diff options
Diffstat (limited to 'third_party/lcms2-2.6/src/cmsintrp.c')
-rw-r--r-- | third_party/lcms2-2.6/src/cmsintrp.c | 1506 |
1 files changed, 1506 insertions, 0 deletions
diff --git a/third_party/lcms2-2.6/src/cmsintrp.c b/third_party/lcms2-2.6/src/cmsintrp.c new file mode 100644 index 0000000000..5d5f35d3fc --- /dev/null +++ b/third_party/lcms2-2.6/src/cmsintrp.c @@ -0,0 +1,1506 @@ +//--------------------------------------------------------------------------------- +// +// Little Color Management System +// Copyright (c) 1998-2012 Marti Maria Saguer +// +// Permission is hereby granted, free of charge, to any person obtaining +// a copy of this software and associated documentation files (the "Software"), +// to deal in the Software without restriction, including without limitation +// the rights to use, copy, modify, merge, publish, distribute, sublicense, +// and/or sell copies of the Software, and to permit persons to whom the Software +// is furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +// +//--------------------------------------------------------------------------------- +// + +#include "lcms2_internal.h" + +// This module incorporates several interpolation routines, for 1 to 8 channels on input and +// up to 65535 channels on output. The user may change those by using the interpolation plug-in + +// Interpolation routines by default +static cmsInterpFunction DefaultInterpolatorsFactory(cmsUInt32Number nInputChannels, cmsUInt32Number nOutputChannels, cmsUInt32Number dwFlags); + +// This is the default factory +_cmsInterpPluginChunkType _cmsInterpPluginChunk = { NULL }; + +// The interpolation plug-in memory chunk allocator/dup +void _cmsAllocInterpPluginChunk(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src) +{ + void* from; + + _cmsAssert(ctx != NULL); + + if (src != NULL) { + from = src ->chunks[InterpPlugin]; + } + else { + static _cmsInterpPluginChunkType InterpPluginChunk = { NULL }; + + from = &InterpPluginChunk; + } + + _cmsAssert(from != NULL); + ctx ->chunks[InterpPlugin] = _cmsSubAllocDup(ctx ->MemPool, from, sizeof(_cmsInterpPluginChunkType)); +} + + +// Main plug-in entry +cmsBool _cmsRegisterInterpPlugin(cmsContext ContextID, cmsPluginBase* Data) +{ + cmsPluginInterpolation* Plugin = (cmsPluginInterpolation*) Data; + _cmsInterpPluginChunkType* ptr = (_cmsInterpPluginChunkType*) _cmsContextGetClientChunk(ContextID, InterpPlugin); + + if (Data == NULL) { + + ptr ->Interpolators = NULL; + return TRUE; + } + + // Set replacement functions + ptr ->Interpolators = Plugin ->InterpolatorsFactory; + return TRUE; +} + + +// Set the interpolation method +cmsBool _cmsSetInterpolationRoutine(cmsContext ContextID, cmsInterpParams* p) +{ + _cmsInterpPluginChunkType* ptr = (_cmsInterpPluginChunkType*) _cmsContextGetClientChunk(ContextID, InterpPlugin); + + p ->Interpolation.Lerp16 = NULL; + + // Invoke factory, possibly in the Plug-in + if (ptr ->Interpolators != NULL) + p ->Interpolation = ptr->Interpolators(p -> nInputs, p ->nOutputs, p ->dwFlags); + + // If unsupported by the plug-in, go for the LittleCMS default. + // If happens only if an extern plug-in is being used + if (p ->Interpolation.Lerp16 == NULL) + p ->Interpolation = DefaultInterpolatorsFactory(p ->nInputs, p ->nOutputs, p ->dwFlags); + + // Check for valid interpolator (we just check one member of the union) + if (p ->Interpolation.Lerp16 == NULL) { + return FALSE; + } + + return TRUE; +} + + +// This function precalculates as many parameters as possible to speed up the interpolation. +cmsInterpParams* _cmsComputeInterpParamsEx(cmsContext ContextID, + const cmsUInt32Number nSamples[], + int InputChan, int OutputChan, + const void *Table, + cmsUInt32Number dwFlags) +{ + cmsInterpParams* p; + int i; + + // Check for maximum inputs + if (InputChan > MAX_INPUT_DIMENSIONS) { + cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", InputChan, MAX_INPUT_DIMENSIONS); + return NULL; + } + + // Creates an empty object + p = (cmsInterpParams*) _cmsMallocZero(ContextID, sizeof(cmsInterpParams)); + if (p == NULL) return NULL; + + // Keep original parameters + p -> dwFlags = dwFlags; + p -> nInputs = InputChan; + p -> nOutputs = OutputChan; + p ->Table = Table; + p ->ContextID = ContextID; + + // Fill samples per input direction and domain (which is number of nodes minus one) + for (i=0; i < InputChan; i++) { + + p -> nSamples[i] = nSamples[i]; + p -> Domain[i] = nSamples[i] - 1; + } + + // Compute factors to apply to each component to index the grid array + p -> opta[0] = p -> nOutputs; + for (i=1; i < InputChan; i++) + p ->opta[i] = p ->opta[i-1] * nSamples[InputChan-i]; + + + if (!