summaryrefslogtreecommitdiff
path: root/third_party/base/numerics/safe_conversions_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/base/numerics/safe_conversions_impl.h')
-rw-r--r--third_party/base/numerics/safe_conversions_impl.h694
1 files changed, 605 insertions, 89 deletions
diff --git a/third_party/base/numerics/safe_conversions_impl.h b/third_party/base/numerics/safe_conversions_impl.h
index e1c4c3b756..2a7ce146e3 100644
--- a/third_party/base/numerics/safe_conversions_impl.h
+++ b/third_party/base/numerics/safe_conversions_impl.h
@@ -2,29 +2,81 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
-#ifndef PDFIUM_THIRD_PARTY_BASE_SAFE_CONVERSIONS_IMPL_H_
-#define PDFIUM_THIRD_PARTY_BASE_SAFE_CONVERSIONS_IMPL_H_
+#ifndef PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
+#define PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
-#include <assert.h>
-#include <limits>
+#include <stdint.h>
-#include "third_party/base/macros.h"
+#include <limits>
+#include <type_traits>
namespace pdfium {
namespace base {
namespace internal {
// The std library doesn't provide a binary max_exponent for integers, however
-// we can compute one by adding one to the number of non-sign bits. This allows
-// for accurate range comparisons between floating point and integer types.
+// we can compute an analog using std::numeric_limits<>::digits.
template <typename NumericType>
struct MaxExponent {
- static const int value = std::numeric_limits<NumericType>::is_iec559
+ static const int value = std::is_floating_point<NumericType>::value
? std::numeric_limits<NumericType>::max_exponent
- : (sizeof(NumericType) * 8 + 1 -
- std::numeric_limits<NumericType>::is_signed);
+ : std::numeric_limits<NumericType>::digits + 1;
+};
+
+// The number of bits (including the sign) in an integer. Eliminates sizeof
+// hacks.
+template <typename NumericType>
+struct IntegerBitsPlusSign {
+ static const int value = std::numeric_limits<NumericType>::digits +
+ std::is_signed<NumericType>::value;
+};
+
+// Helper templates for integer manipulations.
+
+template <typename Integer>
+struct PositionOfSignBit {
+ static const size_t value = IntegerBitsPlusSign<Integer>::value - 1;
};
+// Determines if a numeric value is negative without throwing compiler
+// warnings on: unsigned(value) < 0.
+template <typename T,
+ typename std::enable_if<std::is_signed<T>::value>::type* = nullptr>
+constexpr bool IsValueNegative(T value) {
+ static_assert(std::is_arithmetic<T>::value, "Argument must be numeric.");
+ return value < 0;
+}
+
+template <typename T,
+ typename std::enable_if<!std::is_signed<T>::value>::type* = nullptr>
+constexpr bool IsValueNegative(T) {
+ static_assert(std::is_arithmetic<T>::value, "Argument must be numeric.");
+ return false;
+}
+
+// This performs a fast negation, returning a signed value. It works on unsigned
+// arguments, but probably doesn't do what you want for any unsigned value
+// larger than max / 2 + 1 (i.e. signed min cast to unsigned).
+template <typename T>
+constexpr typename std::make_signed<T>::type ConditionalNegate(
+ T x,
+ bool is_negative) {
+ static_assert(std::is_integral<T>::value, "Type must be integral");
+ using SignedT = typename std::make_signed<T>::type;
+ using UnsignedT = typename std::make_unsigned<T>::type;
+ return static_cast<SignedT>(
+ (static_cast<UnsignedT>(x) ^ -SignedT(is_negative)) + is_negative);
+}
+
+// This performs a safe, absolute value via unsigned overflow.
+template <typename T>
+constexpr typename std::make_unsigned<T>::type SafeUnsignedAbs(T value) {
+ static_assert(std::is_integral<T>::value, "Type must be integral");
+ using UnsignedT = typename std::make_unsigned<T>::type;
+ return IsValueNegative(value) ? 0 - static_cast<UnsignedT>(value)
+ : static_cast<UnsignedT>(value);
+}
+
enum IntegerRepresentation {
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED
@@ -32,7 +84,7 @@ enum IntegerRepresentation {
// A range for a given nunmeric Src type is contained for a given numeric Dst
// type if both numeric_limits<Src>::max() <= numeric_limits<Dst>::max() and
-// numeric_limits<Src>::min() >= numeric_limits<Dst>::min() are true.
