PARAMETER(Intent);
-}
-
-
-// -----------------------------------------------------------------------------------------------------------------------------------------------
-// Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
-// Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
-// for RGB transforms. See the paper for more details
-// -----------------------------------------------------------------------------------------------------------------------------------------------
-
-
-// Normalize endpoints by slope limiting max and min. This assures endpoints as well.
-// Descending curves are handled as well.
-static
-void SlopeLimiting(cmsToneCurve* g)
-{
- int BeginVal, EndVal;
- int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2%
- int AtEnd = g ->nEntries - AtBegin - 1; // And 98%
- cmsFloat64Number Val, Slope, beta;
- int i;
-
- if (cmsIsToneCurveDescending(g)) {
- BeginVal = 0xffff; EndVal = 0;
- }
- else {
- BeginVal = 0; EndVal = 0xffff;
- }
-
- // Compute slope and offset for begin of curve
- Val = g ->Table16[AtBegin];
- Slope = (Val - BeginVal) / AtBegin;
- beta = Val - Slope * AtBegin;
-
- for (i=0; i < AtBegin; i++)
- g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
-
- // Compute slope and offset for the end
- Val = g ->Table16[AtEnd];
- Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases
- beta = Val - Slope * AtEnd;
-
- for (i = AtEnd; i < (int) g ->nEntries; i++)
- g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
-}
-
-
-// Precomputes tables for 8-bit on input devicelink.
-static
-Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
-{
- int i;
- cmsUInt16Number Input[3];
- cmsS15Fixed16Number v1, v2, v3;
- Prelin8Data* p8;
-
- p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
- if (p8 == NULL) return NULL;
-
- // Since this only works for 8 bit input, values comes always as x * 257,
- // we can safely take msb byte (x << 8 + x)
-
- for (i=0; i < 256; i++) {
-
- if (G != NULL) {
-
- // Get 16-bit representation
- Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
- Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
- Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
- }
- else {
- Input[0] = FROM_8_TO_16(i);
- Input[1] = FROM_8_TO_16(i);
- Input[2] = FROM_8_TO_16(i);
- }
-
-
- // Move to 0..1.0 in fixed domain
- v1 = _cmsToFixedDomain(Input[0] * p -> Domain[0]);
- v2 = _cmsToFixedDomain(Input[1] * p -> Domain[1]);
- v3 = _cmsToFixedDomain(Input[2] * p -> Domain[2]);
-
- // Store the precalculated table of nodes
- p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
- p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
- p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
-
- // Store the precalculated table of offsets
- p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
- p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
- p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
- }
-
- p8 ->ContextID = ContextID;
- p8 ->p = p;
-
- return p8;
-}
-
-static
-void Prelin8free(cmsContext ContextID, void* ptr)
-{
- _cmsFree(ContextID, ptr);
-}
-
-static
-void* Prelin8dup(cmsContext ContextID, const void* ptr)
-{
- return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
-}
-
-
-
-// A optimized interpolation for 8-bit input.