_cmsSetInterpolationRoutine(ContextID, p)) { + cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unsupported interpolation (%d->%d channels)", InputChan, OutputChan); + _cmsFree(ContextID, p); + return NULL; + } + + // All seems ok + return p; +} + + +// This one is a wrapper on the anterior, but assuming all directions have same number of nodes +cmsInterpParams* _cmsComputeInterpParams(cmsContext ContextID, int nSamples, int InputChan, int OutputChan, const void* Table, cmsUInt32Number dwFlags) +{ + int i; + cmsUInt32Number Samples[MAX_INPUT_DIMENSIONS]; + + // Fill the auxiliar array + for (i=0; i < MAX_INPUT_DIMENSIONS; i++) + Samples[i] = nSamples; + + // Call the extended function + return _cmsComputeInterpParamsEx(ContextID, Samples, InputChan, OutputChan, Table, dwFlags); +} + + +// Free all associated memory +void _cmsFreeInterpParams(cmsInterpParams* p) +{ + if (p != NULL) _cmsFree(p ->ContextID, p); +} + + +// Inline fixed point interpolation +cmsINLINE cmsUInt16Number LinearInterp(cmsS15Fixed16Number a, cmsS15Fixed16Number l, cmsS15Fixed16Number h) +{ + cmsUInt32Number dif = (cmsUInt32Number) (h - l) * a + 0x8000; + dif = (dif >> 16) + l; + return (cmsUInt16Number) (dif); +} + + +// Linear interpolation (Fixed-point optimized) +static +void LinLerp1D(register const cmsUInt16Number Value[], + register cmsUInt16Number Output[], + register const cmsInterpParams* p) +{ + cmsUInt16Number y1, y0; + int cell0, rest; + int val3; + const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; + + // if last value... + if (Value[0] == 0xffff) { + + Output[0] = LutTable[p -> Domain[0]]; + return; + } + + val3 = p -> Domain[0] * Value[0]; + val3 = _cmsToFixedDomain(val3); // To fixed 15.16 + + cell0 = FIXED_TO_INT(val3); // Cell is 16 MSB bits + rest = FIXED_REST_TO_INT(val3); // Rest is 16 LSB bits + + y0 = LutTable[cell0]; + y1 = LutTable[cell0+1]; + + + Output[0] = LinearInterp(rest, y0, y1); +} + +// To prevent out of bounds indexing +cmsINLINE cmsFloat32Number fclamp(cmsFloat32Number v) +{ + return v < 0.0f ? 0.0f : (v > 1.0f ? 1.0f : v); +} + +// Floating-point version of 1D interpolation +static +void LinLerp1Dfloat(const cmsFloat32Number Value[], + cmsFloat32Number Output[], + const cmsInterpParams* p) +{ + cmsFloat32Number y1, y0; + cmsFloat32Number val2, rest; + int cell0, cell1; + const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; + + val2 = fclamp(Value[0]); + + // if last value... + if (val2 == 1.0) { + Output[0] = LutTable[p -> Domain[0]]; + return; + } + + val2 *= p -> Domain[0]; + + cell0 = (int) floor(val2); + cell1 = (int) ceil(val2); + + // Rest is 16 LSB bits + rest = val2 - cell0; + + y0 = LutTable[cell0] ; + y1 = LutTable[cell1] ; + + Output[0] = y0 + (y1 - y0) * rest; +} + + + +// Eval gray LUT having only one input channel +static +void Eval1Input(register const cmsUInt16Number Input[], + register cmsUInt16Number Output[], + register const cmsInterpParams* p16) +{ + cmsS15Fixed16Number fk; + cmsS15Fixed16Number k0, k1, rk, K0, K1; + int v; + cmsUInt32Number OutChan; + const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; + + v = Input[0] * p16 -> Domain[0]; + fk = _cmsToFixedDomain(v); + + k0 = FIXED_TO_INT(fk); + rk = (cmsUInt16Number) FIXED_REST_TO_INT(fk); + + k1 = k0 + (Input[0] != 0xFFFFU ? 1 : 0); + + K0 = p16 -> opta[0] * k0; + K1 = p16 -> opta[0] * k1; + + for (OutChan=0; OutChan < p16->nOutputs; OutChan++) { + + Output[OutChan] = LinearInterp(rk, LutTable[K0+OutChan], LutTable[K1+OutChan]); + } +} + + + +// Eval gray LUT having only one input channel +static +void Eval1InputFloat(const cmsFloat32Number Value[], + cmsFloat32Number Output[], + const cmsInterpParams* p) +{ + cmsFloat32Number y1, y0; + cmsFloat32Number val2, rest; + int cell0, cell1; + cmsUInt32Number OutChan; + const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; + + val2 = fclamp(Value[0]); + + // if last value... + if (val2 == 1.0) { + Output[0] = LutTable[p -> Domain[0]]; + return; + } + + val2 *= p -> Domain[0]; + + cell0 = (int) floor(val2); + cell1 = (int) ceil(val2); + + // Rest is 16 LSB bits + rest = val2 - cell0; + + cell0 *= p -> opta[0]; + cell1 *= p -> opta[0]; + + for (OutChan=0; OutChan < p->nOutputs; OutChan++) { + + y0 = LutTable[cell0 + OutChan] ; + y1 = LutTable[cell1 + OutChan] ; + + Output[OutChan] = y0 + (y1 - y0) * rest; + } +} + +// Bilinear interpolation (16 bits) - cmsFloat32Number version +static +void BilinearInterpFloat(const cmsFloat32Number