+// numeric_limits<Src>::lowest() >= numeric_limits<Dst>::lowest() are true.
// We implement this as template specializations rather than simple static
// comparisons to ensure type correctness in our comparisons.
enum NumericRangeRepresentation {
@@ -43,16 +95,14 @@ enum NumericRangeRepresentation {
// Helper templates to statically determine if our destination type can contain
// maximum and minimum values represented by the source type.
-template <
- typename Dst,
- typename Src,
- IntegerRepresentation DstSign = std::numeric_limits<Dst>::is_signed
- ? INTEGER_REPRESENTATION_SIGNED
- : INTEGER_REPRESENTATION_UNSIGNED,
- IntegerRepresentation SrcSign =
- std::numeric_limits<Src>::is_signed
- ? INTEGER_REPRESENTATION_SIGNED
- : INTEGER_REPRESENTATION_UNSIGNED >
+template <typename Dst,
+ typename Src,
+ IntegerRepresentation DstSign = std::is_signed<Dst>::value
+ ? INTEGER_REPRESENTATION_SIGNED
+ : INTEGER_REPRESENTATION_UNSIGNED,
+ IntegerRepresentation SrcSign = std::is_signed<Src>::value
+ ? INTEGER_REPRESENTATION_SIGNED
+ : INTEGER_REPRESENTATION_UNSIGNED>
struct StaticDstRangeRelationToSrcRange;
// Same sign: Dst is guaranteed to contain Src only if its range is equal or
@@ -87,132 +137,598 @@ struct StaticDstRangeRelationToSrcRange<Dst,
static const NumericRangeRepresentation value = NUMERIC_RANGE_NOT_CONTAINED;
};
-enum RangeConstraint {
- RANGE_VALID = 0x0, // Value can be represented by the destination type.
- RANGE_UNDERFLOW = 0x1, // Value would overflow.
- RANGE_OVERFLOW = 0x2, // Value would underflow.
- RANGE_INVALID = RANGE_UNDERFLOW | RANGE_OVERFLOW // Invalid (i.e. NaN).
+// This class wraps the range constraints as separate booleans so the compiler
+// can identify constants and eliminate unused code paths.
+class RangeCheck {
+ public:
+ constexpr RangeCheck(bool is_in_lower_bound, bool is_in_upper_bound)
+ : is_underflow_(!is_in_lower_bound), is_overflow_(!is_in_upper_bound) {}
+ constexpr RangeCheck() : is_underflow_(0), is_overflow_(0) {}
+ constexpr bool IsValid() const { return !is_overflow_ && !is_underflow_; }
+ constexpr bool IsInvalid() const { return is_overflow_ && is_underflow_; }
+ constexpr bool IsOverflow() const { return is_overflow_ && !is_underflow_; }
+ constexpr bool IsUnderflow() const { return !is_overflow_ && is_underflow_; }
+ constexpr bool IsOverflowFlagSet() const { return is_overflow_; }
+ constexpr bool IsUnderflowFlagSet() const { return is_underflow_; }
+ constexpr bool operator==(const RangeCheck rhs) const {
+ return is_underflow_ == rhs.is_underflow_ &&
+ is_overflow_ == rhs.is_overflow_;
+ }
+ constexpr bool operator!=(const RangeCheck rhs) const {
+ return !(*this == rhs);
+ }
+
+ private:
+ // Do not change the order of these member variables. The integral conversion
+ // optimization depends on this exact order.
+ const bool is_underflow_;
+ const bool is_overflow_;
};
-// Helper function for coercing an int back to a RangeContraint.
