summaryrefslogtreecommitdiff
path: root/third_party/lcms2-2.6/src/cmslut.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/lcms2-2.6/src/cmslut.c')
-rw-r--r--third_party/lcms2-2.6/src/cmslut.c1820
1 files changed, 0 insertions, 1820 deletions
diff --git a/third_party/lcms2-2.6/src/cmslut.c b/third_party/lcms2-2.6/src/cmslut.c
deleted file mode 100644
index 19d43361f0..0000000000
--- a/third_party/lcms2-2.6/src/cmslut.c
+++ /dev/null
@@ -1,1820 +0,0 @@
-//---------------------------------------------------------------------------------
-//
-// Little Color Management System
-// Copyright (c) 1998-2012 Marti Maria Saguer
-//
-// Permission is hereby granted, free of charge, to any person obtaining
-// a copy of this software and associated documentation files (the "Software"),
-// to deal in the Software without restriction, including without limitation
-// the rights to use, copy, modify, merge, publish, distribute, sublicense,
-// and/or sell copies of the Software, and to permit persons to whom the Software
-// is furnished to do so, subject to the following conditions:
-//
-// The above copyright notice and this permission notice shall be included in
-// all copies or substantial portions of the Software.
-//
-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
-// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
-// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
-// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
-// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-//
-//---------------------------------------------------------------------------------
-//
-
-#include "lcms2_internal.h"
-
-
-// Allocates an empty multi profile element
-cmsStage* CMSEXPORT _cmsStageAllocPlaceholder(cmsContext ContextID,
- cmsStageSignature Type,
- cmsUInt32Number InputChannels,
- cmsUInt32Number OutputChannels,
- _cmsStageEvalFn EvalPtr,
- _cmsStageDupElemFn DupElemPtr,
- _cmsStageFreeElemFn FreePtr,
- void* Data)
-{
- cmsStage* ph = (cmsStage*) _cmsMallocZero(ContextID, sizeof(cmsStage));
-
- if (ph == NULL) return NULL;
-
-
- ph ->ContextID = ContextID;
-
- ph ->Type = Type;
- ph ->Implements = Type; // By default, no clue on what is implementing
-
- ph ->InputChannels = InputChannels;
- ph ->OutputChannels = OutputChannels;
- ph ->EvalPtr = EvalPtr;
- ph ->DupElemPtr = DupElemPtr;
- ph ->FreePtr = FreePtr;
- ph ->Data = Data;
-
- return ph;
-}
-
-
-static
-void EvaluateIdentity(const cmsFloat32Number In[],
- cmsFloat32Number Out[],
- const cmsStage *mpe)
-{
- memmove(Out, In, mpe ->InputChannels * sizeof(cmsFloat32Number));
-}
-
-
-cmsStage* CMSEXPORT cmsStageAllocIdentity(cmsContext ContextID, cmsUInt32Number nChannels)
-{
- return _cmsStageAllocPlaceholder(ContextID,
- cmsSigIdentityElemType,
- nChannels, nChannels,
- EvaluateIdentity,
- NULL,
- NULL,
- NULL);
- }
-
-// Conversion functions. From floating point to 16 bits
-static
-void FromFloatTo16(const cmsFloat32Number In[], cmsUInt16Number Out[], cmsUInt32Number n)
-{
- cmsUInt32Number i;
-
- for (i=0; i < n; i++) {
- Out[i] = _cmsQuickSaturateWord(In[i] * 65535.0);
- }
-}
-
-// From 16 bits to floating point
-static
-void From16ToFloat(const cmsUInt16Number In[], cmsFloat32Number Out[], cmsUInt32Number n)
-{
- cmsUInt32Number i;
-
- for (i=0; i < n; i++) {
- Out[i] = (cmsFloat32Number) In[i] / 65535.0F;
- }
-}
-
-
-// This function is quite useful to analyze the structure of a LUT and retrieve the MPE elements
-// that conform the LUT. It should be called with the LUT, the number of expected elements and
-// then a list of expected types followed with a list of cmsFloat64Number pointers to MPE elements. If
-// the function founds a match with current pipeline, it fills the pointers and returns TRUE
-// if not, returns FALSE without touching anything. Setting pointers to NULL does bypass
-// the storage process.
-cmsBool CMSEXPORT cmsPipelineCheckAndRetreiveStages(const cmsPipeline* Lut, cmsUInt32Number n, ...)
-{
- va_list args;
- cmsUInt32Number i;
- cmsStage* mpe;
- cmsStageSignature Type;
- void** ElemPtr;
-
- // Make sure same number of elements
- if (cmsPipelineStageCount(Lut) != n) return FALSE;
-
- va_start(args, n);
-
- // Iterate across asked types
- mpe = Lut ->Elements;
- for (i=0; i < n; i++) {
-
- // Get asked type
- Type = (cmsStageSignature)va_arg(args, cmsStageSignature);
- if (mpe ->Type != Type) {
-
- va_end(args); // Mismatch. We are done.
