diff options
Diffstat (limited to 'third_party/base/numerics/safe_conversions_impl.h')
-rw-r--r-- | third_party/base/numerics/safe_conversions_impl.h | 694 |
1 files changed, 605 insertions, 89 deletions
diff --git a/third_party/base/numerics/safe_conversions_impl.h b/third_party/base/numerics/safe_conversions_impl.h index e1c4c3b756..2a7ce146e3 100644 --- a/third_party/base/numerics/safe_conversions_impl.h +++ b/third_party/base/numerics/safe_conversions_impl.h @@ -2,29 +2,81 @@ // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. -#ifndef PDFIUM_THIRD_PARTY_BASE_SAFE_CONVERSIONS_IMPL_H_ -#define PDFIUM_THIRD_PARTY_BASE_SAFE_CONVERSIONS_IMPL_H_ +#ifndef PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_ +#define PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_ -#include <assert.h> -#include <limits> +#include <stdint.h> -#include "third_party/base/macros.h" +#include <limits> +#include <type_traits> namespace pdfium { namespace base { namespace internal { // The std library doesn't provide a binary max_exponent for integers, however -// we can compute one by adding one to the number of non-sign bits. This allows -// for accurate range comparisons between floating point and integer types. +// we can compute an analog using std::numeric_limits<>::digits. template <typename NumericType> struct MaxExponent { - static const int value = std::numeric_limits<NumericType>::is_iec559 + static const int value = std::is_floating_point<NumericType>::value ? std::numeric_limits<NumericType>::max_exponent - : (sizeof(NumericType) * 8 + 1 - - std::numeric_limits<NumericType>::is_signed); + : std::numeric_limits<NumericType>::digits + 1; +}; + +// The number of bits (including the sign) in an integer. Eliminates sizeof +// hacks. +template <typename NumericType> +struct IntegerBitsPlusSign { + static const int value = std::numeric_limits<NumericType>::digits + + std::is_signed<NumericType>::value; +}; + +// Helper templates for integer manipulations. + +template <typename Integer> +struct PositionOfSignBit { + static const size_t value = IntegerBitsPlusSign<Integer>::value - 1; }; +// Determines if a numeric value is negative without throwing compiler +// warnings on: unsigned(value) < 0. +template <typename T, + typename std::enable_if<std::is_signed<T>::value>::type* = nullptr> +constexpr bool IsValueNegative(T value) { + static_assert(std::is_arithmetic<T>::value, "Argument must be numeric."); + return value < 0; +} + +template <typename T, + typename std::enable_if<!std::is_signed<T>::value>::type* = nullptr> +constexpr bool IsValueNegative(T) { + static_assert(std::is_arithmetic<T>::value, "Argument must be numeric."); + return false; +} + +// This performs a fast negation, returning a signed value. It works on unsigned +// arguments, but probably doesn't do what you want for any unsigned value +// larger than max / 2 + 1 (i.e. signed min cast to unsigned). +template <typename T> +constexpr typename std::make_signed<T>::type ConditionalNegate( + T x, + bool is_negative) { + static_assert(std::is_integral<T>::value, "Type must be integral"); + using SignedT = typename std::make_signed<T>::type; + using UnsignedT = typename std::make_unsigned<T>::type; + return static_cast<SignedT>( + (static_cast<UnsignedT>(x) ^ -SignedT(is_negative)) + is_negative); +} + +// This performs a safe, absolute value via unsigned overflow. +template <typename T> +constexpr typename std::make_unsigned<T>::type SafeUnsignedAbs(T value) { + static_assert(std::is_integral<T>::value, "Type must be integral"); + using UnsignedT = typename std::make_unsigned<T>::type; + return IsValueNegative(value) ? 