-inline RangeConstraint GetRangeConstraint(int integer_range_constraint) {
- assert(integer_range_constraint >= RANGE_VALID &&
- integer_range_constraint <= RANGE_INVALID);
- return static_cast<RangeConstraint>(integer_range_constraint);
-}
+// The following helper template addresses a corner case in range checks for
+// conversion from a floating-point type to an integral type of smaller range
+// but larger precision (e.g. float -> unsigned). The problem is as follows:
+// 1. Integral maximum is always one less than a power of two, so it must be
+// truncated to fit the mantissa of the floating point. The direction of
+// rounding is implementation defined, but by default it's always IEEE
+// floats, which round to nearest and thus result in a value of larger
+// magnitude than the integral value.
+// Example: float f = UINT_MAX; // f is 4294967296f but UINT_MAX
+// // is 4294967295u.
+// 2. If the floating point value is equal to the promoted integral maximum
+// value, a range check will erroneously pass.
+// Example: (4294967296f <= 4294967295u) // This is true due to a precision
+// // loss in rounding up to float.
+// 3. When the floating point value is then converted to an integral, the
+// resulting value is out of range for the target integral type and
+// thus is implementation defined.
+// Example: unsigned u = (float)INT_MAX; // u will typically overflow to 0.
+// To fix this bug we manually truncate the maximum value when the destination
+// type is an integral of larger precision than the source floating-point type,
+// such that the resulting maximum is represented exactly as a floating point.
+template <typename Dst, typename Src, template <typename> class Bounds>
+struct NarrowingRange {
+ using SrcLimits = std::numeric_limits<Src>;
+ using DstLimits = typename std::numeric_limits<Dst>;
-// This function creates a RangeConstraint from an upper and lower bound
-// check by taking advantage of the fact that only NaN can be out of range in
-// both directions at once.
-inline RangeConstraint GetRangeConstraint(bool is_in_upper_bound,
- bool is_in_lower_bound) {
- return GetRangeConstraint((is_in_upper_bound ? 0 : RANGE_OVERFLOW) |
- (is_in_lower_bound ? 0 : RANGE_UNDERFLOW));
-}
+ // Computes the mask required to make an accurate comparison between types.
+ static const int kShift =
+ (MaxExponent<Src>::value > MaxExponent<Dst>::value &&
+ SrcLimits::digits < DstLimits::digits)
+ ? (DstLimits::digits - SrcLimits::digits)
+ : 0;
+ template <
+ typename T,
+ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
-template <
- typename Dst,
- typename Src,
- IntegerRepresentation DstSign = std::numeric_limits<Dst>::is_signed
- ? INTEGER_REPRESENTATION_SIGNED
- : INTEGER_REPRESENTATION_UNSIGNED,
- IntegerRepresentation SrcSign = std::numeric_limits<Src>::is_signed
- ? INTEGER_REPRESENTATION_SIGNED
- : INTEGER_REPRESENTATION_UNSIGNED,
- NumericRangeRepresentation DstRange =
- StaticDstRangeRelationToSrcRange<Dst, Src>::value >
+ // Masks out the integer bits that are beyond the precision of the
+ // intermediate type used for comparison.
+ static constexpr T Adjust(T value) {
+ static_assert(std::is_same<T, Dst>::value, "");
+ static_assert(kShift < DstLimits::digits, "");
+ return static_cast<T>(
+ ConditionalNegate(SafeUnsignedAbs(value) & ~((T(1) << kShift) - T(1)),
+ IsValueNegative(value)));
+ }
+
+ template <typename T,
+ typename std::enable_if<std::is_floating_point<T>::value>::type* =
+ nullptr>
+ static constexpr T Adjust(T value) {
+ static_assert(std::is_same<T, Dst>::value, "");
+ static_assert(kShift == 0, "");
+ return value;
+ }
+
+ static constexpr Dst max() { return Adjust(Bounds<Dst>::max()); }
+ static constexpr Dst lowest() { return Adjust(Bounds<Dst>::lowest()); }
+};
+
+template <typename Dst,
+ typename Src,
+ template <typename> class Bounds,
+ IntegerRepresentation DstSign = std::is_signed<Dst>::value
+ ? INTEGER_REPRESENTATION_SIGNED
+ : INTEGER_REPRESENTATION_UNSIGNED,
+ IntegerRepresentation SrcSign = std::is_signed<Src>::value
+ ? INTEGER_REPRESENTATION_SIGNED
+ : INTEGER_REPRESENTATION_UNSIGNED,
+ NumericRangeRepresentation DstRange =
+ StaticDstRangeRelationToSrcRange<Dst, Src>::value>
struct DstRangeRelationToSrcRangeImpl;
// The following templates are for ranges that must be verified at runtime. We
// split it into checks based on signedness to avoid confusing casts and
// compiler warnings on signed an unsigned comparisons.