Input[], + cmsFloat32Number Output[], + const cmsInterpParams* p) + +{ +# define LERP(a,l,h) (cmsFloat32Number) ((l)+(((h)-(l))*(a))) +# define DENS(i,j) (LutTable[(i)+(j)+OutChan]) + + const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; + cmsFloat32Number px, py; + int x0, y0, + X0, Y0, X1, Y1; + int TotalOut, OutChan; + cmsFloat32Number fx, fy, + d00, d01, d10, d11, + dx0, dx1, + dxy; + + TotalOut = p -> nOutputs; + px = fclamp(Input[0]) * p->Domain[0]; + py = fclamp(Input[1]) * p->Domain[1]; + + x0 = (int) _cmsQuickFloor(px); fx = px - (cmsFloat32Number) x0; + y0 = (int) _cmsQuickFloor(py); fy = py - (cmsFloat32Number) y0; + + X0 = p -> opta[1] * x0; + X1 = X0 + (Input[0] >= 1.0 ? 0 : p->opta[1]); + + Y0 = p -> opta[0] * y0; + Y1 = Y0 + (Input[1] >= 1.0 ? 0 : p->opta[0]); + + for (OutChan = 0; OutChan < TotalOut; OutChan++) { + + d00 = DENS(X0, Y0); + d01 = DENS(X0, Y1); + d10 = DENS(X1, Y0); + d11 = DENS(X1, Y1); + + dx0 = LERP(fx, d00, d10); + dx1 = LERP(fx, d01, d11); + + dxy = LERP(fy, dx0, dx1); + + Output[OutChan] = dxy; + } + + +# undef LERP +# undef DENS +} + +// Bilinear interpolation (16 bits) - optimized version +static +void BilinearInterp16(register const cmsUInt16Number Input[], + register cmsUInt16Number Output[], + register const cmsInterpParams* p) + +{ +#define DENS(i,j) (LutTable[(i)+(j)+OutChan]) +#define LERP(a,l,h) (cmsUInt16Number) (l + ROUND_FIXED_TO_INT(((h-l)*a))) + + const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; + int OutChan, TotalOut; + cmsS15Fixed16Number fx, fy; + register int rx, ry; + int x0, y0; + register int X0, X1, Y0, Y1; + int d00, d01, d10, d11, + dx0, dx1, + dxy; + + TotalOut = p -> nOutputs; + + fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); + x0 = FIXED_TO_INT(fx); + rx = FIXED_REST_TO_INT(fx); // Rest in 0..1.0 domain + + + fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); + y0 = FIXED_TO_INT(fy); + ry = FIXED_REST_TO_INT(fy); + + + X0 = p -> opta[1] * x0; + X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta[1]); + + Y0 = p -> opta[0] * y0; + Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta[0]); + + for (OutChan = 0; OutChan < TotalOut; OutChan++) { + + d00 = DENS(X0, Y0); + d01 = DENS(X0, Y1); + d10 = DENS(X1, Y0); + d11 = DENS(X1, Y1); + + dx0 = LERP(rx, d00, d10); + dx1 = LERP(rx, d01, d11); + + dxy = LERP(ry, dx0, dx1); + + Output[OutChan] = (cmsUInt16Number) dxy; + } + + +# undef LERP +# undef DENS +} + + +// Trilinear interpolation (16 bits) - cmsFloat32Number version +static +void TrilinearInterpFloat(const cmsFloat32Number Input[], + cmsFloat32Number Output[], + const cmsInterpParams* p) + +{ +# define LERP(a,l,h) (cmsFloat32Number) ((l)+(((h)-(l))*(a))) +# define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) + + const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; + cmsFloat32Number px, py, pz; + int x0, y0, z0, + X0, Y0, Z0, X1, Y1, Z1; + int TotalOut, OutChan; + cmsFloat32Number fx, fy, fz, + d000, d001, d010, d011, + d100, d101, d110, d111, + dx00, dx01, dx10, dx11, + dxy0, dxy1, dxyz; + + TotalOut = p -> nOutputs; + + // We need some clipping here + px = fclamp(Input[0]) * p->Domain[0]; + py = fclamp(Input[1]) * p->Domain[1]; + pz = fclamp(Input[2]) * p->Domain[2]; + + x0 = (int) _cmsQuickFloor(px); fx = px - (cmsFloat32Number) x0; + y0 = (int) _cmsQuickFloor(py); fy = py - (cmsFloat32Number) y0; + z0 = (int) _cmsQuickFloor(pz); fz = pz - (cmsFloat32Number) z0; + + X0 = p -> opta[2] * x0; + X1 = X0 + (Input[0] >= 1.0 ? 0 : p->opta[2]); + + Y0 = p -> opta[1] * y0; + Y1 = Y0 + (Input[1] >= 1.0 ? 0 : p->opta[1]); + + Z0 = p -> opta[0] * z0; + Z1 = Z0 + (Input[2] >= 1.0 ? 0 : p->opta[0]); + + for (OutChan = 0; OutChan < TotalOut; OutChan++) { + + d000 = DENS(X0, Y0, Z0); + d001 = DENS(X0, Y0, Z1); + d010 = DENS(X0, Y1, Z0); + d011 = DENS(X0, Y1, Z1); + + d100 = DENS(X1, Y0, Z0); + d101 = DENS(X1, Y0, Z1); + d110 = DENS(X1, Y1, Z0); + d111 = DENS(X1, Y1, Z1); + + + dx00 = LERP(fx, d000, d100); + dx01 = LERP(fx, d001, d101); + dx10 = LERP(fx, d010, d110); + dx11 = LERP(fx, d011, d111); + + dxy0 = LERP(fy, dx00, dx10); + dxy1 = LERP(fy, dx01, dx11); + + dxyz = LERP(fz, dxy0, dxy1); + + Output[OutChan] = dxyz; + } + + +# undef LERP +# undef DENS +} + +// Trilinear interpolation (16 bits) - optimized version +static +void TrilinearInterp16(register const cmsUInt16Number Input[], + register cmsUInt16Number Output[], + register const cmsInterpParams* p) + +{ +#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) +#define LERP(a,l,h) (cmsUInt16Number) (l + ROUND_FIXED_TO_INT(((h-l)*a))) + + const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; + int OutChan, TotalOut; + cmsS15Fixed16Number fx, fy, fz; + register int rx, ry, rz; + int x0, y0, z0; + register int X0, X1, Y0, Y1, Z0, Z1; + int d000, d001, d010, d011, + d100, d101, d110, d111, + dx00, dx01, dx10, dx11, + dxy0, dxy1, dxyz; + + TotalOut = p -> nOutputs; + + fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); + x0 = FIXED_TO_INT(fx); + rx = FIXED_REST_TO_INT(fx); // Rest in 0..1.0 domain + + + fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); + y0 = FIXED_TO_INT(fy); + ry = FIXED_REST_TO_INT(fy); + + fz = _cmsToFixedDomain((int) Input[2] * p -> Domain[2]); + z0 = FIXED_TO_INT(fz); + rz = FIXED_REST_TO_INT(fz); + + + X0 = p -> opta[2] * x0; + X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta[2]); + + Y0 = p -> opta[1] * y0; + Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta[1]); + + Z0 = p -> opta[0] * z0; + Z1 = Z0 + (Input[2] == 0xFFFFU ? 0 : p->opta[0]); + + for (OutChan = 0; OutChan < TotalOut; OutChan++) { + + d000 = DENS(X0, Y0, Z0); + d001 = DENS(X0, Y0, Z1); + d010 = DENS(X0, Y1, Z0); + d011 = DENS(X0, Y1, Z1); + + d100 = DENS(X1, Y0, Z0); + d101 = DENS(X1, Y0, Z1); + d110 = DENS(X1, Y1, Z0); + d111 = DENS(X1, Y1, Z1); + + + dx00 = LERP(rx, d000, d100); + dx01 = LERP(rx, d001, d101); + dx10 = LERP(rx, d010, d110); + dx11 = LERP(rx, d011, d111); + + dxy0 = LERP(ry, dx00, dx10); + dxy1 = LERP(ry, dx01, dx11); + + dxyz = LERP(rz, dxy0, dxy1); + + Output[OutChan] = (cmsUInt16Number) dxyz; + } + + +# undef LERP +# undef DENS +} + + +// Tetrahedral interpolation, using Sakamoto algorithm. +#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) +static +void TetrahedralInterpFloat(const cmsFloat32Number Input[], + cmsFloat32Number Output[], + const cmsInterpParams* p) +{ + const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; + cmsFloat32Number px, py, pz; + int x0, y0, z0, + X0, Y0, Z0, X1, Y1, Z1; + cmsFloat32Number rx, ry, rz; + cmsFloat32Number c0, c1=0, c2=0, c3=0; + int OutChan, TotalOut; + + TotalOut = p -> nOutputs; + + // We need some clipping here + px = fclamp(Input[0]) * p->Domain[0]; + py = fclamp(Input[1]) * p->Domain[1]; + pz = fclamp(Input[2]) * p->Domain[2]; + + x0 = (int) _cmsQuickFloor(px); rx = (px - (cmsFloat32Number) x0); + y0 = (int) _cmsQuickFloor(py); ry = (py - (cmsFloat32Number) y0); + z0 = (int) _cmsQuickFloor(pz); rz = (pz - (cmsFloat32Number) z0); + + + X0 = p -> opta[2] * x0; + X1 = X0 + (Input[0] >= 1.0 ? 0 : p->opta[2]); + + Y0 = p -> opta[1] * y0; + Y1 = Y0 + (Input[1] >= 1.0 ? 0 : p->opta[1]); + + Z0 = p -> opta[0] * z0; + Z1 = Z0 + (Input[2] >= 1.0 ? 0 : p->opta[0]); + + for (OutChan=0; OutChan < TotalOut; OutChan++) { + + // These are the 6 Tetrahedral + + c0 = DENS(X0, Y0, Z0); + + if (rx >= ry && ry >= rz) { + + c1 = DENS(X1, Y0, Z0) - c0; + c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); + c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); + + } + else + if (rx >= rz && rz >= ry) { + + c1 = DENS(X1, Y0, Z0) - c0; + c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); + c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); + + } + else + if (rz >= rx && rx >= ry) { + + c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); + c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); + c3 = DENS(X0, Y0, Z1) - c0; + + } + else + if (ry >= rx && rx >= rz) { + + c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); + c2 = DENS(X0, Y1, Z0) - c0; + c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); + + } + else + if (ry >= rz && rz >= rx) { + + c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); + c2 = DENS(X0, Y1, Z0) - c0; + c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); + + } + else + if (rz >= ry && ry >= rx) { + + c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); + c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); + c3 = DENS(X0, Y0, Z1) - c0; + + } + else { + c1 = c2 = c3 = 0; + } + + Output[OutChan] = c0 + c1 * rx + c2 * ry + c3 * rz; + } + +} + +#undef DENS + + + + +static +void TetrahedralInterp16(register const cmsUInt16Number Input[], + register cmsUInt16Number Output[], + register const cmsInterpParams* p) +{ + const cmsUInt16Number* LutTable = (cmsUInt16Number*) p -> Table; + cmsS15Fixed16Number fx, fy, fz; + cmsS15Fixed16Number rx, ry, rz; + int x0, y0, z0; + cmsS15Fixed16Number c0, c1, c2, c3, Rest; + cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; + cmsUInt32Number TotalOut = p -> nOutputs; + + fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); + fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); + fz = _cmsToFixedDomain((int) Input[2] * p -> Domain[2]); + + x0 = FIXED_TO_INT(fx); + y0 = FIXED_TO_INT(fy); + z0 = FIXED_TO_INT(fz); + + rx = FIXED_REST_TO_INT(fx); + ry = FIXED_REST_TO_INT(fy); + rz = FIXED_REST_TO_INT(fz); + + X0 = p -> opta[2] * x0; + X1 = (Input[0] == 0xFFFFU ? 