summaryrefslogtreecommitdiff
path: root/core/src/fxcodec/lcms2/lcms2-2.6/src/cmswtpnt.c
diff options
context:
space:
mode:
Diffstat (limited to 'core/src/fxcodec/lcms2/lcms2-2.6/src/cmswtpnt.c')
-rw-r--r--core/src/fxcodec/lcms2/lcms2-2.6/src/cmswtpnt.c349
1 files changed, 0 insertions, 349 deletions
diff --git a/core/src/fxcodec/lcms2/lcms2-2.6/src/cmswtpnt.c b/core/src/fxcodec/lcms2/lcms2-2.6/src/cmswtpnt.c
deleted file mode 100644
index 903fdd7497..0000000000
--- a/core/src/fxcodec/lcms2/lcms2-2.6/src/cmswtpnt.c
+++ /dev/null
@@ -1,349 +0,0 @@
-//---------------------------------------------------------------------------------
-//
-// Little Color Management System
-// Copyright (c) 1998-2014 Marti Maria Saguer
-//
-// Permission is hereby granted, free of charge, to any person obtaining
-// a copy of this software and associated documentation files (the "Software"),
-// to deal in the Software without restriction, including without limitation
-// the rights to use, copy, modify, merge, publish, distribute, sublicense,
-// and/or sell copies of the Software, and to permit persons to whom the Software
-// is furnished to do so, subject to the following conditions:
-//
-// The above copyright notice and this permission notice shall be included in
-// all copies or substantial portions of the Software.
-//
-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
-// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
-// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
-// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
-// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-//
-//---------------------------------------------------------------------------------
-//
-
-#include "lcms2_internal.h"
-
-
-// D50 - Widely used
-const cmsCIEXYZ* CMSEXPORT cmsD50_XYZ(void)
-{
- static cmsCIEXYZ D50XYZ = {cmsD50X, cmsD50Y, cmsD50Z};
-
- return &D50XYZ;
-}
-
-const cmsCIExyY* CMSEXPORT cmsD50_xyY(void)
-{
- static cmsCIExyY D50xyY;
-
- cmsXYZ2xyY(&D50xyY, cmsD50_XYZ());
-
- return &D50xyY;
-}
-
-// Obtains WhitePoint from Temperature
-cmsBool CMSEXPORT cmsWhitePointFromTemp(cmsCIExyY* WhitePoint, cmsFloat64Number TempK)
-{
- cmsFloat64Number x, y;
- cmsFloat64Number T, T2, T3;
- // cmsFloat64Number M1, M2;
-
- _cmsAssert(WhitePoint != NULL);
-
- T = TempK;
- T2 = T*T; // Square
- T3 = T2*T; // Cube
-
- // For correlated color temperature (T) between 4000K and 7000K:
-
- if (T >= 4000. && T <= 7000.)
- {
- x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063;
- }
- else
- // or for correlated color temperature (T) between 7000K and 25000K:
-
- if (T > 7000.0 && T <= 25000.0)
- {
- x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040;
- }
- else {
- cmsSignalError(0, cmsERROR_RANGE, "cmsWhitePointFromTemp: invalid temp");
- return FALSE;
- }
-
- // Obtain y(x)
-
- y = -3.000*(x*x) + 2.870*x - 0.275;
-
- // wave factors (not used, but here for futures extensions)
-
- // M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y);
- // M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y);
-
- WhitePoint -> x = x;
- WhitePoint -> y = y;
- WhitePoint -> Y = 1.0;
-
- return TRUE;
-}
-
-
-
-typedef struct {
-
- cmsFloat64Number mirek; // temp (in microreciprocal kelvin)
- cmsFloat64Number ut; // u coord of intersection w/ blackbody locus
- cmsFloat64Number vt; // v coord of intersection w/ blackbody locus
- cmsFloat64Number tt; // slope of ISOTEMPERATURE. line
-
- } ISOTEMPERATURE;
-
-static ISOTEMPERATURE isotempdata[] = {
-// {Mirek, Ut, Vt, Tt }
- {0, 0.18006, 0.26352, -0.24341},
- {10, 0.18066, 0.26589, -0.25479},
- {20, 0.18133, 0.26846, -0.26876},
- {30, 0.18208, 0.27119, -0.28539},
- {40, 0.18293, 0.27407, -0.30470},
- {50, 0.18388, 0.27709, -0.32675},
- {60, 0.18494, 0.28021, -0.35156},
- {70, 0.18611, 0.28342, -0.37915},
- {80, 0.18740, 0.28668, -0.40955},
- {90, 0.18880, 0.28997, -0.44278},
- {100, 0.19032, 0.29326, -0.47888},
- {125, 0.19462, 0.30141, -0.58204},