-#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
-static
-void PrelinEval8(register const cmsUInt16Number Input[],
- register cmsUInt16Number Output[],
- register const void* D)
-{
-
- cmsUInt8Number r, g, b;
- cmsS15Fixed16Number rx, ry, rz;
- cmsS15Fixed16Number c0, c1, c2, c3, Rest;
- int OutChan;
- register cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
- Prelin8Data* p8 = (Prelin8Data*) D;
- register const cmsInterpParams* p = p8 ->p;
- int TotalOut = p -> nOutputs;
- const cmsUInt16Number* LutTable = (const cmsUInt16Number*)p -> Table;
-
- r = Input[0] >> 8;
- g = Input[1] >> 8;
- b = Input[2] >> 8;
-
- X0 = X1 = p8->X0[r];
- Y0 = Y1 = p8->Y0[g];
- Z0 = Z1 = p8->Z0[b];
-
- rx = p8 ->rx[r];
- ry = p8 ->ry[g];
- rz = p8 ->rz[b];
-
- X1 = X0 + ((rx == 0) ? 0 : p ->opta[2]);
- Y1 = Y0 + ((ry == 0) ? 0 : p ->opta[1]);
- Z1 = Z0 + ((rz == 0) ? 0 : p ->opta[0]);
-
-
- // These are the 6 Tetrahedral
- for (OutChan=0; OutChan < TotalOut; OutChan++) {
-
- c0 = DENS(X0, Y0, Z0);
-
- if (rx >= ry && ry >= rz)
- {
- c1 = DENS(X1, Y0, Z0) - c0;
- c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
- c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
- }
- else
- if (rx >= rz && rz >= ry)
- {
- c1 = DENS(X1, Y0, Z0) - c0;
- c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
- c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
- }
- else
- if (rz >= rx && rx >= ry)
- {
- c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
- c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
- c3 = DENS(X0, Y0, Z1) - c0;
- }
- else
- if (ry >= rx && rx >= rz)
- {
- c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
- c2 = DENS(X0, Y1, Z0) - c0;
- c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
- }
- else
- if (ry >= rz && rz >= rx)
- {
- c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
- c2 = DENS(X0, Y1, Z0) - c0;
- c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
- }
- else
- if (rz >= ry && ry >= rx)
- {
- c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
- c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
- c3 = DENS(X0, Y0, Z1) - c0;
- }
- else {
- c1 = c2 = c3 = 0;
- }
-
-
- Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
- Output[OutChan] = (cmsUInt16Number)c0 + ((Rest + (Rest>>16))>>16);
-
- }
-}
-
-#undef DENS
-
-
-// Curves that contain wide empty areas are not optimizeable
-static
-cmsBool IsDegenerated(const cmsToneCurve* g)
-{
- int i, Zeros = 0, Poles = 0;
- int nEntries = g ->nEntries;
-
- for (i=0; i < nEntries; i++) {
-
- if (g ->Table16[i] == 0x0000) Zeros++;
- if (g ->Table16[i] == 0xffff) Poles++;
- }
-
- if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables
- if (Zeros > (nEntries / 4)) return TRUE; // Degenerated, mostly zeros
- if (Poles > (nEntries / 4)) return TRUE; // Degenerated, mostly poles
-
- return FALSE;
-}
-
-// --------------------------------------------------------------------------------------------------------------
-// We need xput over here
-
-static
-cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
-{
- cmsPipeline* OriginalLut;
- int nGridPoints;
- cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
- cmsUInt32Number t, i;
- cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
- cmsBool lIsSuitable, lIsLinear;
- cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
- cmsStage* OptimizedCLUTmpe;
- cmsColorSpaceSignature ColorSpace, OutputColorSpace;
- cmsStage* OptimizedPrelinMpe;
- cmsStage* mpe;
- cmsToneCurve** OptimizedPrelinCurves;
- _cmsStageCLutData* OptimizedPrelinCLUT;
-
-
- // This is a loosy optimization! does not apply in floating-point cases
- if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
-
- // Only on RGB
- if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE;
- if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
-
-
- // On 16 bits, user has to specify the feature
- if (!_cmsFormatterIs8bit(*InputFormat)) {
- if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
- }
-
- OriginalLut = *Lut;
-
- // Named color pipelines cannot be optimized either
- for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut);
- mpe != NULL;
- mpe = cmsStageNext(mpe)) {
- if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
- }
-
- ColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
- OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
- nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
-
- // Empty gamma containers
- memset(Trans, 0, sizeof(Trans));
- memset(TransReverse, 0, sizeof(TransReverse));
-
- for (t = 0; t < OriginalLut ->InputChannels; t++) {
- Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