0 : p->opta[2]); + + Y0 = p -> opta[1] * y0; + Y1 = (Input[1] == 0xFFFFU ? 0 : p->opta[1]); + + Z0 = p -> opta[0] * z0; + Z1 = (Input[2] == 0xFFFFU ? 0 : p->opta[0]); + + LutTable = &LutTable[X0+Y0+Z0]; + + // Output should be computed as x = ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest)) + // which expands as: x = (Rest + ((Rest+0x7fff)/0xFFFF) + 0x8000)>>16 + // This can be replaced by: t = Rest+0x8001, x = (t + (t>>16))>>16 + // at the cost of being off by one at 7fff and 17ffe. + + if (rx >= ry) { + if (ry >= rz) { + Y1 += X1; + Z1 += Y1; + for (; TotalOut; TotalOut--) { + c1 = LutTable[X1]; + c2 = LutTable[Y1]; + c3 = LutTable[Z1]; + c0 = *LutTable++; + c3 -= c2; + c2 -= c1; + c1 -= c0; + Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; + *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); + } + } else if (rz >= rx) { + X1 += Z1; + Y1 += X1; + for (; TotalOut; TotalOut--) { + c1 = LutTable[X1]; + c2 = LutTable[Y1]; + c3 = LutTable[Z1]; + c0 = *LutTable++; + c2 -= c1; + c1 -= c3; + c3 -= c0; + Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; + *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); + } + } else { + Z1 += X1; + Y1 += Z1; + for (; TotalOut; TotalOut--) { + c1 = LutTable[X1]; + c2 = LutTable[Y1]; + c3 = LutTable[Z1]; + c0 = *LutTable++; + c2 -= c3; + c3 -= c1; + c1 -= c0; + Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; + *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); + } + } + } else { + if (rx >= rz) { + X1 += Y1; + Z1 += X1; + for (; TotalOut; TotalOut--) { + c1 = LutTable[X1]; + c2 = LutTable[Y1]; + c3 = LutTable[Z1]; + c0 = *LutTable++; + c3 -= c1; + c1 -= c2; + c2 -= c0; + Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; + *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); + } + } else if (ry >= rz) { + Z1 += Y1; + X1 += Z1; + for (; TotalOut; TotalOut--) { + c1 = LutTable[X1]; + c2 = LutTable[Y1]; + c3 = LutTable[Z1]; + c0 = *LutTable++; + c1 -= c3; + c3 -= c2; + c2 -= c0; + Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; + *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); + } + } else { + Y1 += Z1; + X1 += Y1; + for (; TotalOut; TotalOut--) { + c1 = LutTable[X1]; + c2 = LutTable[Y1]; + c3 = LutTable[Z1]; + c0 = *LutTable++; + c1 -= c2; + c2 -= c3; + c3 -= c0; + Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; + *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); + } + } + } +} + + +#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) +static +void Eval4Inputs(register const cmsUInt16Number Input[], + register cmsUInt16Number Output[], + register const cmsInterpParams* p16) +{ + const cmsUInt16Number* LutTable; + cmsS15Fixed16Number fk; + cmsS15Fixed16Number k0, rk; + int K0, K1; + cmsS15Fixed16Number fx, fy, fz; + cmsS15Fixed16Number rx, ry, rz; + int x0, y0, z0; + cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; + cmsUInt32Number i; + cmsS15Fixed16Number c0, c1, c2, c3, Rest; + cmsUInt32Number OutChan; + cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; + + + fk = _cmsToFixedDomain((int) Input[0] * p16 -> Domain[0]); + fx = _cmsToFixedDomain((int) Input[1] * p16 -> Domain[1]); + fy = _cmsToFixedDomain((int) Input[2] * p16 -> Domain[2]); + fz = _cmsToFixedDomain((int) Input[3] * p16 -> Domain[3]); + + k0 = FIXED_TO_INT(fk); + x0 = FIXED_TO_INT(fx); + y0 = FIXED_TO_INT(fy); + z0 = FIXED_TO_INT(fz); + + rk = FIXED_REST_TO_INT(fk); + rx = FIXED_REST_TO_INT(fx); + ry = FIXED_REST_TO_INT(fy); + rz = FIXED_REST_TO_INT(fz); + + K0 = p16 -> opta[3] * k0; + K1 = K0 + (Input[0] == 0xFFFFU ? 0 : p16->opta[3]); + + X0 = p16 -> opta[2] * x0; + X1 = X0 + (Input[1] == 0xFFFFU ? 0 : p16->opta[2]); + + Y0 = p16 -> opta[1] * y0; + Y1 = Y0 + (Input[2] == 0xFFFFU ? 0 : p16->opta[1]); + + Z0 = p16 -> opta[0] * z0; + Z1 = Z0 + (Input[3] == 0xFFFFU ? 