- {150, 0.19962, 0.30921, -0.70471},
- {175, 0.20525, 0.31647, -0.84901},
- {200, 0.21142, 0.32312, -1.0182 },
- {225, 0.21807, 0.32909, -1.2168 },
- {250, 0.22511, 0.33439, -1.4512 },
- {275, 0.23247, 0.33904, -1.7298 },
- {300, 0.24010, 0.34308, -2.0637 },
- {325, 0.24702, 0.34655, -2.4681 },
- {350, 0.25591, 0.34951, -2.9641 },
- {375, 0.26400, 0.35200, -3.5814 },
- {400, 0.27218, 0.35407, -4.3633 },
- {425, 0.28039, 0.35577, -5.3762 },
- {450, 0.28863, 0.35714, -6.7262 },
- {475, 0.29685, 0.35823, -8.5955 },
- {500, 0.30505, 0.35907, -11.324 },
- {525, 0.31320, 0.35968, -15.628 },
- {550, 0.32129, 0.36011, -23.325 },
- {575, 0.32931, 0.36038, -40.770 },
- {600, 0.33724, 0.36051, -116.45 }
-};
-
-#define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE)
-
-
-// Robertson's method
-cmsBool CMSEXPORT cmsTempFromWhitePoint(cmsFloat64Number* TempK, const cmsCIExyY* WhitePoint)
-{
- cmsUInt32Number j;
- cmsFloat64Number us,vs;
- cmsFloat64Number uj,vj,tj,di,dj,mi,mj;
- cmsFloat64Number xs, ys;
-
- _cmsAssert(WhitePoint != NULL);
- _cmsAssert(TempK != NULL);
-
- di = mi = 0;
- xs = WhitePoint -> x;
- ys = WhitePoint -> y;
-
- // convert (x,y) to CIE 1960 (u,WhitePoint)
-
- us = (2*xs) / (-xs + 6*ys + 1.5);
- vs = (3*ys) / (-xs + 6*ys + 1.5);
-
-
- for (j=0; j < NISO; j++) {
-
- uj = isotempdata[j].ut;
- vj = isotempdata[j].vt;
- tj = isotempdata[j].tt;
- mj = isotempdata[j].mirek;
-
- dj = ((vs - vj) - tj * (us - uj)) / sqrt(1.0 + tj * tj);
-
- if ((j != 0) && (di/dj < 0.0)) {
-
- // Found a match
- *TempK = 1000000.0 / (mi + (di / (di - dj)) * (mj - mi));
- return TRUE;
- }
-
- di = dj;
- mi = mj;
- }
-
- // Not found
- return FALSE;
-}
-
-
-// Compute chromatic adaptation matrix using Chad as cone matrix
-
-static
-cmsBool ComputeChromaticAdaptation(cmsMAT3* Conversion,
- const cmsCIEXYZ* SourceWhitePoint,
- const cmsCIEXYZ* DestWhitePoint,
- const cmsMAT3* Chad)
-
-{
-
- cmsMAT3 Chad_Inv;
- cmsVEC3 ConeSourceXYZ, ConeSourceRGB;
- cmsVEC3 ConeDestXYZ, ConeDestRGB;
- cmsMAT3 Cone, Tmp;
-
-
- Tmp = *Chad;
- if (!_cmsMAT3inverse(&Tmp, &Chad_Inv)) return FALSE;
-
- _cmsVEC3init(&ConeSourceXYZ, SourceWhitePoint -> X,
- SourceWhitePoint -> Y,
- SourceWhitePoint -> Z);
-
- _cmsVEC3init(&ConeDestXYZ, DestWhitePoint -> X,
- DestWhitePoint -> Y,
- DestWhitePoint -> Z);
-
- _cmsMAT3eval(&ConeSourceRGB, Chad, &ConeSourceXYZ);
- _cmsMAT3eval(&ConeDestRGB, Chad, &ConeDestXYZ);
-
- // Build matrix
- _cmsVEC3init(&Cone.v[0], ConeDestRGB.n[0]/ConeSourceRGB.n[0], 0.0, 0.0);
- _cmsVEC3init(&Cone.v[1], 0.0, ConeDestRGB.n[1]/ConeSourceRGB.n[1], 0.0);
- _cmsVEC3init(&Cone.v[2], 0.0, 0.0, ConeDestRGB.n[2]/ConeSourceRGB.n[2]);
-
-
- // Normalize
- _cmsMAT3per(&Tmp, &Cone, Chad);
- _cmsMAT3per(Conversion, &Chad_Inv, &Tmp);
-
- return TRUE;
-}
-
-// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
-// The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed
-cmsBool _cmsAdaptationMatrix(cmsMAT3* r, const cmsMAT3* ConeMatrix, const cmsCIEXYZ* FromIll, const cmsCIEXYZ* ToIll)
-{
- cmsMAT3 LamRigg = {{ // Bradford matrix
- {{ 0.8951, 0.2664, -0.1614 }},
- {{ -0.7502, 1.7135, 0.0367 }},
- {{ 0.0389, -0.0685, 1.0296 }}
- }};
-
- if (ConeMatrix == NULL)
- ConeMatrix = &LamRigg;
-
- return ComputeChromaticAdaptation(r, FromIll, ToIll, ConeMatrix);
-}
-
-// Same as anterior, but assuming D50 destination. White point is given in xyY
-static
-cmsBool _cmsAdaptMatrixToD50(cmsMAT3* r, const cmsCIExyY* SourceWhitePt)
-{
- cmsCIEXYZ Dn;
- cmsMAT3 Bradford;
- cmsMAT3 Tmp;
-
- cmsxyY2XYZ(&Dn, SourceWhitePt);
-
- if (!_cmsAdaptationMatrix(&Bradford, NULL, &Dn, cmsD50_XYZ())) return FALSE;
-
- Tmp = *r;
- _cmsMAT3per(r, &Bradford, &Tmp);
-
- return TRUE;
-}
-
-// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
-// This is just an approximation, I am not handling all the non-linear
-// aspects of the RGB to XYZ process, and assumming that the gamma correction
-// has transitive property in the tranformation chain.