- if (Trans[t] == NULL) goto Error;
- }
-
- // Populate the curves
- for (i=0; i < PRELINEARIZATION_POINTS; i++) {
-
- v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
-
- // Feed input with a gray ramp
- for (t=0; t < OriginalLut ->InputChannels; t++)
- In[t] = v;
-
- // Evaluate the gray value
- cmsPipelineEvalFloat(In, Out, OriginalLut);
-
- // Store result in curve
- for (t=0; t < OriginalLut ->InputChannels; t++)
- Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
- }
-
- // Slope-limit the obtained curves
- for (t = 0; t < OriginalLut ->InputChannels; t++)
- SlopeLimiting(Trans[t]);
-
- // Check for validity
- lIsSuitable = TRUE;
- lIsLinear = TRUE;
- for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
-
- // Exclude if already linear
- if (!cmsIsToneCurveLinear(Trans[t]))
- lIsLinear = FALSE;
-
- // Exclude if non-monotonic
- if (!cmsIsToneCurveMonotonic(Trans[t]))
- lIsSuitable = FALSE;
-
- if (IsDegenerated(Trans[t]))
- lIsSuitable = FALSE;
- }
-
- // If it is not suitable, just quit
- if (!lIsSuitable) goto Error;
-
- // Invert curves if possible
- for (t = 0; t < OriginalLut ->InputChannels; t++) {
- TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
- if (TransReverse[t] == NULL) goto Error;
- }
-
- // Now inset the reversed curves at the begin of transform
- LutPlusCurves = cmsPipelineDup(OriginalLut);
- if (LutPlusCurves == NULL) goto Error;
-
- if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
- goto Error;
-
- // Create the result LUT
- OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
- if (OptimizedLUT == NULL) goto Error;
-
- OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
-
- // Create and insert the curves at the beginning
- if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
- goto Error;
-
- // Allocate the CLUT for result
- OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
-
- // Add the CLUT to the destination LUT
- if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
- goto Error;
-
- // Resample the LUT
- if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
-
- // Free resources
- for (t = 0; t < OriginalLut ->InputChannels; t++) {
-
- if (Trans[t]) cmsFreeToneCurve(Trans[t]);
- if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
- }
-
- cmsPipelineFree(LutPlusCurves);
-
-
- OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
- OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
-
- // Set the evaluator if 8-bit
- if (_cmsFormatterIs8bit(*InputFormat)) {
-
- Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
- OptimizedPrelinCLUT ->Params,
- OptimizedPrelinCurves);
- if (p8 == NULL) return FALSE;
-
- _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
-
- }
- else
- {
- Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
- OptimizedPrelinCLUT ->Params,
- 3, OptimizedPrelinCurves, 3, NULL);
- if (p16 == NULL) return FALSE;
-
- _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
-
- }
-
- // Don't fix white on absolute colorimetric
- if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
- *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
-
- if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
-
- if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
-
- return FALSE;
- }
- }
-
- // And return the obtained LUT
-
- cmsPipelineFree(OriginalLut);
- *Lut = OptimizedLUT;
- return TRUE;
-
-Error:
-
- for (t = 0; t < OriginalLut ->InputChannels; t++) {
-
- if (Trans[t]) cmsFreeToneCurve(Trans[t]);
- if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
- }
-
- if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
- if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
-
- return FALSE;
-
- cmsUNUSED_PARAMETER(Intent);
-}
-
-
-// Curves optimizer ------------------------------------------------------------------------------------------------------------------
-
-static
-void CurvesFree(cmsContext ContextID, void* ptr)
-{
- Curves16Data* Data = (Curves16Data*) ptr;
- int i;
-
- for (i=0; i < Data -> nCurves; i++) {
-
- _cmsFree(ContextID, Data ->Curves[i]);
- }
-
- _cmsFree(ContextID, Data ->Curves);
- _cmsFree(ContextID, ptr);
-}
-
-static
-void* CurvesDup(cmsContext ContextID, const void* ptr)
-{
- Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
- int i;
-
- if (Data == NULL) return NULL;
-
- Data ->Curves = (cmsUInt16Number**)_cmsDupMem(ContextID, Data ->Curves, Data ->nCurves * sizeof(cmsUInt16Number*));
-
- for (i=0; i < Data -> nCurves; i++) {
- Data ->Curves[i] = (cmsUInt16Number*)_cmsDupMem(ContextID, Data ->Curves[i], Data -> nElements * sizeof(cmsUInt16Number));
- }
-
- return (void*) Data;
-}
-
-// Precomputes tables for 8-bit on input devicelink.