0 : p16->opta[0]); + + LutTable = (cmsUInt16Number*) p16 -> Table; + LutTable += K0; + + for (OutChan=0; OutChan < p16 -> nOutputs; OutChan++) { + + c0 = DENS(X0, Y0, Z0); + + if (rx >= ry && ry >= rz) { + + c1 = DENS(X1, Y0, Z0) - c0; + c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); + c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); + + } + else + if (rx >= rz && rz >= ry) { + + c1 = DENS(X1, Y0, Z0) - c0; + c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); + c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); + + } + else + if (rz >= rx && rx >= ry) { + + c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); + c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); + c3 = DENS(X0, Y0, Z1) - c0; + + } + else + if (ry >= rx && rx >= rz) { + + c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); + c2 = DENS(X0, Y1, Z0) - c0; + c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); + + } + else + if (ry >= rz && rz >= rx) { + + c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); + c2 = DENS(X0, Y1, Z0) - c0; + c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); + + } + else + if (rz >= ry && ry >= rx) { + + c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); + c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); + c3 = DENS(X0, Y0, Z1) - c0; + + } + else { + c1 = c2 = c3 = 0; + } + + Rest = c1 * rx + c2 * ry + c3 * rz; + + Tmp1[OutChan] = (cmsUInt16Number) c0 + ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest)); + } + + + LutTable = (cmsUInt16Number*) p16 -> Table; + LutTable += K1; + + for (OutChan=0; OutChan < p16 -> nOutputs; OutChan++) { + + c0 = DENS(X0, Y0, Z0); + + if (rx >= ry && ry >= rz) { + + c1 = DENS(X1, Y0, Z0) - c0; + c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); + c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); + + } + else + if (rx >= rz && rz >= ry) { + + c1 = DENS(X1, Y0, Z0) - c0; + c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); + c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); + + } + else + if (rz >= rx && rx >= ry) { + + c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); + c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); + c3 = DENS(X0, Y0, Z1) - c0; + + } + else + if (ry >= rx && rx >= rz) { + + c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); + c2 = DENS(X0, Y1, Z0) - c0; + c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); + + } + else + if (ry >= rz && rz >= rx) { + + c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); + c2 = DENS(X0, Y1, Z0) - c0; + c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); + + } + else + if (rz >= ry && ry >= rx) { + + c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); + c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); + c3 = DENS(X0, Y0, Z1) - c0; + + } + else { + c1 = c2 = c3 = 0; + } + + Rest = c1 * rx + c2 * ry + c3 * rz; + + Tmp2[OutChan] = (cmsUInt16Number) c0 + ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest)); + } + + + + for (i=0; i < p16 -> nOutputs; i++) { + Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); + } +} +#undef DENS + + +// For more that 3 inputs (i.e., CMYK) +// evaluate two 3-dimensional interpolations and then linearly interpolate between them. + + +static +void Eval4InputsFloat(const cmsFloat32Number Input[], + cmsFloat32Number Output[], + const cmsInterpParams* p) +{ + const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; + cmsFloat32Number rest; + cmsFloat32Number pk; + int k0, K0, K1; + const cmsFloat32Number* T; + cmsUInt32Number i; + cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; + cmsInterpParams p1; + + pk = fclamp(Input[0]) * p->Domain[0]; + k0 = _cmsQuickFloor(pk); + rest = pk - (cmsFloat32Number) k0; + + K0 = p -> opta[3] * k0; + K1 = K0 + (Input[0] >= 1.0 ? 0 : p->opta[3]); + + p1 = *p; + memmove(&p1.Domain[0], &p ->Domain[1], 3*sizeof(cmsUInt32Number)); + + T = LutTable + K0; + p1.Table = T; + + TetrahedralInterpFloat(Input + 1, Tmp1, &p1); + + T = LutTable + K1; + p1.Table = T; + TetrahedralInterpFloat(Input + 1, Tmp2, &p1); + + for (i=0; i < p -> nOutputs; i++) + { + cmsFloat32Number y0 = Tmp1[i]; + cmsFloat32Number y1 = Tmp2[i]; + + Output[i] = y0 + (y1 - y0) * rest; + } +} + + +static +void Eval5Inputs(register const cmsUInt16Number Input[], + register cmsUInt16Number Output[], + + register const cmsInterpParams* p16) +{ + const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; + cmsS15Fixed16Number fk; + cmsS15Fixed16Number k0, rk; + int K0, K1; + const cmsUInt16Number* T; + cmsUInt32Number i; + cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; + cmsInterpParams p1; + + + fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); + k0 = FIXED_TO_INT(fk); + rk = FIXED_REST_TO_INT(fk); + + K0 = p16 -> opta[4] * k0; + K1 = p16 -> opta[4] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); + + p1 = *p16; + memmove(&p1.Domain[0], &p16 ->Domain[1], 4*sizeof(cmsUInt32Number)); + + T = LutTable + K0; + p1.Table = T; + + Eval4Inputs(Input + 1, Tmp1, &p1); + + T = LutTable + K1; + p1.Table = T; + + Eval4Inputs(Input + 1, Tmp2, &p1); + + for (i=0; i < p16 -> nOutputs; i++) { + + Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); + } + +} + + +static +void Eval5InputsFloat(const cmsFloat32Number Input[], + cmsFloat32Number Output[], + const cmsInterpParams* p) +{ + const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; + cmsFloat32Number rest; + cmsFloat32Number pk; + int k0, K0, K1; + const cmsFloat32Number* T; + cmsUInt32Number i; + cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; + cmsInterpParams p1; + + pk = fclamp(Input[0]) * p->Domain[0]; + k0 = _cmsQuickFloor(pk); + rest = pk - (cmsFloat32Number) k0; + + K0 = p -> opta[4] * k0; + K1 = K0 + (Input[0] >= 1.0 ? 0 : p->opta[4]); + + p1 = *p; + memmove(&p1.Domain[0], &p ->Domain[1], 4*sizeof(cmsUInt32Number)); + + T = LutTable + K0; + p1.Table = T; + + Eval4InputsFloat(Input + 1, Tmp1, &p1); + + T = LutTable + K1; + p1.Table = T; + + Eval4InputsFloat(Input + 1, Tmp2, &p1); + + for (i=0; i < p -> nOutputs; i++) { + + cmsFloat32Number y0 = Tmp1[i]; + cmsFloat32Number y1 = Tmp2[i]; + + Output[i] = y0 + (y1 - y0) * rest; + } +} + + + +static +void Eval6Inputs(register const cmsUInt16Number Input[], + register cmsUInt16Number Output[], + register const cmsInterpParams* p16) +{ + const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; + cmsS15Fixed16Number fk; + cmsS15Fixed16Number k0, rk; + int K0, K1; + const cmsUInt16Number* T; + cmsUInt32Number i; + cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; + cmsInterpParams p1; + + fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); + k0 = FIXED_TO_INT(fk); + rk = FIXED_REST_TO_INT(fk); + + K0 = p16 -> opta[5] * k0; + K1 = p16 -> opta[5] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); + + p1 = *p16; + memmove(&p1.Domain[0], &p16 ->Domain[1], 5*sizeof(cmsUInt32Number)); + + T = LutTable + K0; + p1.Table = T; + + Eval5Inputs(Input + 1, Tmp1, &p1); + + T = LutTable + K1; + p1.Table = T; + + Eval5Inputs(Input + 1, Tmp2, &p1); + + for (i=0; i < p16 -> nOutputs; i++) { + + Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); + } + +} + + +static +void Eval6InputsFloat(const cmsFloat32Number Input[], + cmsFloat32Number Output[], + const cmsInterpParams* p) +{ + const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; + cmsFloat32Number rest; + cmsFloat32Number pk; + int k0, K0, K1; + const cmsFloat32Number* T; + cmsUInt32Number i; + cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; + cmsInterpParams p1; + + pk = fclamp(Input[0]) * p->Domain[0]; + k0 = _cmsQuickFloor(pk); + rest = pk - (cmsFloat32Number) k0; + + K0 = p -> opta[5] * k0; + K1 = K0 + (Input[0] >= 1.0 ? 0 : p->opta[5]); + + p1 = *p; + memmove(&p1.Domain[0], &p ->Domain[1], 5*sizeof(cmsUInt32Number)); + + T = LutTable + K0; + p1.Table = T; + + Eval5InputsFloat(Input + 1, Tmp1, &p1); + + T = LutTable + K1; + p1.Table = T; + + Eval5InputsFloat(Input + 1, Tmp2, &p1); + + for (i=0; i < p -> nOutputs; i++) { + + cmsFloat32Number y0 = Tmp1[i]; + cmsFloat32Number y1 = Tmp2[i]; + + Output[i] = y0 + (y1 - y0) * rest; + } +} + + +static +void Eval7Inputs(register const cmsUInt16Number Input[], + register cmsUInt16Number Output[], + register const cmsInterpParams* p16) +{ + const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; + cmsS15Fixed16Number fk; + cmsS15Fixed16Number k0, rk; + int K0, K1; + const cmsUInt16Number* T; + cmsUInt32Number i; + cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; + cmsInterpParams p1; + + + fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); + k0 = FIXED_TO_INT(fk); + rk = FIXED_REST_TO_INT(fk); + + K0 = p16 -> opta[6] * k0; + K1 = p16 -> opta[6] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); + + p1 = *p16; + memmove(&p1.Domain[0], &p16 ->Domain[1], 6*sizeof(cmsUInt32Number)); + + T = LutTable + K0; + p1.Table = T; + + Eval6Inputs(Input + 1, Tmp1, &p1); + + T = LutTable + K1; + p1.Table = T; + + Eval6Inputs(Input + 1, Tmp2, &p1); + + for (i=0; i < p16 -> nOutputs; i++) { + Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); + } +} + + +static +void Eval7InputsFloat(const cmsFloat32Number Input[], + cmsFloat32Number Output[], + const cmsInterpParams* p) +{ + const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; + cmsFloat32Number rest; + cmsFloat32Number pk; + int k0, K0, K1; + const cmsFloat32Number* T; + cmsUInt32Number i; + cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; + cmsInterpParams p1; + + pk = fclamp(Input[0]) * p->Domain[0]; + k0 = _cmsQuickFloor(pk); + rest = pk - (cmsFloat32Number) k0; + + K0 = p -> opta[6] * k0; + K1 = K0 + (Input[0] >= 1.0 ? 