-// Dst range is statically determined to contain Src: Nothing to check.
+// Same sign narrowing: The range is contained for normal limits.
template <typename Dst,
typename Src,
+ template <typename> class Bounds,
IntegerRepresentation DstSign,
IntegerRepresentation SrcSign>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
+ Bounds,
DstSign,
SrcSign,
NUMERIC_RANGE_CONTAINED> {
- static RangeConstraint Check(Src value) { return RANGE_VALID; }
+ static constexpr RangeCheck Check(Src value) {
+ using SrcLimits = std::numeric_limits<Src>;
+ using DstLimits = NarrowingRange<Dst, Src, Bounds>;
+ return RangeCheck(
+ static_cast<Dst>(SrcLimits::lowest()) >= DstLimits::lowest() ||
+ static_cast<Dst>(value) >= DstLimits::lowest(),
+ static_cast<Dst>(SrcLimits::max()) <= DstLimits::max() ||
+ static_cast<Dst>(value) <= DstLimits::max());
+ }
};
// Signed to signed narrowing: Both the upper and lower boundaries may be
-// exceeded.
-template <typename Dst, typename Src>
+// exceeded for standard limits.
+template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
+ Bounds,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_SIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
- static RangeConstraint Check(Src value) {
- return std::numeric_limits<Dst>::is_iec559
- ? GetRangeConstraint(value <= std::numeric_limits<Dst>::max(),
- value >= -std::numeric_limits<Dst>::max())
- : GetRangeConstraint(value <= std::numeric_limits<Dst>::max(),
- value >= std::numeric_limits<Dst>::min());
+ static constexpr RangeCheck Check(Src value) {
+ using DstLimits = NarrowingRange<Dst, Src, Bounds>;
+ return RangeCheck(value >= DstLimits::lowest(), value <= DstLimits::max());
}
};
-// Unsigned to unsigned narrowing: Only the upper boundary can be exceeded.
-template <typename Dst, typename Src>
+// Unsigned to unsigned narrowing: Only the upper bound can be exceeded for
+// standard limits.
+template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
+ Bounds,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_UNSIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
- static RangeConstraint Check(Src value) {
- return GetRangeConstraint(value <= std::numeric_limits<Dst>::max(), true);
+ static constexpr RangeCheck Check(Src value) {
+ using DstLimits = NarrowingRange<Dst, Src, Bounds>;
+ return RangeCheck(
+ DstLimits::lowest() == Dst(0) || value >= DstLimits::lowest(),
+ value <= DstLimits::max());
}
};
-// Unsigned to signed: The upper boundary may be exceeded.
-template <typename Dst, typename Src>
+// Unsigned to signed: Only the upper bound can be exceeded for standard limits.
+template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
+ Bounds,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_UNSIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
- static RangeConstraint Check(Src value) {
- return sizeof(Dst) > sizeof(Src)
- ? RANGE_VALID
- : GetRangeConstraint(
- value <= static_cast<Src>(std::numeric_limits<Dst>::max()),
- true);
+ static constexpr RangeCheck Check(Src value) {
+ using DstLimits = NarrowingRange<Dst, Src, Bounds>;
+ using Promotion = decltype(Src() + Dst());
+ return RangeCheck(DstLimits::lowest() <= Dst(0) ||
+ static_cast<Promotion>(value) >=
+ static_cast<Promotion>(DstLimits::lowest()),
+ static_cast<Promotion>(value) <=
+ static_cast<Promotion>(DstLimits::max()));
}
};
// Signed to unsigned: The upper boundary may be exceeded for a narrower Dst,
-// and any negative value exceeds the lower boundary.
-template <typename Dst, typename Src>
+// and any negative value exceeds the lower boundary for standard limits.
