summaryrefslogtreecommitdiff
path: root/third_party/base/allocator/partition_allocator/partition_bucket.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/base/allocator/partition_allocator/partition_bucket.cc')
-rw-r--r--third_party/base/allocator/partition_allocator/partition_bucket.cc568
1 files changed, 568 insertions, 0 deletions
diff --git a/third_party/base/allocator/partition_allocator/partition_bucket.cc b/third_party/base/allocator/partition_allocator/partition_bucket.cc
new file mode 100644
index 0000000000..b540adb14d
--- /dev/null
+++ b/third_party/base/allocator/partition_allocator/partition_bucket.cc
@@ -0,0 +1,568 @@
+// Copyright (c) 2018 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "third_party/base/allocator/partition_allocator/partition_bucket.h"
+
+#include "build/build_config.h"
+#include "third_party/base/allocator/partition_allocator/oom.h"
+#include "third_party/base/allocator/partition_allocator/page_allocator.h"
+#include "third_party/base/allocator/partition_allocator/partition_alloc_constants.h"
+#include "third_party/base/allocator/partition_allocator/partition_direct_map_extent.h"
+#include "third_party/base/allocator/partition_allocator/partition_oom.h"
+#include "third_party/base/allocator/partition_allocator/partition_page.h"
+#include "third_party/base/allocator/partition_allocator/partition_root_base.h"
+
+namespace pdfium {
+namespace base {
+namespace internal {
+
+namespace {
+
+ALWAYS_INLINE PartitionPage* PartitionDirectMap(PartitionRootBase* root,
+ int flags,
+ size_t raw_size) {
+ size_t size = PartitionBucket::get_direct_map_size(raw_size);
+
+ // Because we need to fake looking like a super page, we need to allocate
+ // a bunch of system pages more than "size":
+ // - The first few system pages are the partition page in which the super
+ // page metadata is stored. We fault just one system page out of a partition
+ // page sized clump.
+ // - We add a trailing guard page on 32-bit (on 64-bit we rely on the
+ // massive address space plus randomization instead).
+ size_t map_size = size + kPartitionPageSize;
+#if !defined(ARCH_CPU_64_BITS)
+ map_size += kSystemPageSize;
+#endif
+ // Round up to the allocation granularity.
+ map_size += kPageAllocationGranularityOffsetMask;
+ map_size &= kPageAllocationGranularityBaseMask;
+
+ char* ptr = reinterpret_cast<char*>(
+ AllocPages(nullptr, map_size, kSuperPageSize, PageReadWrite));
+ if (UNLIKELY(!ptr))
+ return nullptr;
+
+ size_t committed_page_size = size + kSystemPageSize;
+ root->total_size_of_direct_mapped_pages += committed_page_size;
+ root->IncreaseCommittedPages(committed_page_size);
+
+ char* slot = ptr + kPartitionPageSize;
+ CHECK(SetSystemPagesAccess(ptr + (kSystemPageSize * 2),
+ kPartitionPageSize - (kSystemPageSize * 2),
+ PageInaccessible));
+#if !defined(ARCH_CPU_64_BITS)
+ CHECK(SetSystemPagesAccess(ptr, kSystemPageSize, PageInaccessible));
+ CHECK(SetSystemPagesAccess(slot + size, kSystemPageSize, PageInaccessible));
+#endif
+
+ PartitionSuperPageExtentEntry* extent =
+ reinterpret_cast<PartitionSuperPageExtentEntry*>(
+ PartitionSuperPageToMetadataArea(ptr));
+ extent->root = root;
+ // The new structures are all located inside a fresh system page so they
+ // will all be zeroed out. These DCHECKs are for documentation.
+ DCHECK(!extent->super_page_base);
+ DCHECK(!extent->super_pages_end);
+ DCHECK(!extent->next);
+ PartitionPage* page = PartitionPage::FromPointerNoAlignmentCheck(slot);
+ PartitionBucket* bucket = reinterpret_cast<PartitionBucket*>(
+ reinterpret_cast<char*>(page) + (kPageMetadataSize * 2));
+ DCHECK(!page->next_page);
+ DCHECK(!page->num_allocated_slots);
+ DCHECK(!page->num_unprovisioned_slots);
+ DCHECK(!page->page_offset);
+ DCHECK(!page->empty_cache_index);
+ page->bucket = bucket;
+ page->freelist_head = reinterpret_cast<PartitionFreelistEntry*>(slot);
+ PartitionFreelistEntry* next_entry =
+ reinterpret_cast<PartitionFreelistEntry*>(slot);
+ next_entry->next = PartitionFreelistEntry::Transform(nullptr);
+
+ DCHECK(!bucket->active_pages_head);
+ DCHECK(!bucket->empty_pages_head);
+ DCHECK(!bucket->decommitted_pages_head);
+ DCHECK(!bucket->num_system_pages_per_slot_span);
+ DCHECK(!bucket->num_full_pages);
+ bucket->slot_size = size;
+
+ PartitionDirectMapExtent* map_extent =
+ PartitionDirectMapExtent::FromPage(page);
+ map_extent->map_size = map_size - kPartitionPageSize - kSystemPageSize;
+ map_extent->bucket = bucket;
+
+ // Maintain the doubly-linked list of all direct mappings.