0 - static_cast<UnsignedT>(value) + : static_cast<UnsignedT>(value); +} + enum IntegerRepresentation { INTEGER_REPRESENTATION_UNSIGNED, INTEGER_REPRESENTATION_SIGNED @@ -32,7 +84,7 @@ enum IntegerRepresentation { // A range for a given nunmeric Src type is contained for a given numeric Dst // type if both numeric_limits<Src>::max() <= numeric_limits<Dst>::max() and -// numeric_limits<Src>::min() >= numeric_limits<Dst>::min() are true. +// numeric_limits<Src>::lowest() >= numeric_limits<Dst>::lowest() are true. // We implement this as template specializations rather than simple static // comparisons to ensure type correctness in our comparisons. enum NumericRangeRepresentation { @@ -43,16 +95,14 @@ enum NumericRangeRepresentation { // Helper templates to statically determine if our destination type can contain // maximum and minimum values represented by the source type. -template < - typename Dst, - typename Src, - IntegerRepresentation DstSign = std::numeric_limits<Dst>::is_signed - ? INTEGER_REPRESENTATION_SIGNED - : INTEGER_REPRESENTATION_UNSIGNED, - IntegerRepresentation SrcSign = - std::numeric_limits<Src>::is_signed - ? INTEGER_REPRESENTATION_SIGNED - : INTEGER_REPRESENTATION_UNSIGNED > +template <typename Dst, + typename Src, + IntegerRepresentation DstSign = std::is_signed<Dst>::value + ? INTEGER_REPRESENTATION_SIGNED + : INTEGER_REPRESENTATION_UNSIGNED, + IntegerRepresentation SrcSign = std::is_signed<Src>::value + ? INTEGER_REPRESENTATION_SIGNED + : INTEGER_REPRESENTATION_UNSIGNED> struct StaticDstRangeRelationToSrcRange; // Same sign: Dst is guaranteed to contain Src only if its range is equal or @@ -87,132 +137,598 @@ struct StaticDstRangeRelationToSrcRange<Dst, static const NumericRangeRepresentation value = NUMERIC_RANGE_NOT_CONTAINED; }; -enum RangeConstraint { - RANGE_VALID = 0x0, // Value can be represented by the destination type. - RANGE_UNDERFLOW = 0x1, // Value would overflow. - RANGE_OVERFLOW = 0x2, // Value would underflow. - RANGE_INVALID = RANGE_UNDERFLOW | RANGE_OVERFLOW // Invalid (i.e. NaN). +// This class wraps the range constraints as separate booleans so the compiler +// can identify constants and eliminate unused code paths. +class RangeCheck { + public: + constexpr RangeCheck(bool is_in_lower_bound, bool is_in_upper_bound) + : is_underflow_(!is_in_lower_bound), is_overflow_(!is_in_upper_bound) {} + constexpr RangeCheck() : is_underflow_(0), is_overflow_(0) {} + constexpr bool IsValid() const { return !is_overflow_ && !is_underflow_; } + constexpr bool IsInvalid() const { return is_overflow_ && is_underflow_; } + constexpr bool IsOverflow() const { return is_overflow_ && !is_underflow_; } + constexpr bool IsUnderflow() const { return !is_overflow_ && is_underflow_; } + constexpr bool IsOverflowFlagSet() const { return is_overflow_; } + constexpr bool IsUnderflowFlagSet() const { return is_underflow_; } + constexpr bool operator==(const RangeCheck rhs) const { + return is_underflow_ == rhs.is_underflow_ && + is_overflow_ == rhs.is_overflow_; + } + constexpr bool operator!=(const RangeCheck rhs) const { + return !(*this == rhs); + } + + private: + // Do not change the order of these member variables. The integral conversion + // optimization depends on this exact order. + const bool is_underflow_; + const bool is_overflow_; }; -// Helper function for coercing an int back to a RangeContraint. -inline RangeConstraint GetRangeConstraint(int integer_range_constraint) { - assert(integer_range_constraint >= RANGE_VALID && - integer_range_constraint <= RANGE_INVALID); - return static_cast<RangeConstraint>(integer_range_constraint); -} +// The following helper template addresses a corner case in range checks for +// conversion from a floating-point type to an integral type of smaller range +// but larger precision (e.g. float -> unsigned). The problem is as follows: +// 1. Integral maximum is always one less than a power of two, so it must be +// truncated to fit the mantissa of the floating point. The direction of +// rounding is implementation defined, but by default it's always IEEE +// floats, which round to nearest and thus result in a value of larger +// magnitude than the integral value. +// Example: float f = UINT_MAX; // f is 4294967296f but UINT_MAX +// // is 4294967295u. +// 2. If the floating point value is equal to the promoted integral maximum +// value, a range check will erroneously pass. +// Example: (4294967296f <= 4294967295u) // This is true due to a precision +// // loss in rounding up to float. +// 3. When the floating point value is then converted to an integral, the +// resulting value is out of range for the target integral type and +// thus is implementation defined. +// Example: unsigned u = (float)INT_MAX; // u will typically overflow to 0. +// To fix this bug we manually truncate the maximum value when the destination +// type is an integral of larger precision than the source floating-point type, +// such that the resulting maximum is represented exactly as a floating point. +template <typename Dst, typename Src, template <typename> class Bounds> +struct NarrowingRange { + using SrcLimits = std::numeric_limits<Src>; + using DstLimits = typename std::numeric_limits<Dst>; -// This function creates a RangeConstraint from an upper and lower bound -// check by taking advantage of the fact that only NaN can be out of range in -// both directions at once. -inline RangeConstraint GetRangeConstraint(bool is_in_upper_bound, - bool is_in_lower_bound) { - return GetRangeConstraint((is_in_upper_bound ? 0 : RANGE_OVERFLOW) | - (is_in_lower_bound ? 0 : RANGE_UNDERFLOW)); -} + // Computes the mask required to make an accurate comparison between types. + static const int kShift = + (MaxExponent<Src>::value > MaxExponent<Dst>::value && + SrcLimits::digits < DstLimits::digits) + ? (DstLimits::digits - SrcLimits::digits) + : 0; + template < + typename T, + typename std::enable_if<std::is_integral<T>::value>::type* = nullptr> -template < - typename Dst, - typename Src, - IntegerRepresentation DstSign = std::numeric_limits<Dst>::is_signed - ? INTEGER_REPRESENTATION_SIGNED - : INTEGER_REPRESENTATION_UNSIGNED, - IntegerRepresentation SrcSign = std::numeric_limits<Src>::is_signed - ? INTEGER_REPRESENTATION_SIGNED - : INTEGER_REPRESENTATION_UNSIGNED, - NumericRangeRepresentation DstRange = - StaticDstRangeRelationToSrcRange<Dst, Src>::value > + // Masks out the integer bits that are beyond the precision of the + // intermediate type used for comparison. + static constexpr T Adjust(T value) { + static_assert(std::is_same<T, Dst>::value, ""); + static_assert(kShift < DstLimits::digits, ""); + return static_cast<T>( + ConditionalNegate(SafeUnsignedAbs(value) & ~((T(1) << kShift) - T(1)), + IsValueNegative(value))); + } + + template <typename T, + typename std::enable_if<std::is_floating_point<T>::value>::type* = + nullptr> + static constexpr T Adjust(T value) { + static_assert(std::is_same<T, Dst>::value, ""); + static_assert(kShift == 0, ""); + return value; + } + + static constexpr Dst max() { return Adjust(Bounds<Dst>::max()); } + static constexpr Dst lowest() { return Adjust(Bounds<Dst>::lowest()); } +}; + +template <typename Dst, + typename Src, + template <typename> class Bounds, + IntegerRepresentation DstSign = std::is_signed<Dst>::value + ? INTEGER_REPRESENTATION_SIGNED + : INTEGER_REPRESENTATION_UNSIGNED, + IntegerRepresentation SrcSign = std::is_signed<Src>::value + ? INTEGER_REPRESENTATION_SIGNED + : INTEGER_REPRESENTATION_UNSIGNED, + NumericRangeRepresentation DstRange = + StaticDstRangeRelationToSrcRange<Dst, Src>::value> struct DstRangeRelationToSrcRangeImpl; // The following templates are for ranges that must be verified at runtime. We // split it into checks based on signedness to avoid confusing casts and // compiler warnings on signed an unsigned comparisons. -// Dst range is statically determined to contain Src: Nothing to check. +// Same sign narrowing: The range is contained for normal limits. template <typename Dst, typename Src, + template <typename> class Bounds, IntegerRepresentation DstSign, IntegerRepresentation SrcSign> struct DstRangeRelationToSrcRangeImpl<Dst, Src, + Bounds, DstSign, SrcSign, NUMERIC_RANGE_CONTAINED> { - static RangeConstraint Check(Src value) { return RANGE_VALID; } + static constexpr RangeCheck Check(Src value) { + using SrcLimits = std::numeric_limits<Src>; + using DstLimits = NarrowingRange<Dst, Src, Bounds>; + return RangeCheck( + static_cast<Dst>(SrcLimits::lowest()) >= DstLimits::lowest() || + static_cast<Dst>(value) >= DstLimits::lowest(), + static_cast<Dst>(SrcLimits::max()) <= DstLimits::max() || + static_cast<Dst>(value) <= DstLimits::max()); + } }; // Signed to signed narrowing: Both the upper and lower boundaries may be -// exceeded. -template <typename Dst, typename Src> +// exceeded for standard limits. +template <typename Dst, typename Src, template <typename> class Bounds> struct DstRangeRelationToSrcRangeImpl<Dst, Src, + Bounds, INTEGER_REPRESENTATION_SIGNED, INTEGER_REPRESENTATION_SIGNED, NUMERIC_RANGE_NOT_CONTAINED> { - static RangeConstraint Check(Src value) { - return std::numeric_limits<Dst>::is_iec559 - ? GetRangeConstraint(value <= std::numeric_limits<Dst>::max(), - value >= -std::numeric_limits<Dst>::max()) - : GetRangeConstraint(value <= std::numeric_limits<Dst>::max(), - value >= std::numeric_limits<Dst>::min()); + static constexpr RangeCheck Check(Src value) { + using DstLimits = NarrowingRange<Dst, Src, Bounds>; + return RangeCheck(value >= DstLimits::lowest(), value <= DstLimits::max()); } }; -// Unsigned to unsigned narrowing: Only the upper boundary can be exceeded. -template <typename Dst, typename Src> +// Unsigned to unsigned narrowing: Only the upper bound can be exceeded for +// standard limits. +template <typename Dst, typename Src, template <typename> class Bounds> struct DstRangeRelationToSrcRangeImpl<Dst, Src, + Bounds, INTEGER_REPRESENTATION_UNSIGNED, INTEGER_REPRESENTATION_UNSIGNED, NUMERIC_RANGE_NOT_CONTAINED> { - static RangeConstraint Check(Src value) { - return GetRangeConstraint(value <= std::numeric_limits<Dst>::max(), true); + static constexpr RangeCheck Check(Src value) { + using DstLimits = NarrowingRange<Dst, Src, Bounds>; + return RangeCheck( + DstLimits::lowest() == Dst(0) || value >= DstLimits::lowest(), + value <= DstLimits::max()); } }; -// Unsigned to signed: The upper boundary may be exceeded. -template <typename Dst, typename Src> +// Unsigned to signed: Only the upper bound can be exceeded for standard limits. +template <typename Dst, typename Src, template <typename> class Bounds> struct DstRangeRelationToSrcRangeImpl<Dst, Src, + Bounds, INTEGER_REPRESENTATION_SIGNED, INTEGER_REPRESENTATION_UNSIGNED, NUMERIC_RANGE_NOT_CONTAINED> { - static RangeConstraint Check(Src value) { - return sizeof(Dst) > sizeof(Src) - ? RANGE_VALID - : GetRangeConstraint( - value <= static_cast<Src>(std::numeric_limits<Dst>::max()), - true); + static constexpr RangeCheck Check(Src value) { + using DstLimits = NarrowingRange<Dst, Src, Bounds>; + using Promotion = decltype(Src() + Dst()); + return RangeCheck(DstLimits::lowest() <= Dst(0) || + static_cast<Promotion>(value) >= + static_cast<Promotion>(DstLimits::lowest()), + static_cast<Promotion>(value) <= + static_cast<Promotion>(DstLimits::max())); } }; // Signed