+template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
+ Bounds,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
- static RangeConstraint Check(Src value) {
- return (MaxExponent<Dst>::value >= MaxExponent<Src>::value)
- ? GetRangeConstraint(true, value >= static_cast<Src>(0))
- : GetRangeConstraint(
- value <= static_cast<Src>(std::numeric_limits<Dst>::max()),
- value >= static_cast<Src>(0));
+ static constexpr RangeCheck Check(Src value) {
+ using SrcLimits = std::numeric_limits<Src>;
+ using DstLimits = NarrowingRange<Dst, Src, Bounds>;
+ using Promotion = decltype(Src() + Dst());
+ return RangeCheck(
+ value >= Src(0) && (DstLimits::lowest() == 0 ||
+ static_cast<Dst>(value) >= DstLimits::lowest()),
+ static_cast<Promotion>(SrcLimits::max()) <=
+ static_cast<Promotion>(DstLimits::max()) ||
+ static_cast<Promotion>(value) <=
+ static_cast<Promotion>(DstLimits::max()));
}
};
-template <typename Dst, typename Src>
-inline RangeConstraint DstRangeRelationToSrcRange(Src value) {
- COMPILE_ASSERT(std::numeric_limits<Src>::is_specialized,
- argument_must_be_numeric);
- COMPILE_ASSERT(std::numeric_limits<Dst>::is_specialized,
- result_must_be_numeric);
- return DstRangeRelationToSrcRangeImpl<Dst, Src>::Check(value);
+template <typename Dst,
+ template <typename> class Bounds = std::numeric_limits,
+ typename Src>
+constexpr RangeCheck DstRangeRelationToSrcRange(Src value) {
+ static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
+ static_assert(std::is_arithmetic<Dst>::value, "Result must be numeric.");
+ static_assert(Bounds<Dst>::lowest() < Bounds<Dst>::max(), "");
+ return DstRangeRelationToSrcRangeImpl<Dst, Src, Bounds>::Check(value);
}
+// Integer promotion templates used by the portable checked integer arithmetic.
+template <size_t Size, bool IsSigned>
+struct IntegerForDigitsAndSign;
+
+#define INTEGER_FOR_DIGITS_AND_SIGN(I) \
+ template <> \
+ struct IntegerForDigitsAndSign<IntegerBitsPlusSign<I>::value, \
+ std::is_signed<I>::value> { \
+ using type = I; \
+ }
+
+INTEGER_FOR_DIGITS_AND_SIGN(int8_t);
+INTEGER_FOR_DIGITS_AND_SIGN(uint8_t);
+INTEGER_FOR_DIGITS_AND_SIGN(int16_t);
+INTEGER_FOR_DIGITS_AND_SIGN(uint16_t);
+INTEGER_FOR_DIGITS_AND_SIGN(int32_t);
+INTEGER_FOR_DIGITS_AND_SIGN(uint32_t);
+INTEGER_FOR_DIGITS_AND_SIGN(int64_t);
+INTEGER_FOR_DIGITS_AND_SIGN(uint64_t);
+#undef INTEGER_FOR_DIGITS_AND_SIGN
+
+// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
+// support 128-bit math, then the ArithmeticPromotion template below will need
+// to be updated (or more likely replaced with a decltype expression).
+static_assert(IntegerBitsPlusSign<intmax_t>::value == 64,
+ "Max integer size not supported for this toolchain.");
+
+template <typename Integer, bool IsSigned = std::is_signed<Integer>::value>
+struct TwiceWiderInteger {
+ using type =
+ typename IntegerForDigitsAndSign<IntegerBitsPlusSign<Integer>::value * 2,
+ IsSigned>::type;
+};
+
+enum ArithmeticPromotionCategory {
+ LEFT_PROMOTION, // Use the type of the left-hand argument.
+ RIGHT_PROMOTION // Use the type of the right-hand argument.
+};
+
+// Determines the type that can represent the largest positive value.