-//
-// the alghoritm:
-//
-// - First I build the absolute conversion matrix using
-// primaries in XYZ. This matrix is next inverted
-// - Then I eval the source white point across this matrix
-// obtaining the coeficients of the transformation
-// - Then, I apply these coeficients to the original matrix
-//
-cmsBool _cmsBuildRGB2XYZtransferMatrix(cmsMAT3* r, const cmsCIExyY* WhitePt, const cmsCIExyYTRIPLE* Primrs)
-{
- cmsVEC3 WhitePoint, Coef;
- cmsMAT3 Result, Primaries;
- cmsFloat64Number xn, yn;
- cmsFloat64Number xr, yr;
- cmsFloat64Number xg, yg;
- cmsFloat64Number xb, yb;
-
- xn = WhitePt -> x;
- yn = WhitePt -> y;
- xr = Primrs -> Red.x;
- yr = Primrs -> Red.y;
- xg = Primrs -> Green.x;
- yg = Primrs -> Green.y;
- xb = Primrs -> Blue.x;
- yb = Primrs -> Blue.y;
-
- // Build Primaries matrix
- _cmsVEC3init(&Primaries.v[0], xr, xg, xb);
- _cmsVEC3init(&Primaries.v[1], yr, yg, yb);
- _cmsVEC3init(&Primaries.v[2], (1-xr-yr), (1-xg-yg), (1-xb-yb));
-
-
- // Result = Primaries ^ (-1) inverse matrix
- if (!_cmsMAT3inverse(&Primaries, &Result))
- return FALSE;
-
-
- _cmsVEC3init(&WhitePoint, xn/yn, 1.0, (1.0-xn-yn)/yn);
-
- // Across inverse primaries ...
- _cmsMAT3eval(&Coef, &Result, &WhitePoint);
-
- // Give us the Coefs, then I build transformation matrix
- _cmsVEC3init(&r -> v[0], Coef.n[VX]*xr, Coef.n[VY]*xg, Coef.n[VZ]*xb);
- _cmsVEC3init(&r -> v[1], Coef.n[VX]*yr, Coef.n[VY]*yg, Coef.n[VZ]*yb);
- _cmsVEC3init(&r -> v[2], Coef.n[VX]*(1.0-xr-yr), Coef.n[VY]*(1.0-xg-yg), Coef.n[VZ]*(1.0-xb-yb));
-
-
- return _cmsAdaptMatrixToD50(r, WhitePt);
-
-}
-
-
-// Adapts a color to a given illuminant. Original color is expected to have
-// a SourceWhitePt white point.
-cmsBool CMSEXPORT cmsAdaptToIlluminant(cmsCIEXYZ* Result,
- const cmsCIEXYZ* SourceWhitePt,
- const cmsCIEXYZ* Illuminant,
- const cmsCIEXYZ* Value)
-{
- cmsMAT3 Bradford;
- cmsVEC3 In, Out;
-
- _cmsAssert(Result != NULL);
- _cmsAssert(SourceWhitePt != NULL);
- _cmsAssert(Illuminant != NULL);
- _cmsAssert(Value != NULL);
-
- if (!_cmsAdaptationMatrix(&Bradford, NULL, SourceWhitePt, Illuminant)) return FALSE;
-
- _cmsVEC3init(&In, Value -> X, Value -> Y, Value -> Z);
- _cmsMAT3eval(&Out, &Bradford, &In);
-
- Result -> X = Out.n[0];
- Result -> Y = Out.n[1];
- Result -> Z = Out.n[2];
-
- return TRUE;
-}