to unsigned: The upper boundary may be exceeded for a narrower Dst, -// and any negative value exceeds the lower boundary. -template <typename Dst, typename Src> +// and any negative value exceeds the lower boundary for standard limits. +template <typename Dst, typename Src, template <typename> class Bounds> struct DstRangeRelationToSrcRangeImpl<Dst, Src, + Bounds, INTEGER_REPRESENTATION_UNSIGNED, INTEGER_REPRESENTATION_SIGNED, NUMERIC_RANGE_NOT_CONTAINED> { - static RangeConstraint Check(Src value) { - return (MaxExponent<Dst>::value >= MaxExponent<Src>::value) - ? GetRangeConstraint(true, value >= static_cast<Src>(0)) - : GetRangeConstraint( - value <= static_cast<Src>(std::numeric_limits<Dst>::max()), - value >= static_cast<Src>(0)); + static constexpr RangeCheck Check(Src value) { + using SrcLimits = std::numeric_limits<Src>; + using DstLimits = NarrowingRange<Dst, Src, Bounds>; + using Promotion = decltype(Src() + Dst()); + return RangeCheck( + value >= Src(0) && (DstLimits::lowest() == 0 || + static_cast<Dst>(value) >= DstLimits::lowest()), + static_cast<Promotion>(SrcLimits::max()) <= + static_cast<Promotion>(DstLimits::max()) || + static_cast<Promotion>(value) <= + static_cast<Promotion>(DstLimits::max())); } }; -template <typename Dst, typename Src> -inline RangeConstraint DstRangeRelationToSrcRange(Src value) { - COMPILE_ASSERT(std::numeric_limits<Src>::is_specialized, - argument_must_be_numeric); - COMPILE_ASSERT(std::numeric_limits<Dst>::is_specialized, - result_must_be_numeric); - return DstRangeRelationToSrcRangeImpl<Dst, Src>::Check(value); +template <typename Dst, + template <typename> class Bounds = std::numeric_limits, + typename Src> +constexpr RangeCheck DstRangeRelationToSrcRange(Src value) { + static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric."); + static_assert(std::is_arithmetic<Dst>::value, "Result must be numeric."); + static_assert(Bounds<Dst>::lowest() < Bounds<Dst>::max(), ""); + return DstRangeRelationToSrcRangeImpl<Dst, Src, Bounds>::Check(value); } +// Integer promotion templates used by the portable checked integer arithmetic. +template <size_t Size, bool IsSigned> +struct IntegerForDigitsAndSign; + +#define INTEGER_FOR_DIGITS_AND_SIGN(I) \ + template <> \ + struct IntegerForDigitsAndSign<IntegerBitsPlusSign<I>::value, \ + std::is_signed<I>::value> { \ + using type = I; \ + } + +INTEGER_FOR_DIGITS_AND_SIGN(int8_t); +INTEGER_FOR_DIGITS_AND_SIGN(uint8_t); +INTEGER_FOR_DIGITS_AND_SIGN(int16_t); +INTEGER_FOR_DIGITS_AND_SIGN(uint16_t); +INTEGER_FOR_DIGITS_AND_SIGN(int32_t); +INTEGER_FOR_DIGITS_AND_SIGN(uint32_t); +INTEGER_FOR_DIGITS_AND_SIGN(int64_t); +INTEGER_FOR_DIGITS_AND_SIGN(uint64_t); +#undef INTEGER_FOR_DIGITS_AND_SIGN + +// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to +// support 128-bit math, then the ArithmeticPromotion template below will need +// to be updated (or more likely replaced with a decltype expression). +static_assert(IntegerBitsPlusSign<intmax_t>::value == 64, + "Max integer size not supported for this toolchain."); + +template <typename Integer, bool IsSigned = std::is_signed<Integer>::value> +struct TwiceWiderInteger { + using type = + typename IntegerForDigitsAndSign<IntegerBitsPlusSign<Integer>::value * 2, + IsSigned>::type; +}; + +enum ArithmeticPromotionCategory { + LEFT_PROMOTION, // Use the type of the left-hand argument. + RIGHT_PROMOTION // Use the type of the right-hand argument. +}; + +// Determines the type that can represent the largest positive value. +template <typename Lhs, + typename Rhs, + ArithmeticPromotionCategory Promotion = + (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value) + ? LEFT_PROMOTION + : RIGHT_PROMOTION> +struct MaxExponentPromotion; + +template <typename Lhs, typename Rhs> +struct MaxExponentPromotion<Lhs, Rhs, LEFT_PROMOTION> { + using type = Lhs; +}; + +template <typename Lhs, typename Rhs> +struct MaxExponentPromotion<Lhs, Rhs, RIGHT_PROMOTION> { + using type = Rhs; +}; + +// Determines the type that can represent the lowest arithmetic value. +template <typename Lhs, + typename Rhs, + ArithmeticPromotionCategory Promotion = + std::is_signed<Lhs>::value + ? (std::is_signed<Rhs>::value + ? (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value + ? LEFT_PROMOTION + : RIGHT_PROMOTION) + : LEFT_PROMOTION) + : (std::is_signed<Rhs>::value + ? RIGHT_PROMOTION + : (MaxExponent<Lhs>::value < MaxExponent<Rhs>::value + ? LEFT_PROMOTION + : RIGHT_PROMOTION))> +struct LowestValuePromotion; + +template <typename Lhs, typename Rhs> +struct LowestValuePromotion<Lhs, Rhs, LEFT_PROMOTION> { + using type = Lhs; +}; + +template <typename Lhs, typename Rhs> +struct LowestValuePromotion<Lhs, Rhs, RIGHT_PROMOTION> { + using type = Rhs; +}; + +// Determines the type that is best able to represent an arithmetic result. +template < + typename Lhs, + typename Rhs = Lhs, + bool is_intmax_type = + std::is_integral<typename MaxExponentPromotion<Lhs, Rhs>::type>::value&& + IntegerBitsPlusSign<typename MaxExponentPromotion<Lhs, Rhs>::type>:: + value == IntegerBitsPlusSign<intmax_t>::value, + bool is_max_exponent = + StaticDstRangeRelationToSrcRange< + typename MaxExponentPromotion<Lhs, Rhs>::type, + Lhs>::value == + NUMERIC_RANGE_CONTAINED&& StaticDstRangeRelationToSrcRange< + typename MaxExponentPromotion<Lhs, Rhs>::type, + Rhs>::value == NUMERIC_RANGE_CONTAINED> +struct BigEnoughPromotion; + +// The side with the max exponent is big enough. +template <typename Lhs, typename Rhs, bool is_intmax_type> +struct BigEnoughPromotion<Lhs, Rhs, is_intmax_type, true> { + using type = typename MaxExponentPromotion<Lhs, Rhs>::type; + static const bool is_contained = true; +}; + +// We can use a twice wider type to fit. +template <typename Lhs, typename Rhs> +struct BigEnoughPromotion<Lhs, Rhs, false, false> { + using type = + typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type, + std::is_signed<Lhs>::value || + std::is_signed<Rhs>::value>::type; + static const bool is_contained = true; +}; + +// No type is large enough. +template <typename Lhs, typename Rhs> +struct BigEnoughPromotion<Lhs, Rhs, true, false> { + using type = typename MaxExponentPromotion<Lhs, Rhs>::type; + static const bool is_contained = false; +}; + +// We can statically check if operations on the provided types can wrap, so we +// can skip the checked operations if they're not needed. So, for an integer we +// care if the destination type preserves the sign and is twice the width of +// the source. +template <typename T, typename Lhs, typename Rhs = Lhs> +struct IsIntegerArithmeticSafe { + static const bool value = + !std::is_floating_point<T>::value && + !std::is_floating_point<Lhs>::value && + !std::is_floating_point<Rhs>::value && + std::is_signed<T>::value >= std::is_signed<Lhs>::value && + IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Lhs>::value) && + std::is_signed<T>::value >= std::is_signed<Rhs>::value && + IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Rhs>::value); +}; + +// Promotes to a type that can represent any possible result of a binary +// arithmetic operation with the source types. +template <typename Lhs, + typename Rhs, + bool is_promotion_possible = IsIntegerArithmeticSafe< + typename std::conditional<std::is_signed<Lhs>::value || + std::is_signed<Rhs>::value, + intmax_t, + uintmax_t>::type, + typename MaxExponentPromotion<Lhs, Rhs>::type>::value> +struct