+template <typename Lhs,
+ typename Rhs,
+ ArithmeticPromotionCategory Promotion =
+ (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value)
+ ? LEFT_PROMOTION
+ : RIGHT_PROMOTION>
+struct MaxExponentPromotion;
+
+template <typename Lhs, typename Rhs>
+struct MaxExponentPromotion<Lhs, Rhs, LEFT_PROMOTION> {
+ using type = Lhs;
+};
+
+template <typename Lhs, typename Rhs>
+struct MaxExponentPromotion<Lhs, Rhs, RIGHT_PROMOTION> {
+ using type = Rhs;
+};
+
+// Determines the type that can represent the lowest arithmetic value.
+template <typename Lhs,
+ typename Rhs,
+ ArithmeticPromotionCategory Promotion =
+ std::is_signed<Lhs>::value
+ ? (std::is_signed<Rhs>::value
+ ? (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value
+ ? LEFT_PROMOTION
+ : RIGHT_PROMOTION)
+ : LEFT_PROMOTION)
+ : (std::is_signed<Rhs>::value
+ ? RIGHT_PROMOTION
+ : (MaxExponent<Lhs>::value < MaxExponent<Rhs>::value
+ ? LEFT_PROMOTION
+ : RIGHT_PROMOTION))>
+struct LowestValuePromotion;
+
+template <typename Lhs, typename Rhs>
+struct LowestValuePromotion<Lhs, Rhs, LEFT_PROMOTION> {
+ using type = Lhs;
+};
+
+template <typename Lhs, typename Rhs>
+struct LowestValuePromotion<Lhs, Rhs, RIGHT_PROMOTION> {
+ using type = Rhs;
+};
+
+// Determines the type that is best able to represent an arithmetic result.
+template <
+ typename Lhs,
+ typename Rhs = Lhs,
+ bool is_intmax_type =
+ std::is_integral<typename MaxExponentPromotion<Lhs, Rhs>::type>::value&&
+ IntegerBitsPlusSign<typename MaxExponentPromotion<Lhs, Rhs>::type>::
+ value == IntegerBitsPlusSign<intmax_t>::value,
+ bool is_max_exponent =
+ StaticDstRangeRelationToSrcRange<
+ typename MaxExponentPromotion<Lhs, Rhs>::type,
+ Lhs>::value ==
+ NUMERIC_RANGE_CONTAINED&& StaticDstRangeRelationToSrcRange<
+ typename MaxExponentPromotion<Lhs, Rhs>::type,
+ Rhs>::value == NUMERIC_RANGE_CONTAINED>
+struct BigEnoughPromotion;
+
+// The side with the max exponent is big enough.
+template <typename Lhs, typename Rhs, bool is_intmax_type>
+struct BigEnoughPromotion<Lhs, Rhs, is_intmax_type, true> {
+ using type = typename MaxExponentPromotion<Lhs, Rhs>::type;
+ static const bool is_contained = true;
+};
+
+// We can use a twice wider type to fit.
+template <typename Lhs, typename Rhs>
+struct BigEnoughPromotion<Lhs, Rhs, false, false> {
+ using type =
+ typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type,
+ std::is_signed<Lhs>::value ||
+ std::is_signed<Rhs>::value>::type;
+ static const bool is_contained = true;
+};
+
+// No type is large enough.
+template <typename Lhs, typename Rhs>
+struct BigEnoughPromotion<Lhs, Rhs, true, false> {
+ using type = typename MaxExponentPromotion<Lhs, Rhs>::type;
+ static const bool is_contained = false;
+};
+
+// We can statically check if operations on the provided types can wrap, so we
+// can skip the checked operations if they're not needed. So, for an integer we
+// care if the destination type preserves the sign and is twice the width of
+// the source.
+template <typename T, typename Lhs, typename Rhs = Lhs>
+struct IsIntegerArithmeticSafe {
+ static const bool value =
+ !std::is_floating_point<T>::value &&
+ !std::is_floating_point<Lhs>::value &&
+ !std::is_floating_point<Rhs>::value &&
+ std::is_signed<T>::value >= std::is_signed<Lhs>::value &&
+ IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Lhs>::value) &&
+ std::is_signed<T>::value >= std::is_signed<Rhs>::value &&
+ IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Rhs>::value);
+};
+
+// Promotes to a type that can represent any possible result of a binary
+// arithmetic operation with the source types.