+ map_extent->next_extent = root->direct_map_list;
+ if (map_extent->next_extent)
+ map_extent->next_extent->prev_extent = map_extent;
+ map_extent->prev_extent = nullptr;
+ root->direct_map_list = map_extent;
+
+ return page;
+}
+
+} // namespace
+
+// static
+PartitionBucket PartitionBucket::sentinel_bucket_;
+
+PartitionBucket* PartitionBucket::get_sentinel_bucket() {
+ return &sentinel_bucket_;
+}
+
+// TODO(ajwong): This seems to interact badly with
+// get_pages_per_slot_span() which rounds the value from this up to a
+// multiple of kNumSystemPagesPerPartitionPage (aka 4) anyways.
+// http://crbug.com/776537
+//
+// TODO(ajwong): The waste calculation seems wrong. The PTE usage should cover
+// both used and unsed pages.
+// http://crbug.com/776537
+uint8_t PartitionBucket::get_system_pages_per_slot_span() {
+ // This works out reasonably for the current bucket sizes of the generic
+ // allocator, and the current values of partition page size and constants.
+ // Specifically, we have enough room to always pack the slots perfectly into
+ // some number of system pages. The only waste is the waste associated with
+ // unfaulted pages (i.e. wasted address space).
+ // TODO: we end up using a lot of system pages for very small sizes. For
+ // example, we'll use 12 system pages for slot size 24. The slot size is
+ // so small that the waste would be tiny with just 4, or 1, system pages.
+ // Later, we can investigate whether there are anti-fragmentation benefits
+ // to using fewer system pages.
+ double best_waste_ratio = 1.0f;
+ uint16_t best_pages = 0;
+ if (this->slot_size > kMaxSystemPagesPerSlotSpan * kSystemPageSize) {
+ // TODO(ajwong): Why is there a DCHECK here for this?
+ // http://crbug.com/776537
+ DCHECK(!(this->slot_size % kSystemPageSize));
+ best_pages = static_cast<uint16_t>(this->slot_size / kSystemPageSize);
+ // TODO(ajwong): Should this be checking against
+ // kMaxSystemPagesPerSlotSpan or numeric_limits<uint8_t>::max?
+ // http://crbug.com/776537
+ CHECK(best_pages < (1 << 8));
+ return static_cast<uint8_t>(best_pages);
+ }
+ DCHECK(this->slot_size <= kMaxSystemPagesPerSlotSpan * kSystemPageSize);
+ for (uint16_t i = kNumSystemPagesPerPartitionPage - 1;
+ i <= kMaxSystemPagesPerSlotSpan; ++i) {
+ size_t page_size = kSystemPageSize * i;
+ size_t num_slots = page_size / this->slot_size;
+ size_t waste = page_size - (num_slots * this->slot_size);
+ // Leaving a page unfaulted is not free; the page will occupy an empty page
+ // table entry. Make a simple attempt to account for that.
+ //
+ // TODO(ajwong): This looks wrong. PTEs are allocated for all pages
+ // regardless of whether or not they are wasted. Should it just
+ // be waste += i * sizeof(void*)?