FastIntegerArithmeticPromotion; + +template <typename Lhs, typename Rhs> +struct FastIntegerArithmeticPromotion<Lhs, Rhs, true> { + using type = + typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type, + std::is_signed<Lhs>::value || + std::is_signed<Rhs>::value>::type; + static_assert(IsIntegerArithmeticSafe<type, Lhs, Rhs>::value, ""); + static const bool is_contained = true; +}; + +template <typename Lhs, typename Rhs> +struct FastIntegerArithmeticPromotion<Lhs, Rhs, false> { + using type = typename BigEnoughPromotion<Lhs, Rhs>::type; + static const bool is_contained = false; +}; + +// This hacks around libstdc++ 4.6 missing stuff in type_traits. +#if defined(__GLIBCXX__) +#define PRIV_GLIBCXX_4_7_0 20120322 +#define PRIV_GLIBCXX_4_5_4 20120702 +#define PRIV_GLIBCXX_4_6_4 20121127 +#if (__GLIBCXX__ < PRIV_GLIBCXX_4_7_0 || __GLIBCXX__ == PRIV_GLIBCXX_4_5_4 || \ + __GLIBCXX__ == PRIV_GLIBCXX_4_6_4) +#define PRIV_USE_FALLBACKS_FOR_OLD_GLIBCXX +#undef PRIV_GLIBCXX_4_7_0 +#undef PRIV_GLIBCXX_4_5_4 +#undef PRIV_GLIBCXX_4_6_4 +#endif +#endif + +// Extracts the underlying type from an enum. +template <typename T, bool is_enum = std::is_enum<T>::value> +struct ArithmeticOrUnderlyingEnum; + +template <typename T> +struct ArithmeticOrUnderlyingEnum<T, true> { +#if defined(PRIV_USE_FALLBACKS_FOR_OLD_GLIBCXX) + using type = __underlying_type(T); +#else + using type = typename std::underlying_type<T>::type; +#endif + static const bool value = std::is_arithmetic<type>::value; +}; + +#if defined(PRIV_USE_FALLBACKS_FOR_OLD_GLIBCXX) +#undef PRIV_USE_FALLBACKS_FOR_OLD_GLIBCXX +#endif + +template <typename T> +struct ArithmeticOrUnderlyingEnum<T, false> { + using type = T; + static const bool value = std::is_arithmetic<type>::value; +}; + +// The following are helper templates used in the CheckedNumeric class. +template <typename T> +class CheckedNumeric; + +template <typename T> +class StrictNumeric; + +// Used to treat CheckedNumeric and arithmetic underlying types the same. +template <typename T> +struct UnderlyingType { + using type = typename ArithmeticOrUnderlyingEnum<T>::type; + static const bool is_numeric = std::is_arithmetic<type>::value; + static const bool is_checked = false; + static const bool is_strict = false; +}; + +template <typename T> +struct UnderlyingType<CheckedNumeric<T>> { + using type = T; + static const bool is_numeric = true; + static const bool is_checked = true; + static const bool is_strict = false; +}; + +template <typename T> +struct UnderlyingType<StrictNumeric<T>> { + using type = T; + static const bool is_numeric = true; + static const bool is_checked = false; + static const bool is_strict = true; +}; + +template <typename L, typename R> +struct IsCheckedOp { + static const bool value = + UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric && + (UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked); +}; + +template <typename L, typename R> +struct IsStrictOp { + static const bool value = + UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric && + (UnderlyingType<L>::is_strict || UnderlyingType<R>::is_strict); +}; + +template <typename L, typename R> +constexpr bool IsLessImpl(const L lhs, + const R rhs, + const RangeCheck l_range, + const RangeCheck r_range) { + return l_range.IsUnderflow() || r_range.IsOverflow() || + (l_range == r_range && + static_cast<decltype(lhs + rhs)>(lhs) < + static_cast<decltype(lhs + rhs)>(rhs)); +} + +template <typename L, typename R> +struct IsLess { + static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value, + "Types must be numeric."); + static constexpr bool Test(const L lhs, const R rhs) { + return IsLessImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs), + DstRangeRelationToSrcRange<L>(rhs)); + } +}; + +template <typename L, typename R> +constexpr bool IsLessOrEqualImpl(const L lhs, + const R rhs, + const RangeCheck l_range, + const RangeCheck r_range) { + return l_range.IsUnderflow() || r_range.IsOverflow() || + (l_range == r_range && + static_cast<decltype(lhs + rhs)>(lhs) <= + static_cast<decltype(lhs + rhs)>(rhs)); +} + +template <typename L, typename R> +struct IsLessOrEqual { + static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value, + "Types must be numeric."); + static constexpr bool Test(const L lhs, const R rhs) { + return IsLessOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs), + DstRangeRelationToSrcRange<L>(rhs)); + } +}; + +template <typename L, typename R> +constexpr bool IsGreaterImpl(const L lhs, + const R rhs, + const RangeCheck l_range, + const RangeCheck r_range) { + return l_range.IsOverflow() || r_range.IsUnderflow() || + (l_range == r_range && + static_cast<decltype(lhs + rhs)>(lhs) > + static_cast<decltype(lhs + rhs)>(rhs)); +} + +template <typename L, typename R> +struct IsGreater { + static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value, + "Types must be numeric."); + static constexpr bool Test(const L lhs, const R rhs) { + return IsGreaterImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs), + DstRangeRelationToSrcRange<L>(rhs)); + } +}; + +template <typename L, typename R> +constexpr bool IsGreaterOrEqualImpl(const L lhs, + const R rhs, + const RangeCheck l_range, + const RangeCheck r_range) { + return l_range.IsOverflow() || r_range.IsUnderflow() || + (l_range == r_range && + static_cast<decltype(lhs + rhs)>(lhs) >= + static_cast<decltype(lhs + rhs)>(rhs)); +} + +template <typename L, typename R> +struct IsGreaterOrEqual { + static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value, + "Types must be numeric."); + static constexpr bool Test(const L lhs, const R rhs) { + return IsGreaterOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs), + DstRangeRelationToSrcRange<L>(rhs)); + } +}; + +template <typename L, typename R> +struct IsEqual { + static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value, + "Types must be numeric."); + static constexpr bool Test(const L lhs, const R rhs) { + return DstRangeRelationToSrcRange<R>(lhs) == + DstRangeRelationToSrcRange<L>(rhs) && + static_cast<decltype(lhs + rhs)>(lhs) == + static_cast<decltype(lhs + rhs)>(rhs); + } +}; + +template <typename L, typename R> +struct IsNotEqual { + static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value, + "Types must be numeric."); + static constexpr bool Test(const L lhs, const R rhs) { + return DstRangeRelationToSrcRange<R>(lhs) != + DstRangeRelationToSrcRange<L>(rhs) || + static_cast<decltype(lhs + rhs)>(lhs) != + static_cast<decltype(lhs + rhs)>(rhs); + } +}; + +// These perform the actual math operations on the CheckedNumerics. +// Binary arithmetic operations. +template <template <typename, typename> class C, typename L, typename R> +constexpr bool SafeCompare(const L lhs, const R rhs) { + static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value, + "Types must be numeric."); + using Promotion = BigEnoughPromotion<L, R>; + using BigType = typename Promotion::type; + return Promotion::is_contained + // Force to a larger type for speed if both are contained. + ? C<BigType, BigType>::Test( + static_cast<BigType>(static_cast<L>(lhs)), + static_cast<BigType>(static_cast<R>(rhs))) + // Let the template functions figure it out for mixed types. + : C<L, R>::Test(lhs, rhs); +}; + } // namespace internal } // namespace base } // namespace pdfium -#endif // PDFIUM_THIRD_PARTY_BASE_SAFE_CONVERSIONS_IMPL_H_ +#endif // PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_ |