-static
-Curves16Data* CurvesAlloc(cmsContext ContextID, int nCurves, int nElements, cmsToneCurve** G)
-{
- int i, j;
- Curves16Data* c16;
-
- c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
- if (c16 == NULL) return NULL;
-
- c16 ->nCurves = nCurves;
- c16 ->nElements = nElements;
-
- c16 ->Curves = (cmsUInt16Number**)_cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
- if (c16 ->Curves == NULL) return NULL;
-
- for (i=0; i < nCurves; i++) {
-
- c16->Curves[i] = (cmsUInt16Number*)_cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
-
- if (c16->Curves[i] == NULL) {
-
- for (j=0; j < i; j++) {
- _cmsFree(ContextID, c16->Curves[j]);
- }
- _cmsFree(ContextID, c16->Curves);
- _cmsFree(ContextID, c16);
- return NULL;
- }
-
- if (nElements == 256) {
-
- for (j=0; j < nElements; j++) {
-
- c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
- }
- }
- else {
-
- for (j=0; j < nElements; j++) {
- c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
- }
- }
- }
-
- return c16;
-}
-
-static
-void FastEvaluateCurves8(register const cmsUInt16Number In[],
- register cmsUInt16Number Out[],
- register const void* D)
-{
- Curves16Data* Data = (Curves16Data*) D;
- cmsUInt8Number x;
- int i;
-
- for (i=0; i < Data ->nCurves; i++) {
-
- x = (In[i] >> 8);
- Out[i] = Data -> Curves[i][x];
- }
-}
-
-
-static
-void FastEvaluateCurves16(register const cmsUInt16Number In[],
- register cmsUInt16Number Out[],
- register const void* D)
-{
- Curves16Data* Data = (Curves16Data*) D;
- int i;
-
- for (i=0; i < Data ->nCurves; i++) {
- Out[i] = Data -> Curves[i][In[i]];
- }
-}
-
-
-static
-void FastIdentity16(register const cmsUInt16Number In[],
- register cmsUInt16Number Out[],
- register const void* D)
-{
- cmsPipeline* Lut = (cmsPipeline*) D;
- cmsUInt32Number i;
-
- for (i=0; i < Lut ->InputChannels; i++) {
- Out[i] = In[i];
- }
-}
-
-
-// If the target LUT holds only curves, the optimization procedure is to join all those
-// curves together. That only works on curves and does not work on matrices.
-static
-cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
-{
- cmsToneCurve** GammaTables = NULL;
- cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
- cmsUInt32Number i, j;
- cmsPipeline* Src = *Lut;
- cmsPipeline* Dest = NULL;
- cmsStage* mpe;
- cmsStage* ObtainedCurves = NULL;
-
-
- // This is a loosy optimization! does not apply in floating-point cases
- if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
-
- // Only curves in this LUT?
- for (mpe = cmsPipelineGetPtrToFirstStage(Src);
- mpe != NULL;
- mpe = cmsStageNext(mpe)) {
- if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
- }
-
- // Allocate an empty LUT
- Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
- if (Dest == NULL) return FALSE;
-
- // Create target curves
- GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
- if (GammaTables == NULL) goto Error;
-
- for (i=0; i < Src ->InputChannels; i++) {
- GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
- if (GammaTables[i] == NULL) goto Error;
- }
-
- // Compute 16 bit result by using floating point
- for (i=0; i < PRELINEARIZATION_POINTS; i++) {
-
- for (j=0; j < Src ->InputChannels; j++)
- InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
-
- cmsPipelineEvalFloat(InFloat, OutFloat, Src);
-
- for (j=0; j < Src ->InputChannels; j++)
- GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
- }
-
- ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
- if (ObtainedCurves == NULL) goto Error;
-
- for (i=0; i < Src ->InputChannels; i++) {
- cmsFreeToneCurve(GammaTables[i]);
- GammaTables[i] = NULL;
- }
-
- if (GammaTables != NULL) _cmsFree(Src ->ContextID, GammaTables);
-
- // Maybe the curves are linear at the end
- if (!AllCurvesAreLinear(ObtainedCurves)) {
-
- if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
- goto Error;
-
- // If the curves are to be applied in 8 bits, we can save memory
- if (_cmsFormatterIs8bit(*InputFormat)) {
-
- _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) ObtainedCurves ->Data;
- Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
-
- if (c16 == NULL) goto Error;
- *dwFlags |= cmsFLAGS_NOCACHE;
- _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
-
- }
- else {
-
- _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
- Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
-
- if (c16 == NULL) goto Error;
- *dwFlags |= cmsFLAGS_NOCACHE;
- _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
- }
- }
- else {
-
- // LUT optimizes to nothing. Set the identity LUT
- cmsStageFree(ObtainedCurves);
-
- if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
- goto Error;
-
- *dwFlags |= cmsFLAGS_NOCACHE;
- _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
- }
-
- // We are done.