+template <typename Lhs,
+ typename Rhs,
+ bool is_promotion_possible = IsIntegerArithmeticSafe<
+ typename std::conditional<std::is_signed<Lhs>::value ||
+ std::is_signed<Rhs>::value,
+ intmax_t,
+ uintmax_t>::type,
+ typename MaxExponentPromotion<Lhs, Rhs>::type>::value>
+struct FastIntegerArithmeticPromotion;
+
+template <typename Lhs, typename Rhs>
+struct FastIntegerArithmeticPromotion<Lhs, Rhs, true> {
+ using type =
+ typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type,
+ std::is_signed<Lhs>::value ||
+ std::is_signed<Rhs>::value>::type;
+ static_assert(IsIntegerArithmeticSafe<type, Lhs, Rhs>::value, "");
+ static const bool is_contained = true;
+};
+
+template <typename Lhs, typename Rhs>
+struct FastIntegerArithmeticPromotion<Lhs, Rhs, false> {
+ using type = typename BigEnoughPromotion<Lhs, Rhs>::type;
+ static const bool is_contained = false;
+};
+
+// This hacks around libstdc++ 4.6 missing stuff in type_traits.
+#if defined(__GLIBCXX__)
+#define PRIV_GLIBCXX_4_7_0 20120322
+#define PRIV_GLIBCXX_4_5_4 20120702
+#define PRIV_GLIBCXX_4_6_4 20121127
+#if (__GLIBCXX__ < PRIV_GLIBCXX_4_7_0 || __GLIBCXX__ == PRIV_GLIBCXX_4_5_4 || \
+ __GLIBCXX__ == PRIV_GLIBCXX_4_6_4)
+#define PRIV_USE_FALLBACKS_FOR_OLD_GLIBCXX
+#undef PRIV_GLIBCXX_4_7_0
+#undef PRIV_GLIBCXX_4_5_4
+#undef PRIV_GLIBCXX_4_6_4
+#endif
+#endif
+
+// Extracts the underlying type from an enum.
+template <typename T, bool is_enum = std::is_enum<T>::value>
+struct ArithmeticOrUnderlyingEnum;
+
+template <typename T>
+struct ArithmeticOrUnderlyingEnum<T, true> {
+#if defined(PRIV_USE_FALLBACKS_FOR_OLD_GLIBCXX)
+ using type = __underlying_type(T);
+#else
+ using type = typename std::underlying_type<T>::type;
+#endif
+ static const bool value = std::is_arithmetic<type>::value;
+};
+
+#if defined(PRIV_USE_FALLBACKS_FOR_OLD_GLIBCXX)
+#undef PRIV_USE_FALLBACKS_FOR_OLD_GLIBCXX
+#endif
+
+template <typename T>
+struct ArithmeticOrUnderlyingEnum<T, false> {
+ using type = T;
+ static const bool value = std::is_arithmetic<type>::value;
+};
+
+// The following are helper templates used in the CheckedNumeric class.
+template <typename T>
+class CheckedNumeric;
+
+template <typename T>
+class StrictNumeric;
+
+// Used to treat CheckedNumeric and arithmetic underlying types the same.