- return FALSE;
- }
- mpe = mpe ->Next;
- }
-
- // Found a combination, fill pointers if not NULL
- mpe = Lut ->Elements;
- for (i=0; i < n; i++) {
-
- ElemPtr = va_arg(args, void**);
- if (ElemPtr != NULL)
- *ElemPtr = mpe;
-
- mpe = mpe ->Next;
- }
-
- va_end(args);
- return TRUE;
-}
-
-// Below there are implementations for several types of elements. Each type may be implemented by a
-// evaluation function, a duplication function, a function to free resources and a constructor.
-
-// *************************************************************************************************
-// Type cmsSigCurveSetElemType (curves)
-// *************************************************************************************************
-
-cmsToneCurve** _cmsStageGetPtrToCurveSet(const cmsStage* mpe)
-{
- _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
-
- return Data ->TheCurves;
-}
-
-static
-void EvaluateCurves(const cmsFloat32Number In[],
- cmsFloat32Number Out[],
- const cmsStage *mpe)
-{
- _cmsStageToneCurvesData* Data;
- cmsUInt32Number i;
-
- _cmsAssert(mpe != NULL);
-
- Data = (_cmsStageToneCurvesData*) mpe ->Data;
- if (Data == NULL) return;
-
- if (Data ->TheCurves == NULL) return;
-
- for (i=0; i < Data ->nCurves; i++) {
- Out[i] = cmsEvalToneCurveFloat(Data ->TheCurves[i], In[i]);
- }
-}
-
-static
-void CurveSetElemTypeFree(cmsStage* mpe)
-{
- _cmsStageToneCurvesData* Data;
- cmsUInt32Number i;
-
- _cmsAssert(mpe != NULL);
-
- Data = (_cmsStageToneCurvesData*) mpe ->Data;
- if (Data == NULL) return;
-
- if (Data ->TheCurves != NULL) {
- for (i=0; i < Data ->nCurves; i++) {
- if (Data ->TheCurves[i] != NULL)
- cmsFreeToneCurve(Data ->TheCurves[i]);
- }
- }
- _cmsFree(mpe ->ContextID, Data ->TheCurves);
- _cmsFree(mpe ->ContextID, Data);
-}
-
-
-static
-void* CurveSetDup(cmsStage* mpe)
-{
- _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
- _cmsStageToneCurvesData* NewElem;
- cmsUInt32Number i;
-
- NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageToneCurvesData));
- if (NewElem == NULL) return NULL;
-
- NewElem ->nCurves = Data ->nCurves;
- NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(mpe ->ContextID, NewElem ->nCurves, sizeof(cmsToneCurve*));
-
- if (NewElem ->TheCurves == NULL) goto Error;
-
- for (i=0; i < NewElem ->nCurves; i++) {
-
- // Duplicate each curve. It may fail.
- NewElem ->TheCurves[i] = cmsDupToneCurve(Data ->TheCurves[i]);
- if (NewElem ->TheCurves[i] == NULL) goto Error;
-
-
- }
- return (void*) NewElem;
-
-Error:
-
- if (NewElem ->TheCurves != NULL) {
- for (i=0; i < NewElem ->nCurves; i++) {
- if (NewElem ->TheCurves[i])
- cmsFreeToneCurve(NewElem ->TheCurves[i]);
- }
- }
- _cmsFree(mpe ->ContextID, NewElem ->TheCurves);
- _cmsFree(mpe ->ContextID, NewElem);
- return NULL;
-}
-
-
-// Curves == NULL forces identity curves
-cmsStage* CMSEXPORT cmsStageAllocToneCurves(cmsContext ContextID, cmsUInt32Number nChannels, cmsToneCurve* const Curves[])
-{
- cmsUInt32Number i;
- _cmsStageToneCurvesData* NewElem;
- cmsStage* NewMPE;
-
-
- NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCurveSetElemType, nChannels, nChannels,
- EvaluateCurves, CurveSetDup, CurveSetElemTypeFree, NULL );
- if (NewMPE == NULL) return NULL;
-
- NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(ContextID, sizeof(_cmsStageToneCurvesData));
- if (NewElem == NULL) {
- cmsStageFree(NewMPE);
- return NULL;
- }
-
- NewMPE ->Data = (void*) NewElem;
-
- NewElem ->nCurves = nChannels;
- NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(ContextID, nChannels, sizeof(cmsToneCurve*));
- if (NewElem ->TheCurves == NULL) {
- cmsStageFree(NewMPE);
- return NULL;
- }
-
- for (i=0; i < nChannels; i++) {
-
- if (Curves == NULL) {
- NewElem ->TheCurves[i] = cmsBuildGamma(ContextID, 1.0);