- cmsPipelineFree(Src);
- *Lut = Dest;
- return TRUE;
-
-Error:
-
- if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
- if (GammaTables != NULL) {
- for (i=0; i < Src ->InputChannels; i++) {
- if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
- }
-
- _cmsFree(Src ->ContextID, GammaTables);
- }
-
- if (Dest != NULL) cmsPipelineFree(Dest);
- return FALSE;
-
- cmsUNUSED_PARAMETER(Intent);
- cmsUNUSED_PARAMETER(InputFormat);
- cmsUNUSED_PARAMETER(OutputFormat);
- cmsUNUSED_PARAMETER(dwFlags);
-}
-
-// -------------------------------------------------------------------------------------------------------------------------------------
-// LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
-
-
-static
-void FreeMatShaper(cmsContext ContextID, void* Data)
-{
- if (Data != NULL) _cmsFree(ContextID, Data);
-}
-
-static
-void* DupMatShaper(cmsContext ContextID, const void* Data)
-{
- return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
-}
-
-
-// A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
-// to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
-// in total about 50K, and the performance boost is huge!
-static
-void MatShaperEval16(register const cmsUInt16Number In[],
- register cmsUInt16Number Out[],
- register const void* D)
-{
- MatShaper8Data* p = (MatShaper8Data*) D;
- cmsS1Fixed14Number l1, l2, l3, r, g, b;
- cmsUInt32Number ri, gi, bi;
-
- // In this case (and only in this case!) we can use this simplification since
- // In[] is assured to come from a 8 bit number. (a << 8 | a)
- ri = In[0] & 0xFF;
- gi = In[1] & 0xFF;
- bi = In[2] & 0xFF;
-
- // Across first shaper, which also converts to 1.14 fixed point
- r = p->Shaper1R[ri];
- g = p->Shaper1G[gi];
- b = p->Shaper1B[bi];
-
- // Evaluate the matrix in 1.14 fixed point
- l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
- l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
- l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
-
- // Now we have to clip to 0..1.0 range
- ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384 : l1);
- gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384 : l2);
- bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384 : l3);
-
- // And across second shaper,
- Out[0] = p->Shaper2R[ri];
- Out[1] = p->Shaper2G[gi];
- Out[2] = p->Shaper2B[bi];
-
-}
-
-// This table converts from 8 bits to 1.14 after applying the curve
-static
-void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
-{
- int i;
- cmsFloat32Number R, y;
-
- for (i=0; i < 256; i++) {
-
- R = (cmsFloat32Number) (i / 255.0);
- y = cmsEvalToneCurveFloat(Curve, R);
-
- Table[i] = DOUBLE_TO_1FIXED14(y);
- }
-}
-
-// This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
-static
-void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
-{
- int i;
- cmsFloat32Number R, Val;
-
- for (i=0; i < 16385; i++) {
-
- R = (cmsFloat32Number) (i / 16384.0);
- Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0
-
- if (Is8BitsOutput) {
-
- // If 8 bits output, we can optimize further by computing the / 257 part.
- // first we compute the resulting byte and then we store the byte times
- // 257. This quantization allows to round very quick by doing a >> 8, but
- // since the low byte is always equal to msb, we can do a & 0xff and this works!
- cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
- cmsUInt8Number b = FROM_16_TO_8(w);
-
- Table[i] = FROM_8_TO_16(b);
- }
- else Table[i] = _cmsQuickSaturateWord(Val * 65535.0);
- }
-}
-
-// Compute the matrix-shaper structure
-static
-cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
-{
- MatShaper8Data* p;
- int i, j;
- cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
-
- // Allocate a big chuck of memory to store precomputed tables
- p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
- if (p == NULL) return FALSE;
-
- p -> ContextID = Dest -> ContextID;
-
- // Precompute tables
- FillFirstShaper(p ->Shaper1R, Curve1[0]);
- FillFirstShaper(p ->Shaper1G, Curve1[1]);
- FillFirstShaper(p ->Shaper1B, Curve1[2]);
-
- FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
- FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
- FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
-
- // Convert matrix to nFixed14. Note that those values may take more than 16 bits as
- for (i=0; i < 3; i++) {
- for (j=0; j < 3; j++) {
- p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
- }
- }
-
- for (i=0; i < 3; i++) {
-
- if (Off == NULL) {
- p ->Off[i] = 0;
- }
- else {
- p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
- }
- }
-
- // Mark as optimized for faster formatter
- if (Is8Bits)
- *OutputFormat |= OPTIMIZED_SH(1);
-
- // Fill function pointers
- _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
- return TRUE;
-}
-
-// 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
-// TODO: Allow a third matrix for abs. colorimetric
-static
-cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
-{
- cmsStage* Curve1, *Curve2;
- cmsStage* Matrix1, *Matrix2;
- _cmsStageMatrixData* Data1;
- _cmsStageMatrixData* Data2;
- cmsMAT3 res;
- cmsBool IdentityMat;
- cmsPipeline* Dest, *Src;
-
- // Only works on RGB to RGB
- if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
-
- // Only works on 8 bit input
- if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
-
- // Seems suitable, proceed
- Src = *Lut;
-
- // Check for shaper-matrix-matrix-shaper structure, that is what this optimizer stands for
- if (!cmsPipelineCheckAndRetreiveStages(Src, 4,
- cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
- &Curve1, &Matrix1, &Matrix2, &Curve2)) return FALSE;
-
- // Get both matrices
- Data1 = (_cmsStageMatrixData*) cmsStageData(Matrix1);
- Data2 = (_cmsStageMatrixData*) cmsStageData(Matrix2);
-
- // Input offset should be zero
- if (Data1 ->Offset != NULL) return FALSE;
-
- // Multiply both matrices to get the result
- _cmsMAT3per(&res, (cmsMAT3*) Data2 ->Double, (cmsMAT3*) Data1 ->Double);
-
- // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
- IdentityMat = FALSE;
- if (_cmsMAT3isIdentity(&res) && Data2 ->Offset == NULL) {
-
- // We can get rid of full matrix
- IdentityMat = TRUE;
- }
-
- // Allocate an empty LUT
- Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
- if (!Dest) return FALSE;
-
- // Assamble the new LUT
- if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
- goto Error;
-
- if (!IdentityMat)
- if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest ->ContextID, 3, 3, (const cmsFloat64Number*) &res, Data2 ->Offset)))
- goto Error;
- if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
- goto Error;
-
- // If identity on matrix, we can further optimize the curves, so call the join curves routine
- if (IdentityMat) {
-
- OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
- }
- else {
- _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
- _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
-
- // In this particular optimization, cach?does not help as it takes more time to deal with
- // the cach?that with the pixel handling
- *dwFlags |= cmsFLAGS_NOCACHE;
-
- // Setup the optimizarion routines
- SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Data2 ->Offset, mpeC2->TheCurves, OutputFormat);
- }
-
- cmsPipelineFree(Src);
- *Lut = Dest;
- return TRUE;
-Error:
- // Leave Src unchanged
- cmsPipelineFree(Dest);
- return FALSE;
-}
-
-
-// -------------------------------------------------------------------------------------------------------------------------------------
-// Optimization plug-ins
-
-// List of optimizations