+template <typename T>
+struct UnderlyingType {
+ using type = typename ArithmeticOrUnderlyingEnum<T>::type;
+ static const bool is_numeric = std::is_arithmetic<type>::value;
+ static const bool is_checked = false;
+ static const bool is_strict = false;
+};
+
+template <typename T>
+struct UnderlyingType<CheckedNumeric<T>> {
+ using type = T;
+ static const bool is_numeric = true;
+ static const bool is_checked = true;
+ static const bool is_strict = false;
+};
+
+template <typename T>
+struct UnderlyingType<StrictNumeric<T>> {
+ using type = T;
+ static const bool is_numeric = true;
+ static const bool is_checked = false;
+ static const bool is_strict = true;
+};
+
+template <typename L, typename R>
+struct IsCheckedOp {
+ static const bool value =
+ UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
+ (UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked);
+};
+
+template <typename L, typename R>
+struct IsStrictOp {
+ static const bool value =
+ UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
+ (UnderlyingType<L>::is_strict || UnderlyingType<R>::is_strict);
+};
+
+template <typename L, typename R>
+constexpr bool IsLessImpl(const L lhs,
+ const R rhs,
+ const RangeCheck l_range,
+ const RangeCheck r_range) {
+ return l_range.IsUnderflow() || r_range.IsOverflow() ||
+ (l_range == r_range &&
+ static_cast<decltype(lhs + rhs)>(lhs) <
+ static_cast<decltype(lhs + rhs)>(rhs));
+}
+
+template <typename L, typename R>
+struct IsLess {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return IsLessImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
+ DstRangeRelationToSrcRange<L>(rhs));
+ }
+};
+
+template <typename L, typename R>
+constexpr bool IsLessOrEqualImpl(const L lhs,
+ const R rhs,
+ const RangeCheck l_range,
+ const RangeCheck r_range) {
+ return l_range.IsUnderflow() || r_range.IsOverflow() ||
+ (l_range == r_range &&
+ static_cast<decltype(lhs + rhs)>(lhs) <=
+ static_cast<decltype(lhs + rhs)>(rhs));
+}
+
+template <typename L, typename R>
+struct IsLessOrEqual {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return IsLessOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
+ DstRangeRelationToSrcRange<L>(rhs));
+ }
+};
+
+template <typename L, typename R>
+constexpr bool IsGreaterImpl(const L lhs,
+ const R rhs,
+ const RangeCheck l_range,
+ const RangeCheck r_range) {
+ return l_range.IsOverflow() || r_range.IsUnderflow() ||
+ (l_range == r_range &&
+ static_cast<decltype(lhs + rhs)>(lhs) >
+ static_cast<decltype(lhs + rhs)>(rhs));
+}
+
+template <typename L, typename R>
+struct IsGreater {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return IsGreaterImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
+ DstRangeRelationToSrcRange<L>(rhs));
+ }
+};
+
+template <typename L, typename R>
+constexpr bool IsGreaterOrEqualImpl(const L lhs,
+ const R rhs,
+ const RangeCheck l_range,
+ const RangeCheck r_range) {
+ return l_range.IsOverflow() || r_range.IsUnderflow() ||
+ (l_range == r_range &&
+ static_cast<decltype(lhs + rhs)>(lhs) >=
+ static_cast<decltype(lhs + rhs)>(rhs));
+}
+
+template <typename L, typename R>
+struct IsGreaterOrEqual {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return IsGreaterOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
+ DstRangeRelationToSrcRange<L>(rhs));
+ }
+};
+
+template <typename L, typename R>
+struct IsEqual {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return DstRangeRelationToSrcRange<R>(lhs) ==
+ DstRangeRelationToSrcRange<L>(rhs) &&
+ static_cast<decltype(lhs + rhs)>(lhs) ==
+ static_cast<decltype(lhs + rhs)>(rhs);
+ }
+};
+
+template <typename L, typename R>
+struct IsNotEqual {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ static constexpr bool Test(const L lhs, const R rhs) {
+ return DstRangeRelationToSrcRange<R>(lhs) !=
+ DstRangeRelationToSrcRange<L>(rhs) ||
+ static_cast<decltype(lhs + rhs)>(lhs) !=
+ static_cast<decltype(lhs + rhs)>(rhs);
+ }
+};
+
+// These perform the actual math operations on the CheckedNumerics.
+// Binary arithmetic operations.
+template <template <typename, typename> class C, typename L, typename R>
+constexpr bool SafeCompare(const L lhs, const R rhs) {
+ static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
+ "Types must be numeric.");
+ using Promotion = BigEnoughPromotion<L, R>;
+ using BigType = typename Promotion::type;
+ return Promotion::is_contained
+ // Force to a larger type for speed if both are contained.
+ ? C<BigType, BigType>::Test(
+ static_cast<BigType>(static_cast<L>(lhs)),
+ static_cast<BigType>(static_cast<R>(rhs)))
+ // Let the template functions figure it out for mixed types.
+ : C<L, R>::Test(lhs, rhs);
+};
+
} // namespace internal
} // namespace base
} // namespace pdfium
-#endif // PDFIUM_THIRD_PARTY_BASE_SAFE_CONVERSIONS_IMPL_H_
+#endif // PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_