diff options
Diffstat (limited to 'third_party/lcms2-2.6/src/cmsgamma.c')
-rw-r--r-- | third_party/lcms2-2.6/src/cmsgamma.c | 1298 |
1 files changed, 0 insertions, 1298 deletions
diff --git a/third_party/lcms2-2.6/src/cmsgamma.c b/third_party/lcms2-2.6/src/cmsgamma.c deleted file mode 100644 index 97aeb7cc16..0000000000 --- a/third_party/lcms2-2.6/src/cmsgamma.c +++ /dev/null @@ -1,1298 +0,0 @@ -//--------------------------------------------------------------------------------- -// -// Little Color Management System -// Copyright (c) 1998-2013 Marti Maria Saguer -// -// Permission is hereby granted, free of charge, to any person obtaining -// a copy of this software and associated documentation files (the "Software"), -// to deal in the Software without restriction, including without limitation -// the rights to use, copy, modify, merge, publish, distribute, sublicense, -// and/or sell copies of the Software, and to permit persons to whom the Software -// is furnished to do so, subject to the following conditions: -// -// The above copyright notice and this permission notice shall be included in -// all copies or substantial portions of the Software. -// -// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO -// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE -// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION -// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION -// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -// -//--------------------------------------------------------------------------------- -// - -#include "lcms2_internal.h" - -// Tone curves are powerful constructs that can contain curves specified in diverse ways. -// The curve is stored in segments, where each segment can be sampled or specified by parameters. -// a 16.bit simplification of the *whole* curve is kept for optimization purposes. For float operation, -// each segment is evaluated separately. Plug-ins may be used to define new parametric schemes, -// each plug-in may define up to MAX_TYPES_IN_LCMS_PLUGIN functions types. For defining a function, -// the plug-in should provide the type id, how many parameters each type has, and a pointer to -// a procedure that evaluates the function. In the case of reverse evaluation, the evaluator will -// be called with the type id as a negative value, and a sampled version of the reversed curve -// will be built. - -// ----------------------------------------------------------------- Implementation -// Maxim number of nodes -#define MAX_NODES_IN_CURVE 4097 -#define MINUS_INF (-1E22F) -#define PLUS_INF (+1E22F) - -// The list of supported parametric curves -typedef struct _cmsParametricCurvesCollection_st { - - int nFunctions; // Number of supported functions in this chunk - int FunctionTypes[MAX_TYPES_IN_LCMS_PLUGIN]; // The identification types - int ParameterCount[MAX_TYPES_IN_LCMS_PLUGIN]; // Number of parameters for each function - cmsParametricCurveEvaluator Evaluator; // The evaluator - - struct _cmsParametricCurvesCollection_st* Next; // Next in list - -} _cmsParametricCurvesCollection; - -// This is the default (built-in) evaluator -static cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R); - -// The built-in list -static _cmsParametricCurvesCollection DefaultCurves = { - 9, // # of curve types - { 1, 2, 3, 4, 5, 6, 7, 8, 108 }, // Parametric curve ID - { 1, 3, 4, 5, 7, 4, 5, 5, 1 }, // Parameters by type - DefaultEvalParametricFn, // Evaluator - NULL // Next in chain -}; - -// Duplicates the zone of memory used by the plug-in in the new context -static -void DupPluginCurvesList(struct _cmsContext_struct* ctx, - const struct _cmsContext_struct* src) -{ - _cmsCurvesPluginChunkType newHead = { NULL }; - _cmsParametricCurvesCollection* entry; - _cmsParametricCurvesCollection* Anterior = NULL; - _cmsCurvesPluginChunkType* head = (_cmsCurvesPluginChunkType*) src->chunks[CurvesPlugin]; - - _cmsAssert(head != NULL); - - // Walk the list copying all nodes - for (entry = head->ParametricCurves; - entry != NULL; - entry = entry ->Next) { - - _cmsParametricCurvesCollection *newEntry = ( _cmsParametricCurvesCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsParametricCurvesCollection)); - - if (newEntry == NULL) - return; - - // We want to keep the linked list order, so this is a little bit tricky - newEntry -> Next = NULL; - if (Anterior) - Anterior -> Next = newEntry; - - Anterior = newEntry; - - if (newHead.ParametricCurves == NULL) - newHead.ParametricCurves = newEntry; - } - - ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsCurvesPluginChunkType)); -} - -// The allocator have to follow the chain -void _cmsAllocCurvesPluginChunk(struct _cmsContext_struct* ctx, - const struct _cmsContext_struct* src) -{ - _cmsAssert(ctx != NULL); - - if (src != NULL) { - - // Copy all linked list - DupPluginCurvesList(ctx, src); - } - else { - static _cmsCurvesPluginChunkType CurvesPluginChunk = { NULL }; - ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx ->MemPool, &CurvesPluginChunk, sizeof(_cmsCurvesPluginChunkType)); - } -} - - -// The linked list head -_cmsCurvesPluginChunkType _cmsCurvesPluginChunk = { NULL }; - -// As a way to install new parametric curves -cmsBool _cmsRegisterParametricCurvesPlugin(cmsContext ContextID, cmsPluginBase* Data) -{ - _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin); - cmsPluginParametricCurves* Plugin = (cmsPluginParametricCurves*) Data; - _cmsParametricCurvesCollection* fl; - - if (Data == NULL) { - - ctx -> ParametricCurves = NULL; - return TRUE; - } - - fl = (_cmsParametricCurvesCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsParametricCurvesCollection)); - if (fl == NULL) return FALSE; - - // Copy the parameters - fl ->Evaluator = Plugin ->Evaluator; - fl ->nFunctions = Plugin ->nFunctions; - - // Make sure no mem overwrites - if (fl ->nFunctions > MAX_TYPES_IN_LCMS_PLUGIN) - fl ->nFunctions = MAX_TYPES_IN_LCMS_PLUGIN; - - // Copy the data - memmove(fl->FunctionTypes, Plugin ->FunctionTypes, fl->nFunctions * sizeof(cmsUInt32Number)); - memmove(fl->ParameterCount, Plugin ->ParameterCount, fl->nFunctions * sizeof(cmsUInt32Number)); - - // Keep linked list - fl ->Next = ctx->ParametricCurves; - ctx->ParametricCurves = fl; - - // All is ok - return TRUE; -} - - -// Search in type list, return position or -1 if not found -static -int IsInSet(int Type, _cmsParametricCurvesCollection* c) -{ - int i; - - for (i=0; i < c ->nFunctions; i++) - if (abs(Type) == c ->FunctionTypes[i]) return i; - - return -1; -} - - -// Search for the collection which contains a specific type -static -_cmsParametricCurvesCollection *GetParametricCurveByType(cmsContext ContextID, int Type, int* index) -{ - _cmsParametricCurvesCollection* c; - int Position; - _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin); - - for (c = ctx->ParametricCurves; c != NULL; c = c ->Next) { - - Position = IsInSet(Type, c); - - if (Position != -1) { - if (index != NULL) - *index = Position; - return c; - } - } - // If none found, revert for defaults - for (c = &DefaultCurves; c != NULL; c = c ->Next) { - - Position = IsInSet(Type, c); - - if (Position != -1) { - if (index != NULL) - *index = Position; - return c; - } - } - - return NULL; -} - -// Low level allocate, which takes care of memory details. nEntries may be zero, and in this case -// no optimation curve is computed. nSegments may also be zero in the inverse case, where only the -// optimization curve is given. Both features simultaneously is an error -static -cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsInt32Number nEntries, - cmsInt32Number nSegments, const cmsCurveSegment* Segments, - const cmsUInt16Number* Values) -{ - cmsToneCurve* p; - int i; - - // We allow huge tables, which are then restricted for smoothing operations - if (nEntries > 65530 || nEntries < 0) { - cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve of more than 65530 entries"); - return NULL; - } - - if (nEntries <= 0 && nSegments <= 0) { - cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve with zero segments and no table"); - return NULL; - } - - // Allocate all required pointers, etc. - p = (cmsToneCurve*) _cmsMallocZero(ContextID, sizeof(cmsToneCurve)); - if (!p) return NULL; - - // In this case, there are no segments - if (nSegments <= 0) { - p ->Segments = NULL; - p ->Evals = NULL; - } - else { - p ->Segments = (cmsCurveSegment*) _cmsCalloc(ContextID, nSegments, sizeof(cmsCurveSegment)); - if (p ->Segments == NULL) goto Error; - - p ->Evals = (cmsParametricCurveEvaluator*) _cmsCalloc(ContextID, nSegments, sizeof(cmsParametricCurveEvaluator)); - if (p ->Evals == NULL) goto Error; - } - - p -> nSegments = nSegments; - - // This 16-bit table contains a limited precision representation of the whole curve and is kept for - // increasing xput on certain operations. - if (nEntries <= 0) { - p ->Table16 = NULL; - } - else { - p ->Table16 = (cmsUInt16Number*) _cmsCalloc(ContextID, nEntries, sizeof(cmsUInt16Number)); - if (p ->Table16 == NULL) goto Error; - } - - p -> nEntries = nEntries; - - // Initialize members if requested - if (Values != NULL && (nEntries > 0)) { - - for (i=0; i < nEntries; i++) - p ->Table16[i] = Values[i]; - } - - // Initialize the segments stuff. The evaluator for each segment is located and a pointer to it - // is placed in advance to maximize performance. - if (Segments != NULL && (nSegments > 0)) { - - _cmsParametricCurvesCollection *c; - - p ->SegInterp = (cmsInterpParams**) _cmsCalloc(ContextID, nSegments, sizeof(cmsInterpParams*)); - if (p ->SegInterp == NULL) goto Error; - - for (i=0; i< nSegments; i++) { - - // Type 0 is a special marker for table-based curves - if (Segments[i].Type == 0) - p ->SegInterp[i] = _cmsComputeInterpParams(ContextID, Segments[i].nGridPoints, 1, 1, NULL, CMS_LERP_FLAGS_FLOAT); - - memmove(&p ->Segments[i], &Segments[i], sizeof(cmsCurveSegment)); - - if (Segments[i].Type == 0 && Segments[i].SampledPoints != NULL) - p ->Segments[i].SampledPoints = (cmsFloat32Number*) _cmsDupMem(ContextID, Segments[i].SampledPoints, sizeof(cmsFloat32Number) * Segments[i].nGridPoints); - else - p ->Segments[i].SampledPoints = NULL; - - - c = GetParametricCurveByType(ContextID, Segments[i].Type, NULL); - if (c != NULL) - p ->Evals[i] = c ->Evaluator; - } - } - - p ->InterpParams = _cmsComputeInterpParams(ContextID, p ->nEntries, 1, 1, p->Table16, CMS_LERP_FLAGS_16BITS); - if (p->InterpParams != NULL) - return p; - -Error: - if (p -> Segments) _cmsFree(ContextID, p ->Segments); - if (p -> Evals) _cmsFree(ContextID, p -> Evals); - if (p ->Table16) _cmsFree(ContextID, p ->Table16); - _cmsFree(ContextID, p); - return NULL; -} - - -// Parametric Fn using floating point -static -cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R) -{ - cmsFloat64Number e, Val, disc; - - switch (Type) { - - // X = Y ^ Gamma - case 1: - if (R < 0) { - - if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE) - Val = R; - else - Val = 0; - } - else - Val = pow(R, Params[0]); - break; - - // Type 1 Reversed: X = Y ^1/gamma - case -1: - if (R < 0) { - - if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE) - Val = R; - else - Val = 0; - } - else - Val = pow(R, 1/Params[0]); - break; - - // CIE 122-1966 - // Y = (aX + b)^Gamma | X >= -b/a - // Y = 0 | else - case 2: - disc = -Params[2] / Params[1]; - - if (R >= disc ) { - - e = Params[1]*R + Params[2]; - - if (e > 0) - Val = pow(e, Params[0]); - else - Val = 0; - } - else - Val = 0; - break; - - // Type 2 Reversed - // X = (Y ^1/g - b) / a - case -2: - if (R < 0) - Val = 0; - else - Val = (pow(R, 1.0/Params[0]) - Params[2]) / Params[1]; - - if (Val < 0) - Val = 0; - break; - - - // IEC 61966-3 - // Y = (aX + b)^Gamma | X <= -b/a - // Y = c | else - case 3: - disc = -Params[2] / Params[1]; - if (disc < 0) - disc = 0; - - if (R >= disc) { - - e = Params[1]*R + Params[2]; - - if (e > 0) - Val = pow(e, Params[0]) + Params[3]; - else - Val = 0; - } - else - Val = Params[3]; - break; - - - // Type 3 reversed - // X=((Y-c)^1/g - b)/a | (Y>=c) - // X=-b/a | (Y<c) - case -3: - if (R >= Params[3]) { - - e = R - Params[3]; - - if (e > 0) - Val = (pow(e, 1/Params[0]) - Params[2]) / Params[1]; - else - Val = 0; - } - else { - Val = -Params[2] / Params[1]; - } - break; - - - // IEC 61966-2.1 (sRGB) - // Y = (aX + b)^Gamma | X >= d - // Y = cX | X < d - case 4: - if (R >= Params[4]) { - - e = Params[1]*R + Params[2]; - - if (e > 0) - Val = pow(e, Params[0]); - else - Val = 0; - } - else - Val = R * Params[3]; - break; - - // Type 4 reversed - // X=((Y^1/g-b)/a) | Y >= (ad+b)^g - // X=Y/c | Y< (ad+b)^g - case -4: - e = Params[1] * Params[4] + Params[2]; - if (e < 0) - disc = 0; - else - disc = pow(e, Params[0]); - - if (R >= disc) { - - Val = (pow(R, 1.0/Params[0]) - Params[2]) / Params[1]; - } - else { - Val = R / Params[3]; - } - break; - - - // Y = (aX + b)^Gamma + e | X >= d - // Y = cX + f | X < d - case 5: - if (R >= Params[4]) { - - e = Params[1]*R + Params[2]; - - if (e > 0) - Val = pow(e, Params[0]) + Params[5]; - else - Val = Params[5]; - } - else - Val = R*Params[3] + Params[6]; - break; - - - // Reversed type 5 - // X=((Y-e)1/g-b)/a | Y >=(ad+b)^g+e), cd+f - // X=(Y-f)/c | else - case -5: - - disc = Params[3] * Params[4] + Params[6]; - if (R >= disc) { - - e = R - Params[5]; - if (e < 0) - Val = 0; - else - Val = (pow(e, 1.0/Params[0]) - Params[2]) / Params[1]; - } - else { - Val = (R - Params[6]) / Params[3]; - } - break; - - - // Types 6,7,8 comes from segmented curves as described in ICCSpecRevision_02_11_06_Float.pdf - // Type 6 is basically identical to type 5 without d - - // Y = (a * X + b) ^ Gamma + c - case 6: - e = Params[1]*R + Params[2]; - - if (e < 0) - Val = Params[3]; - else - Val = pow(e, Params[0]) + Params[3]; - break; - - // ((Y - c) ^1/Gamma - b) / a - case -6: - e = R - Params[3]; - if (e < 0) - Val = 0; - else - Val = (pow(e, 1.0/Params[0]) - Params[2]) / Params[1]; - break; - - - // Y = a * log (b * X^Gamma + c) + d - case 7: - - e = Params[2] * pow(R, Params[0]) + Params[3]; - if (e <= 0) - Val = Params[4]; - else - Val = Params[1]*log10(e) + Params[4]; - break; - - // (Y - d) / a = log(b * X ^Gamma + c) - // pow(10, (Y-d) / a) = b * X ^Gamma + c - // pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X - case -7: - Val = pow((pow(10.0, (R-Params[4]) / Params[1]) - Params[3]) / Params[2], 1.0 / Params[0]); - break; - - - //Y = a * b^(c*X+d) + e - case 8: - Val = (Params[0] * pow(Params[1], Params[2] * R + Params[3]) + Params[4]); - break; - - - // Y = (log((y-e) / a) / log(b) - d ) / c - // a=0, b=1, c=2, d=3, e=4, - case -8: - - disc = R - Params[4]; - if (disc < 0) Val = 0; - else - Val = (log(disc / Params[0]) / log(Params[1]) - Params[3]) / Params[2]; - break; - - // S-Shaped: (1 - (1-x)^1/g)^1/g - case 108: - Val = pow(1.0 - pow(1 - R, 1/Params[0]), 1/Params[0]); - break; - - // y = (1 - (1-x)^1/g)^1/g - // y^g = (1 - (1-x)^1/g) - // 1 - y^g = (1-x)^1/g - // (1 - y^g)^g = 1 - x - // 1 - (1 - y^g)^g - case -108: - Val = 1 - pow(1 - pow(R, Params[0]), Params[0]); - break; - - default: - // Unsupported parametric curve. Should never reach here - return 0; - } - - return Val; -} - -// Evaluate a segmented funtion for a single value. Return -1 if no valid segment found . -// If fn type is 0, perform an interpolation on the table -static -cmsFloat64Number EvalSegmentedFn(const cmsToneCurve *g, cmsFloat64Number R) -{ - int i; - - for (i = g ->nSegments-1; i >= 0 ; --i) { - - // Check for domain - if ((R > g ->Segments[i].x0) && (R <= g ->Segments[i].x1)) { - - // Type == 0 means segment is sampled - if (g ->Segments[i].Type == 0) { - - cmsFloat32Number R1 = (cmsFloat32Number) (R - g ->Segments[i].x0) / (g ->Segments[i].x1 - g ->Segments[i].x0); - cmsFloat32Number Out; - - // Setup the table (TODO: clean that) - g ->SegInterp[i]-> Table = g ->Segments[i].SampledPoints; - - g ->SegInterp[i] -> Interpolation.LerpFloat(&R1, &Out, g ->SegInterp[i]); - - return Out; - } - else - return g ->Evals[i](g->Segments[i].Type, g ->Segments[i].Params, R); - } - } - - return MINUS_INF; -} - -// Access to estimated low-res table -cmsUInt32Number CMSEXPORT cmsGetToneCurveEstimatedTableEntries(const cmsToneCurve* t) -{ - _cmsAssert(t != NULL); - return t ->nEntries; -} - -const cmsUInt16Number* CMSEXPORT cmsGetToneCurveEstimatedTable(const cmsToneCurve* t) -{ - _cmsAssert(t != NULL); - return t ->Table16; -} - - -// Create an empty gamma curve, by using tables. This specifies only the limited-precision part, and leaves the -// floating point description empty. -cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurve16(cmsContext ContextID, cmsInt32Number nEntries, const cmsUInt16Number Values[]) -{ - return AllocateToneCurveStruct(ContextID, nEntries, 0, NULL, Values); -} - -static -int EntriesByGamma(cmsFloat64Number Gamma) -{ - if (fabs(Gamma - 1.0) < 0.001) return 2; - return 4096; -} - - -// Create a segmented gamma, fill the table -cmsToneCurve* CMSEXPORT cmsBuildSegmentedToneCurve(cmsContext ContextID, - cmsInt32Number nSegments, const cmsCurveSegment Segments[]) -{ - int i; - cmsFloat64Number R, Val; - cmsToneCurve* g; - int nGridPoints = 4096; - - _cmsAssert(Segments != NULL); - - // Optimizatin for identity curves. - if (nSegments == 1 && Segments[0].Type == 1) { - - nGridPoints = EntriesByGamma(Segments[0].Params[0]); - } - - g = AllocateToneCurveStruct(ContextID, nGridPoints, nSegments, Segments, NULL); - if (g == NULL) return NULL; - - // Once we have the floating point version, we can approximate a 16 bit table of 4096 entries - // for performance reasons. This table would normally not be used except on 8/16 bits transforms. - for (i=0; i < nGridPoints; i++) { - - R = (cmsFloat64Number) i / (nGridPoints-1); - - Val = EvalSegmentedFn(g, R); - - // Round and saturate - g ->Table16[i] = _cmsQuickSaturateWord(Val * 65535.0); - } - - return g; -} - -// Use a segmented curve to store the floating point table -cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurveFloat(cmsContext ContextID, cmsUInt32Number nEntries, const cmsFloat32Number values[]) -{ - cmsCurveSegment Seg[3]; - - // A segmented tone curve should have function segments in the first and last positions - // Initialize segmented curve part up to 0 to constant value = samples[0] - Seg[0].x0 = MINUS_INF; - Seg[0].x1 = 0; - Seg[0].Type = 6; - - Seg[0].Params[0] = 1; - Seg[0].Params[1] = 0; - Seg[0].Params[2] = 0; - Seg[0].Params[3] = values[0]; - Seg[0].Params[4] = 0; - - // From zero to 1 - Seg[1].x0 = 0; - Seg[1].x1 = 1.0; - Seg[1].Type = 0; - - Seg[1].nGridPoints = nEntries; - Seg[1].SampledPoints = (cmsFloat32Number*) values; - - // Final segment is constant = lastsample - Seg[2].x0 = 1.0; - Seg[2].x1 = PLUS_INF; - Seg[2].Type = 6; - - Seg[2].Params[0] = 1; - Seg[2].Params[1] = 0; - Seg[2].Params[2] = 0; - Seg[2].Params[3] = values[nEntries-1]; - Seg[2].Params[4] = 0; - - - return cmsBuildSegmentedToneCurve(ContextID, 3, Seg); -} - -// Parametric curves -// -// Parameters goes as: Curve, a, b, c, d, e, f -// Type is the ICC type +1 -// if type is negative, then the curve is analyticaly inverted -cmsToneCurve* CMSEXPORT cmsBuildParametricToneCurve(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[]) -{ - cmsCurveSegment Seg0; - int Pos = 0; - cmsUInt32Number size; - _cmsParametricCurvesCollection* c = GetParametricCurveByType(ContextID, Type, &Pos); - - _cmsAssert(Params != NULL); - - if (c == NULL) { - cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Invalid parametric curve type %d", Type); - return NULL; - } - - memset(&Seg0, 0, sizeof(Seg0)); - - Seg0.x0 = MINUS_INF; - Seg0.x1 = PLUS_INF; - Seg0.Type = Type; - - size = c->ParameterCount[Pos] * sizeof(cmsFloat64Number); - memmove(Seg0.Params, Params, size); - - return cmsBuildSegmentedToneCurve(ContextID, 1, &Seg0); -} - - - -// Build a gamma table based on gamma constant -cmsToneCurve* CMSEXPORT cmsBuildGamma(cmsContext ContextID, cmsFloat64Number Gamma) -{ - return cmsBuildParametricToneCurve(ContextID, 1, &Gamma); -} - - -// Free all memory taken by the gamma curve -void CMSEXPORT cmsFreeToneCurve(cmsToneCurve* Curve) -{ - cmsContext ContextID; - - // added by Xiaochuan Liu - // Curve->InterpParams may be null - if (Curve == NULL || Curve->InterpParams == NULL) return; - - ContextID = Curve ->InterpParams->ContextID; - - _cmsFreeInterpParams(Curve ->InterpParams); - Curve ->InterpParams = NULL; - - if (Curve -> Table16) - { - _cmsFree(ContextID, Curve ->Table16); - Curve ->Table16 = NULL; - } - - if (Curve ->Segments) { - - cmsUInt32Number i; - - for (i=0; i < Curve ->nSegments; i++) { - - if (Curve ->Segments[i].SampledPoints) { - _cmsFree(ContextID, Curve ->Segments[i].SampledPoints); - Curve ->Segments[i].SampledPoints = NULL; - } - - if (Curve ->SegInterp[i] != 0) - { - _cmsFreeInterpParams(Curve->SegInterp[i]); - Curve->SegInterp[i] = NULL; - } - } - - _cmsFree(ContextID, Curve ->Segments); - Curve ->Segments = NULL; - _cmsFree(ContextID, Curve ->SegInterp); - Curve ->SegInterp = NULL; - } - - if (Curve -> Evals) - { - _cmsFree(ContextID, Curve -> Evals); - Curve -> Evals = NULL; - } - - if (Curve) - { - _cmsFree(ContextID, Curve); - Curve = NULL; - } -} - -// Utility function, free 3 gamma tables -void CMSEXPORT cmsFreeToneCurveTriple(cmsToneCurve* Curve[3]) -{ - - _cmsAssert(Curve != NULL); - - if (Curve[0] != NULL) cmsFreeToneCurve(Curve[0]); - if (Curve[1] != NULL) cmsFreeToneCurve(Curve[1]); - if (Curve[2] != NULL) cmsFreeToneCurve(Curve[2]); - - Curve[0] = Curve[1] = Curve[2] = NULL; -} - - -// Duplicate a gamma table -cmsToneCurve* CMSEXPORT cmsDupToneCurve(const cmsToneCurve* In) -{ - // Xiaochuan Liu - // fix openpdf bug(mantis id:0055683, google id:360198) - // the function CurveSetElemTypeFree in cmslut.c also needs to check pointer - if (In == NULL || In ->InterpParams == NULL || In ->Segments == NULL || In ->Table16 == NULL) return NULL; - - return AllocateToneCurveStruct(In ->InterpParams ->ContextID, In ->nEntries, In ->nSegments, In ->Segments, In ->Table16); -} - -// Joins two curves for X and Y. Curves should be monotonic. -// We want to get -// -// y = Y^-1(X(t)) -// -cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID, - const cmsToneCurve* X, - const cmsToneCurve* Y, cmsUInt32Number nResultingPoints) -{ - cmsToneCurve* out = NULL; - cmsToneCurve* Yreversed = NULL; - cmsFloat32Number t, x; - cmsFloat32Number* Res = NULL; - cmsUInt32Number i; - - - _cmsAssert(X != NULL); - _cmsAssert(Y != NULL); - - Yreversed = cmsReverseToneCurveEx(nResultingPoints, Y); - if (Yreversed == NULL) goto Error; - - Res = (cmsFloat32Number*) _cmsCalloc(ContextID, nResultingPoints, sizeof(cmsFloat32Number)); - if (Res == NULL) goto Error; - - //Iterate - for (i=0; i < nResultingPoints; i++) { - - t = (cmsFloat32Number) i / (nResultingPoints-1); - x = cmsEvalToneCurveFloat(X, t); - Res[i] = cmsEvalToneCurveFloat(Yreversed, x); - } - - // Allocate space for output - out = cmsBuildTabulatedToneCurveFloat(ContextID, nResultingPoints, Res); - -Error: - - if (Res != NULL) _cmsFree(ContextID, Res); - if (Yreversed != NULL) cmsFreeToneCurve(Yreversed); - - return out; -} - - - -// Get the surrounding nodes. This is tricky on non-monotonic tables -static -int GetInterval(cmsFloat64Number In, const cmsUInt16Number LutTable[], const struct _cms_interp_struc* p) -{ - int i; - int y0, y1; - - // A 1 point table is not allowed - if (p -> Domain[0] < 1) return -1; - - // Let's see if ascending or descending. - if (LutTable[0] < LutTable[p ->Domain[0]]) { - - // Table is overall ascending - for (i=p->Domain[0]-1; i >=0; --i) { - - y0 = LutTable[i]; - y1 = LutTable[i+1]; - - if (y0 <= y1) { // Increasing - if (In >= y0 && In <= y1) return i; - } - else - if (y1 < y0) { // Decreasing - if (In >= y1 && In <= y0) return i; - } - } - } - else { - // Table is overall descending - for (i=0; i < (int) p -> Domain[0]; i++) { - - y0 = LutTable[i]; - y1 = LutTable[i+1]; - - if (y0 <= y1) { // Increasing - if (In >= y0 && In <= y1) return i; - } - else - if (y1 < y0) { // Decreasing - if (In >= y1 && In <= y0) return i; - } - } - } - - return -1; -} - -// Reverse a gamma table -cmsToneCurve* CMSEXPORT cmsReverseToneCurveEx(cmsInt32Number nResultSamples, const cmsToneCurve* InCurve) -{ - cmsToneCurve *out; - cmsFloat64Number a = 0, b = 0, y, x1, y1, x2, y2; - int i, j; - int Ascending; - - _cmsAssert(InCurve != NULL); - - // Try to reverse it analytically whatever possible - - if (InCurve ->nSegments == 1 && InCurve ->Segments[0].Type > 0 && - /* InCurve -> Segments[0].Type <= 5 */ - GetParametricCurveByType(InCurve ->InterpParams->ContextID, InCurve ->Segments[0].Type, NULL) != NULL) { - - return cmsBuildParametricToneCurve(InCurve ->InterpParams->ContextID, - -(InCurve -> Segments[0].Type), - InCurve -> Segments[0].Params); - } - - // Nope, reverse the table. - out = cmsBuildTabulatedToneCurve16(InCurve ->InterpParams->ContextID, nResultSamples, NULL); - if (out == NULL) - return NULL; - - // We want to know if this is an ascending or descending table - Ascending = !cmsIsToneCurveDescending(InCurve); - - // Iterate across Y axis - for (i=0; i < nResultSamples; i++) { - - y = (cmsFloat64Number) i * 65535.0 / (nResultSamples - 1); - - // Find interval in which y is within. - j = GetInterval(y, InCurve->Table16, InCurve->InterpParams); - if (j >= 0) { - - - // Get limits of interval - x1 = InCurve ->Table16[j]; - x2 = InCurve ->Table16[j+1]; - - y1 = (cmsFloat64Number) (j * 65535.0) / (InCurve ->nEntries - 1); - y2 = (cmsFloat64Number) ((j+1) * 65535.0 ) / (InCurve ->nEntries - 1); - - // If collapsed, then use any - if (x1 == x2) { - - out ->Table16[i] = _cmsQuickSaturateWord(Ascending ? y2 : y1); - continue; - - } else { - - // Interpolate - a = (y2 - y1) / (x2 - x1); - b = y2 - a * x2; - } - } - - out ->Table16[i] = _cmsQuickSaturateWord(a* y + b); - } - - - return out; -} - -// Reverse a gamma table -cmsToneCurve* CMSEXPORT cmsReverseToneCurve(const cmsToneCurve* InGamma) -{ - _cmsAssert(InGamma != NULL); - - return cmsReverseToneCurveEx(4096, InGamma); -} - -// From: Eilers, P.H.C. (1994) Smoothing and interpolation with finite -// differences. in: Graphic Gems IV, Heckbert, P.S. (ed.), Academic press. -// -// Smoothing and interpolation with second differences. -// -// Input: weights (w), data (y): vector from 1 to m. -// Input: smoothing parameter (lambda), length (m). -// Output: smoothed vector (z): vector from 1 to m. - -static -cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[], cmsFloat32Number z[], cmsFloat32Number lambda, int m) -{ - int i, i1, i2; - cmsFloat32Number *c, *d, *e; - cmsBool st; - - - c = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number)); - d = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number)); - e = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number)); - - if (c != NULL && d != NULL && e != NULL) { - - - d[1] = w[1] + lambda; - c[1] = -2 * lambda / d[1]; - e[1] = lambda /d[1]; - z[1] = w[1] * y[1]; - d[2] = w[2] + 5 * lambda - d[1] * c[1] * c[1]; - c[2] = (-4 * lambda - d[1] * c[1] * e[1]) / d[2]; - e[2] = lambda / d[2]; - z[2] = w[2] * y[2] - c[1] * z[1]; - - for (i = 3; i < m - 1; i++) { - i1 = i - 1; i2 = i - 2; - d[i]= w[i] + 6 * lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2]; - c[i] = (-4 * lambda -d[i1] * c[i1] * e[i1])/ d[i]; - e[i] = lambda / d[i]; - z[i] = w[i] * y[i] - c[i1] * z[i1] - e[i2] * z[i2]; - } - - i1 = m - 2; i2 = m - 3; - - d[m - 1] = w[m - 1] + 5 * lambda -c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2]; - c[m - 1] = (-2 * lambda - d[i1] * c[i1] * e[i1]) / d[m - 1]; - z[m - 1] = w[m - 1] * y[m - 1] - c[i1] * z[i1] - e[i2] * z[i2]; - i1 = m - 1; i2 = m - 2; - - d[m] = w[m] + lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2]; - z[m] = (w[m] * y[m] - c[i1] * z[i1] - e[i2] * z[i2]) / d[m]; - z[m - 1] = z[m - 1] / d[m - 1] - c[m - 1] * z[m]; - - for (i = m - 2; 1<= i; i--) - z[i] = z[i] / d[i] - c[i] * z[i + 1] - e[i] * z[i + 2]; - - st = TRUE; - } - else st = FALSE; - - if (c != NULL) _cmsFree(ContextID, c); - if (d != NULL) _cmsFree(ContextID, d); - if (e != NULL) _cmsFree(ContextID, e); - - return st; -} - -// Smooths a curve sampled at regular intervals. -cmsBool CMSEXPORT cmsSmoothToneCurve(cmsToneCurve* Tab, cmsFloat64Number lambda) -{ - cmsFloat32Number w[MAX_NODES_IN_CURVE], y[MAX_NODES_IN_CURVE], z[MAX_NODES_IN_CURVE]; - int i, nItems, Zeros, Poles; - - if (Tab == NULL) return FALSE; - - if (cmsIsToneCurveLinear(Tab)) return TRUE; // Nothing to do - - nItems = Tab -> nEntries; - - if (nItems >= MAX_NODES_IN_CURVE) { - cmsSignalError(Tab ->InterpParams->ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: too many points."); - return FALSE; - } - - memset(w, 0, nItems * sizeof(cmsFloat32Number)); - memset(y, 0, nItems * sizeof(cmsFloat32Number)); - memset(z, 0, nItems * sizeof(cmsFloat32Number)); - - for (i=0; i < nItems; i++) - { - y[i+1] = (cmsFloat32Number) Tab -> Table16[i]; - w[i+1] = 1.0; - } - - if (!smooth2(Tab ->InterpParams->ContextID, w, y, z, (cmsFloat32Number) lambda, nItems)) return FALSE; - - // Do some reality - checking... - Zeros = Poles = 0; - for (i=nItems; i > 1; --i) { - - if (z[i] == 0.) Zeros++; - if (z[i] >= 65535.) Poles++; - if (z[i] < z[i-1]) { - cmsSignalError(Tab ->InterpParams->ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Non-Monotonic."); - return FALSE; - } - } - - if (Zeros > (nItems / 3)) { - cmsSignalError(Tab ->InterpParams->ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly zeros."); - return FALSE; - } - if (Poles > (nItems / 3)) { - cmsSignalError(Tab ->InterpParams->ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly poles."); - return FALSE; - } - - // Seems ok - for (i=0; i < nItems; i++) { - - // Clamp to cmsUInt16Number - Tab -> Table16[i] = _cmsQuickSaturateWord(z[i+1]); - } - - return TRUE; -} - -// Is a table linear? Do not use parametric since we cannot guarantee some weird parameters resulting -// in a linear table. This way assures it is linear in 12 bits, which should be enought in most cases. -cmsBool CMSEXPORT cmsIsToneCurveLinear(const cmsToneCurve* Curve) -{ - cmsUInt32Number i; - int diff; - - _cmsAssert(Curve != NULL); - - for (i=0; i < Curve ->nEntries; i++) { - - diff = abs((int) Curve->Table16[i] - (int) _cmsQuantizeVal(i, Curve ->nEntries)); - if (diff > 0x0f) - return FALSE; - } - - return TRUE; -} - -// Same, but for monotonicity -cmsBool CMSEXPORT cmsIsToneCurveMonotonic(const cmsToneCurve* t) -{ - int n; - int i, last; - cmsBool lDescending; - - _cmsAssert(t != NULL); - - // Degenerated curves are monotonic? Ok, let's pass them - n = t ->nEntries; - if (n < 2) return TRUE; - - // Curve direction - lDescending = cmsIsToneCurveDescending(t); - - if (lDescending) { - - last = t ->Table16[0]; - - for (i = 1; i < n; i++) { - - if (t ->Table16[i] - last > 2) // We allow some ripple - return FALSE; - else - last = t ->Table16[i]; - - } - } - else { - - last = t ->Table16[n-1]; - - for (i = n-2; i >= 0; --i) { - - if (t ->Table16[i] - last > 2) - return FALSE; - else - last = t ->Table16[i]; - - } - } - - return TRUE; -} - -// Same, but for descending tables -cmsBool CMSEXPORT cmsIsToneCurveDescending(const cmsToneCurve* t) -{ - _cmsAssert(t != NULL); - - return t ->Table16[0] > t ->Table16[t ->nEntries-1]; -} - - -// Another info fn: is out gamma table multisegment? -cmsBool CMSEXPORT cmsIsToneCurveMultisegment(const cmsToneCurve* t) -{ - _cmsAssert(t != NULL); - - return t -> nSegments > 1; -} - -cmsInt32Number CMSEXPORT cmsGetToneCurveParametricType(const cmsToneCurve* t) -{ - _cmsAssert(t != NULL); - - if (t -> nSegments != 1) return 0; - return t ->Segments[0].Type; -} - -// We need accuracy this time -cmsFloat32Number CMSEXPORT cmsEvalToneCurveFloat(const cmsToneCurve* Curve, cmsFloat32Number v) -{ - _cmsAssert(Curve != NULL); - - // Check for 16 bits table. If so, this is a limited-precision tone curve - if (Curve ->nSegments == 0) { - - cmsUInt16Number In, Out; - - In = (cmsUInt16Number) _cmsQuickSaturateWord(v * 65535.0); - Out = cmsEvalToneCurve16(Curve, In); - - return (cmsFloat32Number) (Out / 65535.0); - } - - return (cmsFloat32Number) EvalSegmentedFn(Curve, v); -} - -// We need xput over here -cmsUInt16Number CMSEXPORT cmsEvalToneCurve16(const cmsToneCurve* Curve, cmsUInt16Number v) -{ - cmsUInt16Number out; - - _cmsAssert(Curve != NULL); - - Curve ->InterpParams ->Interpolation.Lerp16(&v, &out, Curve ->InterpParams); - return out; -} - - -// Least squares fitting. -// A mathematical procedure for finding the best-fitting curve to a given set of points by -// minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve. -// The sum of the squares of the offsets is used instead of the offset absolute values because -// this allows the residuals to be treated as a continuous differentiable quantity. -// -// y = f(x) = x ^ g -// -// R = (yi - (xi^g)) -// R2 = (yi - (xi^g))2 -// SUM R2 = SUM (yi - (xi^g))2 -// -// dR2/dg = -2 SUM x^g log(x)(y - x^g) -// solving for dR2/dg = 0 -// -// g = 1/n * SUM(log(y) / log(x)) - -cmsFloat64Number CMSEXPORT cmsEstimateGamma(const cmsToneCurve* t, cmsFloat64Number Precision) -{ - cmsFloat64Number gamma, sum, sum2; - cmsFloat64Number n, x, y, Std; - cmsUInt32Number i; - - _cmsAssert(t != NULL); - - sum = sum2 = n = 0; - - // Excluding endpoints - for (i=1; i < (MAX_NODES_IN_CURVE-1); i++) { - - x = (cmsFloat64Number) i / (MAX_NODES_IN_CURVE-1); - y = (cmsFloat64Number) cmsEvalToneCurveFloat(t, (cmsFloat32Number) x); - - // Avoid 7% on lower part to prevent - // artifacts due to linear ramps - - if (y > 0. && y < 1. && x > 0.07) { - - gamma = log(y) / log(x); - sum += gamma; - sum2 += gamma * gamma; - n++; - } - } - - // Take a look on SD to see if gamma isn't exponential at all - Std = sqrt((n * sum2 - sum * sum) / (n*(n-1))); - - if (Std > Precision) - return -1.0; - - return (sum / n); // The mean -} |