+ // http://crbug.com/776537
+ size_t num_remainder_pages = i & (kNumSystemPagesPerPartitionPage - 1);
+ size_t num_unfaulted_pages =
+ num_remainder_pages
+ ? (kNumSystemPagesPerPartitionPage - num_remainder_pages)
+ : 0;
+ waste += sizeof(void*) * num_unfaulted_pages;
+ double waste_ratio =
+ static_cast<double>(waste) / static_cast<double>(page_size);
+ if (waste_ratio < best_waste_ratio) {
+ best_waste_ratio = waste_ratio;
+ best_pages = i;
+ }
+ }
+ DCHECK(best_pages > 0);
+ CHECK(best_pages <= kMaxSystemPagesPerSlotSpan);
+ return static_cast<uint8_t>(best_pages);
+}
+
+void PartitionBucket::Init(uint32_t new_slot_size) {
+ slot_size = new_slot_size;
+ active_pages_head = PartitionPage::get_sentinel_page();
+ empty_pages_head = nullptr;
+ decommitted_pages_head = nullptr;
+ num_full_pages = 0;
+ num_system_pages_per_slot_span = get_system_pages_per_slot_span();
+}
+
+NOINLINE void PartitionBucket::OnFull() {
+ OOM_CRASH();
+}
+
+ALWAYS_INLINE void* PartitionBucket::AllocNewSlotSpan(
+ PartitionRootBase* root,
+ int flags,
+ uint16_t num_partition_pages) {
+ DCHECK(!(reinterpret_cast<uintptr_t>(root->next_partition_page) %
+ kPartitionPageSize));
+ DCHECK(!(reinterpret_cast<uintptr_t>(root->next_partition_page_end) %
+ kPartitionPageSize));
+ DCHECK(num_partition_pages <= kNumPartitionPagesPerSuperPage);
+ size_t total_size = kPartitionPageSize * num_partition_pages;
+ size_t num_partition_pages_left =
+ (root->next_partition_page_end - root->next_partition_page) >>
+ kPartitionPageShift;
+ if (LIKELY(num_partition_pages_left >= num_partition_pages)) {
+ // In this case, we can still hand out pages from the current super page
+ // allocation.
+ char* ret = root->next_partition_page;
+
+ // Fresh System Pages in the SuperPages are decommited. Commit them
+ // before vending them back.
+ CHECK(SetSystemPagesAccess(ret, total_size, PageReadWrite));
+
+ root->next_partition_page += total_size;
+ root->IncreaseCommittedPages(total_size);
+ return ret;
+ }
+
+ // Need a new super page. We want to allocate super pages in a continguous
+ // address region as much as possible. This is important for not causing
+ // page table bloat and not fragmenting address spaces in 32 bit
+ // architectures.
+ char* requested_address = root->next_super_page;
+ char* super_page = reinterpret_cast<char*>(AllocPages(
+ requested_address, kSuperPageSize, kSuperPageSize, PageReadWrite));
+ if (UNLIKELY(!super_page))
+ return nullptr;
+
+ root->total_size_of_super_pages += kSuperPageSize;
+ root->IncreaseCommittedPages(total_size);
+
+ // |total_size| MUST be less than kSuperPageSize - (kPartitionPageSize*2).
+ // This is a trustworthy value because num_partition_pages is not user
+ // controlled.
+ //
+ // TODO(ajwong): Introduce a DCHECK.
+ root->next_super_page = super_page + kSuperPageSize;
+ char* ret = super_page + kPartitionPageSize;
+ root->next_partition_page = ret + total_size;
+ root->next_partition_page_end = root->next_super_page - kPartitionPageSize;
+ // Make the first partition page in the super page a guard page, but leave a
+ // hole in the middle.
+ // This is where we put page metadata and also a tiny amount of extent
+ // metadata.
+ CHECK(SetSystemPagesAccess(super_page, kSystemPageSize, PageInaccessible));
+ CHECK(SetSystemPagesAccess(super_page + (kSystemPageSize * 2),
+ kPartitionPageSize - (kSystemPageSize * 2),
+ PageInaccessible));
+ // CHECK(SetSystemPagesAccess(super_page + (kSuperPageSize -
+ // kPartitionPageSize),
+ // kPartitionPageSize, PageInaccessible));
+ // All remaining slotspans for the unallocated PartitionPages inside the
+ // SuperPage are conceptually decommitted. Correctly set the state here
+ // so they do not occupy resources.
+ //
+ // TODO(ajwong): Refactor Page Allocator API so the SuperPage comes in
+ // decommited initially.
+ CHECK(SetSystemPagesAccess(super_page + kPartitionPageSize + total_size,
+ (kSuperPageSize - kPartitionPageSize - total_size),
+ PageInaccessible));
+
+ // If we were after a specific address, but didn't get it, assume that
+ // the system chose a lousy address. Here most OS'es have a default
+ // algorithm that isn't randomized. For example, most Linux
+ // distributions will allocate the mapping directly before the last
+ // successful mapping, which is far from random. So we just get fresh
+ // randomness for the next mapping attempt.