0 : p->opta[6]); + + p1 = *p; + memmove(&p1.Domain[0], &p ->Domain[1], 6*sizeof(cmsUInt32Number)); + + T = LutTable + K0; + p1.Table = T; + + Eval6InputsFloat(Input + 1, Tmp1, &p1); + + T = LutTable + K1; + p1.Table = T; + + Eval6InputsFloat(Input + 1, Tmp2, &p1); + + + for (i=0; i < p -> nOutputs; i++) { + + cmsFloat32Number y0 = Tmp1[i]; + cmsFloat32Number y1 = Tmp2[i]; + + Output[i] = y0 + (y1 - y0) * rest; + + } +} + +static +void Eval8Inputs(register const cmsUInt16Number Input[], + register cmsUInt16Number Output[], + register const cmsInterpParams* p16) +{ + const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; + cmsS15Fixed16Number fk; + cmsS15Fixed16Number k0, rk; + int K0, K1; + const cmsUInt16Number* T; + cmsUInt32Number i; + cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; + cmsInterpParams p1; + + fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); + k0 = FIXED_TO_INT(fk); + rk = FIXED_REST_TO_INT(fk); + + K0 = p16 -> opta[7] * k0; + K1 = p16 -> opta[7] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); + + p1 = *p16; + memmove(&p1.Domain[0], &p16 ->Domain[1], 7*sizeof(cmsUInt32Number)); + + T = LutTable + K0; + p1.Table = T; + + Eval7Inputs(Input + 1, Tmp1, &p1); + + T = LutTable + K1; + p1.Table = T; + Eval7Inputs(Input + 1, Tmp2, &p1); + + for (i=0; i < p16 -> nOutputs; i++) { + Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); + } +} + + + +static +void Eval8InputsFloat(const cmsFloat32Number Input[], + cmsFloat32Number Output[], + const cmsInterpParams* p) +{ + const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; + cmsFloat32Number rest; + cmsFloat32Number pk; + int k0, K0, K1; + const cmsFloat32Number* T; + cmsUInt32Number i; + cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; + cmsInterpParams p1; + + pk = fclamp(Input[0]) * p->Domain[0]; + k0 = _cmsQuickFloor(pk); + rest = pk - (cmsFloat32Number) k0; + + K0 = p -> opta[7] * k0; + K1 = K0 + (Input[0] >= 1.0 ? 0 : p->opta[7]); + + p1 = *p; + memmove(&p1.Domain[0], &p ->Domain[1], 7*sizeof(cmsUInt32Number)); + + T = LutTable + K0; + p1.Table = T; + + Eval7InputsFloat(Input + 1, Tmp1, &p1); + + T = LutTable + K1; + p1.Table = T; + + Eval7InputsFloat(Input + 1, Tmp2, &p1); + + + for (i=0; i < p -> nOutputs; i++) { + + cmsFloat32Number y0 = Tmp1[i]; + cmsFloat32Number y1 = Tmp2[i]; + + Output[i] = y0 + (y1 - y0) * rest; + } +} + +// The default factory +static +cmsInterpFunction DefaultInterpolatorsFactory(cmsUInt32Number nInputChannels, cmsUInt32Number nOutputChannels, cmsUInt32Number dwFlags) +{ + + cmsInterpFunction Interpolation; + cmsBool IsFloat = (dwFlags & CMS_LERP_FLAGS_FLOAT); + cmsBool IsTrilinear = (dwFlags & CMS_LERP_FLAGS_TRILINEAR); + + memset(&Interpolation, 0, sizeof(Interpolation)); + + // Safety check + if (nInputChannels >= 4 && nOutputChannels >= MAX_STAGE_CHANNELS) + return Interpolation; + + switch (nInputChannels) { + + case 1: // Gray LUT / linear + + if (nOutputChannels == 1) { + + if (IsFloat) + Interpolation.LerpFloat = LinLerp1Dfloat; + else + Interpolation.Lerp16 = LinLerp1D; + + } + else { + + if (IsFloat) + Interpolation.LerpFloat = Eval1InputFloat; + else + Interpolation.Lerp16 = Eval1Input; + } + break; + + case 2: // Duotone + if (IsFloat) + Interpolation.LerpFloat = BilinearInterpFloat; + else + Interpolation.Lerp16 = BilinearInterp16; + break; + + case 3: // RGB et al + + if (IsTrilinear) { + + if (IsFloat) + Interpolation.LerpFloat = TrilinearInterpFloat; + else + Interpolation.Lerp16 = TrilinearInterp16; + } + else { + + if (IsFloat) + Interpolation.LerpFloat = TetrahedralInterpFloat; + else { + + Interpolation.Lerp16 = TetrahedralInterp16; + } + } + break; + + case 4: // CMYK lut + + if (IsFloat) + Interpolation.LerpFloat = Eval4InputsFloat; + else + Interpolation.Lerp16 = Eval4Inputs; + break; + + case 5: // 5 Inks + if (IsFloat) + Interpolation.LerpFloat = Eval5InputsFloat; + else + Interpolation.Lerp16 = Eval5Inputs; + break; + + case 6: // 6 Inks + if (IsFloat) + Interpolation.LerpFloat = Eval6InputsFloat; + else + Interpolation.Lerp16 = Eval6Inputs; + break; + + case 7: // 7 inks + if (IsFloat) + Interpolation.LerpFloat = Eval7InputsFloat; + else + Interpolation.Lerp16 = Eval7Inputs; + break; + + case 8: // 8 inks + if (IsFloat) + Interpolation.LerpFloat = Eval8InputsFloat; + else + Interpolation.Lerp16 = Eval8Inputs; + break; + + break; + + default: + Interpolation.Lerp16 = NULL; + } + + return Interpolation; +} |