-typedef struct _cmsOptimizationCollection_st {
-
- _cmsOPToptimizeFn OptimizePtr;
-
- struct _cmsOptimizationCollection_st *Next;
-
-} _cmsOptimizationCollection;
-
-
-// The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
-static _cmsOptimizationCollection DefaultOptimization[] = {
-
- { OptimizeByJoiningCurves, &DefaultOptimization[1] },
- { OptimizeMatrixShaper, &DefaultOptimization[2] },
- { OptimizeByComputingLinearization, &DefaultOptimization[3] },
- { OptimizeByResampling, NULL }
-};
-
-// The linked list head
-_cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
-
-
-// Duplicates the zone of memory used by the plug-in in the new context
-static
-void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
- const struct _cmsContext_struct* src)
-{
- _cmsOptimizationPluginChunkType newHead = { NULL };
- _cmsOptimizationCollection* entry;
- _cmsOptimizationCollection* Anterior = NULL;
- _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
-
- _cmsAssert(ctx != NULL);
- _cmsAssert(head != NULL);
-
- // Walk the list copying all nodes
- for (entry = head->OptimizationCollection;
- entry != NULL;
- entry = entry ->Next) {
-
- _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
-
- if (newEntry == NULL)
- return;
-
- // We want to keep the linked list order, so this is a little bit tricky
- newEntry -> Next = NULL;
- if (Anterior)
- Anterior -> Next = newEntry;
-
- Anterior = newEntry;
-
- if (newHead.OptimizationCollection == NULL)
- newHead.OptimizationCollection = newEntry;
- }
-
- ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
-}
-
-void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
- const struct _cmsContext_struct* src)
-{
- if (src != NULL) {
-
- // Copy all linked list
- DupPluginOptimizationList(ctx, src);
- }
- else {
- static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
- ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
- }
-}
-
-
-// Register new ways to optimize
-cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
-{
- cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
- _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
- _cmsOptimizationCollection* fl;
-
- if (Data == NULL) {
-
- ctx->OptimizationCollection = NULL;
- return TRUE;
- }
-
- // Optimizer callback is required
- if (Plugin ->OptimizePtr == NULL) return FALSE;
-
- fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
- if (fl == NULL) return FALSE;
-
- // Copy the parameters
- fl ->OptimizePtr = Plugin ->OptimizePtr;
-
- // Keep linked list
- fl ->Next = ctx->OptimizationCollection;
-
- // Set the head
- ctx ->OptimizationCollection = fl;
-
- // All is ok
- return TRUE;
-}
-
-// The entry point for LUT optimization
-cmsBool _cmsOptimizePipeline(cmsContext ContextID,
- cmsPipeline** PtrLut,
- int Intent,
- cmsUInt32Number* InputFormat,
- cmsUInt32Number* OutputFormat,
- cmsUInt32Number* dwFlags)
-{
- _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
- _cmsOptimizationCollection* Opts;
- cmsBool AnySuccess = FALSE;
-
- // A CLUT is being asked, so force this specific optimization
- if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
-
- PreOptimize(*PtrLut);
- return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
- }
-
- // Anything to optimize?
- if ((*PtrLut) ->Elements == NULL) {
- _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
- return TRUE;
- }
-
- // Try to get rid of identities and trivial conversions.
- AnySuccess = PreOptimize(*PtrLut);
-
- // After removal do we end with an identity?
- if ((*PtrLut) ->Elements == NULL) {
- _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
- return TRUE;
- }
-
- // Do not optimize, keep all precision
- if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
- return FALSE;
-
- // Try plug-in optimizations
- for (Opts = ctx->OptimizationCollection;
- Opts != NULL;
- Opts = Opts ->Next) {
-
- // If one schema succeeded, we are done
- if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
-
- return TRUE; // Optimized!
- }
- }
-
- // Try built-in optimizations
- for (Opts = DefaultOptimization;
- Opts != NULL;
- Opts = Opts ->Next) {
-
- if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
-
- return TRUE;
- }
- }
-
- // Only simple optimizations succeeded
- return AnySuccess;
-}