+ if (requested_address && requested_address != super_page)
+ root->next_super_page = nullptr;
+
+ // We allocated a new super page so update super page metadata.
+ // First check if this is a new extent or not.
+ PartitionSuperPageExtentEntry* latest_extent =
+ reinterpret_cast<PartitionSuperPageExtentEntry*>(
+ PartitionSuperPageToMetadataArea(super_page));
+ // By storing the root in every extent metadata object, we have a fast way
+ // to go from a pointer within the partition to the root object.
+ latest_extent->root = root;
+ // Most new extents will be part of a larger extent, and these three fields
+ // are unused, but we initialize them to 0 so that we get a clear signal
+ // in case they are accidentally used.
+ latest_extent->super_page_base = nullptr;
+ latest_extent->super_pages_end = nullptr;
+ latest_extent->next = nullptr;
+
+ PartitionSuperPageExtentEntry* current_extent = root->current_extent;
+ bool is_new_extent = (super_page != requested_address);
+ if (UNLIKELY(is_new_extent)) {
+ if (UNLIKELY(!current_extent)) {
+ DCHECK(!root->first_extent);
+ root->first_extent = latest_extent;
+ } else {
+ DCHECK(current_extent->super_page_base);
+ current_extent->next = latest_extent;
+ }
+ root->current_extent = latest_extent;
+ latest_extent->super_page_base = super_page;
+ latest_extent->super_pages_end = super_page + kSuperPageSize;
+ } else {
+ // We allocated next to an existing extent so just nudge the size up a
+ // little.
+ DCHECK(current_extent->super_pages_end);
+ current_extent->super_pages_end += kSuperPageSize;
+ DCHECK(ret >= current_extent->super_page_base &&
+ ret < current_extent->super_pages_end);
+ }
+ return ret;
+}
+
+ALWAYS_INLINE uint16_t PartitionBucket::get_pages_per_slot_span() {
+ // Rounds up to nearest multiple of kNumSystemPagesPerPartitionPage.
+ return (num_system_pages_per_slot_span +
+ (kNumSystemPagesPerPartitionPage - 1)) /
+ kNumSystemPagesPerPartitionPage;
+}
+
+ALWAYS_INLINE void PartitionBucket::InitializeSlotSpan(PartitionPage* page) {
+ // The bucket never changes. We set it up once.
+ page->bucket = this;
+ page->empty_cache_index = -1;
+
+ page->Reset();
+
+ // If this page has just a single slot, do not set up page offsets for any
+ // page metadata other than the first one. This ensures that attempts to
+ // touch invalid page metadata fail.
+ if (page->num_unprovisioned_slots == 1)
+ return;
+
+ uint16_t num_partition_pages = get_pages_per_slot_span();
+ char* page_char_ptr = reinterpret_cast<char*>(page);
+ for (uint16_t i = 1; i < num_partition_pages; ++i) {
+ page_char_ptr += kPageMetadataSize;
+ PartitionPage* secondary_page =
+ reinterpret_cast<PartitionPage*>(page_char_ptr);
+ secondary_page->page_offset = i;
+ }
+}
+
+ALWAYS_INLINE char* PartitionBucket::AllocAndFillFreelist(PartitionPage* page) {
+ DCHECK(page != PartitionPage::get_sentinel_page());
+ uint16_t num_slots = page->num_unprovisioned_slots;
+ DCHECK(num_slots);
+ // We should only get here when _every_ slot is either used or unprovisioned.
+ // (The third state is "on the freelist". If we have a non-empty freelist, we
+ // should not get here.)
+ DCHECK(num_slots + page->num_allocated_slots == this->get_slots_per_span());
+ // Similarly, make explicitly sure that the freelist is empty.
+ DCHECK(!page->freelist_head);
+ DCHECK(page->num_allocated_slots >= 0);
+
+ size_t size = this->slot_size;
+ char* base = reinterpret_cast<char*>(PartitionPage::ToPointer(page));
+ char* return_object = base + (size * page->num_allocated_slots);
+ char* first_freelist_pointer = return_object + size;
+ char* first_freelist_pointer_extent =
+ first_freelist_pointer + sizeof(PartitionFreelistEntry*);
+ // Our goal is to fault as few system pages as possible. We calculate the
+ // page containing the "end" of the returned slot, and then allow freelist
+ // pointers to be written up to the end of that page.
+ char* sub_page_limit = reinterpret_cast<char*>(
+ RoundUpToSystemPage(reinterpret_cast<size_t>(first_freelist_pointer)));
+ char* slots_limit = return_object + (size * num_slots);
+ char* freelist_limit = sub_page_limit;
+ if (UNLIKELY(slots_limit < freelist_limit))
+ freelist_limit = slots_limit;
+
+ uint16_t num_new_freelist_entries = 0;
+ if (LIKELY(first_freelist_pointer_extent <= freelist_limit)) {
+ // Only consider used space in the slot span. If we consider wasted
+ // space, we may get an off-by-one when a freelist pointer fits in the
+ // wasted space, but a slot does not.
+ // We know we can fit at least one freelist pointer.
+ num_new_freelist_entries = 1;
+ // Any further entries require space for the whole slot span.
+ num_new_freelist_entries += static_cast<uint16_t>(
+ (freelist_limit - first_freelist_pointer_extent) / size);
+ }
+
+ // We always return an object slot -- that's the +1 below.
+ // We do not neccessarily create any new freelist entries, because we cross
+ // sub page boundaries frequently for large bucket sizes.
+ DCHECK(num_new_freelist_entries + 1 <= num_slots);
+ num_slots -= (num_new_freelist_entries + 1);
+ page->num_unprovisioned_slots = num_slots;
+ page->num_allocated_slots++;
+
+ if (LIKELY(num_new_freelist_entries)) {
+ char* freelist_pointer = first_freelist_pointer;
+ PartitionFreelistEntry* entry =
+ reinterpret_cast<PartitionFreelistEntry*>(freelist_pointer);
+ page->freelist_head = entry;
+ while (--num_new_freelist_entries) {
+ freelist_pointer += size;
+ PartitionFreelistEntry* next_entry =
+ reinterpret_cast<PartitionFreelistEntry*>(freelist_pointer);
+ entry->next = PartitionFreelistEntry::Transform(next_entry);
+ entry = next_entry;
+ }
+ entry->next = PartitionFreelistEntry::Transform(nullptr);
+ } else {
+ page->freelist_head = nullptr;
+ }
+ return return_object;
+}
+
+bool PartitionBucket::SetNewActivePage() {
+ PartitionPage* page = this->active_pages_head;
+ if (page == PartitionPage::get_sentinel_page())
+ return false;
+
+ PartitionPage* next_page;
+
+ for (; page; page = next_page) {
+ next_page = page->next_page;
+ DCHECK(page->bucket == this);
+ DCHECK(page != this->empty_pages_head);
+ DCHECK(page != this->decommitted_pages_head);
+
+ if (LIKELY(page->is_active())) {
+ // This page is usable because it has freelist entries, or has
+ // unprovisioned slots we can create freelist entries from.
+ this->active_pages_head = page;
+ return true;
+ }
+
+ // Deal with empty and decommitted pages.
+ if (LIKELY(page->is_empty())) {
+ page->next_page = this->empty_pages_head;
+ this->empty_pages_head = page;
+ } else if (LIKELY(page->is_decommitted())) {
+ page->next_page = this->decommitted_pages_head;
+ this->decommitted_pages_head = page;
+ } else {
+ DCHECK(page->is_full());
+ // If we get here, we found a full page. Skip over it too, and also
+ // tag it as full (via a negative value). We need it tagged so that
+ // free'ing can tell, and move it back into the active page list.
+ page->num_allocated_slots = -page->num_allocated_slots;
+ ++this->num_full_pages;
+ // num_full_pages is a uint16_t for efficient packing so guard against
+ // overflow to be safe.
+ if (UNLIKELY(!this->num_full_pages))
+ OnFull();
+ // Not necessary but might help stop accidents.
+ page->next_page = nullptr;
+ }
+ }
+
+ this->active_pages_head = PartitionPage::get_sentinel_page();
+ return false;
+}
+
+void* PartitionBucket::SlowPathAlloc(PartitionRootBase* root,
+ int flags,
+ size_t size,
+ bool* is_already_zeroed) {
+ // The slow path is called when the freelist is empty.
+ DCHECK(!this->active_pages_head->freelist_head);
+
+ PartitionPage* new_page = nullptr;
+ *is_already_zeroed = false;
+
+ // For the PartitionRootGeneric::Alloc() API, we have a bunch of buckets
+ // marked as special cases. We bounce them through to the slow path so that
+ // we can still have a blazing fast hot path due to lack of corner-case
+ // branches.
+ //
+ // Note: The ordering of the conditionals matter! In particular,
+ // SetNewActivePage() has a side-effect even when returning
+ // false where it sweeps the active page list and may move things into
+ // the empty or decommitted lists which affects the subsequent conditional.
+ bool return_null = flags & PartitionAllocReturnNull;
+ if (UNLIKELY(this->is_direct_mapped())) {
+ DCHECK(size > kGenericMaxBucketed);
+ DCHECK(this == get_sentinel_bucket());
+ DCHECK(this->active_pages_head == PartitionPage::get_sentinel_page());
+ if (size > kGenericMaxDirectMapped) {
+ if (return_null)
+ return nullptr;
+ PartitionExcessiveAllocationSize();
+ }
+ new_page = PartitionDirectMap(root, flags, size);
+#if !defined(OS_MACOSX)
+ // Turn off the optimization to see if it helps https://crbug.com/892550.
+ *is_already_zeroed = true;
+#endif
+ } else if (LIKELY(this->SetNewActivePage())) {
+ // First, did we find an active page in the active pages list?
+ new_page = this->active_pages_head;
+ DCHECK(new_page->is_active());
+ } else if (LIKELY(this->empty_pages_head != nullptr) ||
+ LIKELY(this->decommitted_pages_head != nullptr)) {
+ // Second, look in our lists of empty and decommitted pages.
+ // Check empty pages first, which are preferred, but beware that an
+ // empty page might have been decommitted.
+ while (LIKELY((new_page = this->empty_pages_head) != nullptr)) {
+ DCHECK(new_page->bucket == this);
+ DCHECK(new_page->is_empty() || new_page->is_decommitted());
+ this->empty_pages_head = new_page->next_page;
+ // Accept the empty page unless it got decommitted.
+ if (new_page->freelist_head) {
+ new_page->next_page = nullptr;
+ break;
+ }
+ DCHECK(new_page->is_decommitted());
+ new_page->next_page = this->decommitted_pages_head;
+ this->decommitted_pages_head = new_page;
+ }
+ if (UNLIKELY(!new_page) &&
+ LIKELY(this->decommitted_pages_head != nullptr)) {
+ new_page = this->decommitted_pages_head;
+ DCHECK(new_page->bucket == this);
+ DCHECK(new_page->is_decommitted());
+ this->decommitted_pages_head = new_page->next_page;
+ void* addr = PartitionPage::ToPointer(new_page);
+ root->RecommitSystemPages(addr, new_page->bucket->get_bytes_per_span());
+ new_page->Reset();
+ // TODO(https://crbug.com/890752): Optimizing here might cause pages to
+ // not be zeroed.
+ // *is_already_zeroed = true;
+ }
+ DCHECK(new_page);
+ } else {
+ // Third. If we get here, we need a brand new page.
+ uint16_t num_partition_pages = this->get_pages_per_slot_span();
+ void* raw_pages = AllocNewSlotSpan(root, flags, num_partition_pages);
+ if (LIKELY(raw_pages != nullptr)) {
+ new_page = PartitionPage::FromPointerNoAlignmentCheck(raw_pages);
+ InitializeSlotSpan(new_page);
+ // TODO(https://crbug.com/890752): Optimizing here causes pages to not be
+ // zeroed on at least macOS.
+ // *is_already_zeroed = true;
+ }
+ }
+
+ // Bail if we had a memory allocation failure.
+ if (UNLIKELY(!new_page)) {
+ DCHECK(this->active_pages_head == PartitionPage::get_sentinel_page());
+ if (return_null)
+ return nullptr;
+ root->OutOfMemory();
+ }
+
+ // TODO(ajwong): Is there a way to avoid the reading of bucket here?
+ // It seems like in many of the conditional branches above, |this| ==
+ // |new_page->bucket|. Maybe pull this into another function?
+ PartitionBucket* bucket = new_page->bucket;
+ DCHECK(bucket != get_sentinel_bucket());
+ bucket->active_pages_head = new_page;
+ new_page->set_raw_size(size);
+
+ // If we found an active page with free slots, or an empty page, we have a
+ // usable freelist head.
+ if (LIKELY(new_page->freelist_head != nullptr)) {
+ PartitionFreelistEntry* entry = new_page->freelist_head;
+ PartitionFreelistEntry* new_head =
+ PartitionFreelistEntry::Transform(entry->next);
+ new_page->freelist_head = new_head;
+ new_page->num_allocated_slots++;
+ return entry;
+ }
+ // Otherwise, we need to build the freelist.
+ DCHECK(new_page->num_unprovisioned_slots);
+ return AllocAndFillFreelist(new_page);
+}
+
+} // namespace internal
+} // namespace base
+} // namespace pdfium