- }
- else {
- NewElem ->TheCurves[i] = cmsDupToneCurve(Curves[i]);
- }
-
- if (NewElem ->TheCurves[i] == NULL) {
- cmsStageFree(NewMPE);
- return NULL;
- }
-
- }
-
- return NewMPE;
-}
-
-
-// Create a bunch of identity curves
-cmsStage* _cmsStageAllocIdentityCurves(cmsContext ContextID, int nChannels)
-{
- cmsStage* mpe = cmsStageAllocToneCurves(ContextID, nChannels, NULL);
-
- if (mpe == NULL) return NULL;
- mpe ->Implements = cmsSigIdentityElemType;
- return mpe;
-}
-
-
-// *************************************************************************************************
-// Type cmsSigMatrixElemType (Matrices)
-// *************************************************************************************************
-
-
-// Special care should be taken here because precision loss. A temporary cmsFloat64Number buffer is being used
-static
-void EvaluateMatrix(const cmsFloat32Number In[],
- cmsFloat32Number Out[],
- const cmsStage *mpe)
-{
- cmsUInt32Number i, j;
- _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
- cmsFloat64Number Tmp;
-
- // Input is already in 0..1.0 notation
- for (i=0; i < mpe ->OutputChannels; i++) {
-
- Tmp = 0;
- for (j=0; j < mpe->InputChannels; j++) {
- Tmp += In[j] * Data->Double[i*mpe->InputChannels + j];
- }
-
- if (Data ->Offset != NULL)
- Tmp += Data->Offset[i];
-
- Out[i] = (cmsFloat32Number) Tmp;
- }
-
-
- // Output in 0..1.0 domain
-}
-
-
-// Duplicate a yet-existing matrix element
-static
-void* MatrixElemDup(cmsStage* mpe)
-{
- _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
- _cmsStageMatrixData* NewElem;
- cmsUInt32Number sz;
-
- NewElem = (_cmsStageMatrixData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageMatrixData));
- if (NewElem == NULL) return NULL;
-
- sz = mpe ->InputChannels * mpe ->OutputChannels;
-
- NewElem ->Double = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, Data ->Double, sz * sizeof(cmsFloat64Number)) ;
-
- if (Data ->Offset)
- NewElem ->Offset = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID,
- Data ->Offset, mpe -> OutputChannels * sizeof(cmsFloat64Number)) ;
-
- return (void*) NewElem;
-}
-
-
-static
-void MatrixElemTypeFree(cmsStage* mpe)
-{
- _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
- if (Data == NULL)
- return;
- if (Data ->Double)
- _cmsFree(mpe ->ContextID, Data ->Double);
-
- if (Data ->Offset)
- _cmsFree(mpe ->ContextID, Data ->Offset);
-
- _cmsFree(mpe ->ContextID, mpe ->Data);
-}
-
-
-
-cmsStage* CMSEXPORT cmsStageAllocMatrix(cmsContext ContextID, cmsUInt32Number Rows, cmsUInt32Number Cols,
- const cmsFloat64Number* Matrix, const cmsFloat64Number* Offset)
-{
- cmsUInt32Number i, n;
- _cmsStageMatrixData* NewElem;
- cmsStage* NewMPE;
-
- n = Rows * Cols;
-
- // Check for overflow
- if (n == 0) return NULL;
- if (n >= UINT_MAX / Cols) return NULL;
- if (n >= UINT_MAX / Rows) return NULL;
- if (n < Rows || n < Cols) return NULL;
-
- NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigMatrixElemType, Cols, Rows,
- EvaluateMatrix, MatrixElemDup, MatrixElemTypeFree, NULL );
- if (NewMPE == NULL) return NULL;
-
-
- NewElem = (_cmsStageMatrixData*) _cmsMallocZero(ContextID, sizeof(_cmsStageMatrixData));
- if (NewElem == NULL) return NULL;
-
-
- NewElem ->Double = (cmsFloat64Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat64Number));
-
- if (NewElem->Double == NULL) {
- MatrixElemTypeFree(NewMPE);
- return NULL;
- }
-
- for (i=0; i < n; i++) {
- NewElem ->Double[i] = Matrix[i];
- }
-
-
- if (Offset != NULL) {
-
- NewElem ->Offset = (cmsFloat64Number*) _cmsCalloc(ContextID, Rows, sizeof(cmsFloat64Number));
- if (NewElem->Offset == NULL) {
- MatrixElemTypeFree(NewMPE);
- return NULL;
- }
-
- for (i=0; i < Rows; i++) {
- NewElem ->Offset[i] = Offset[i];
- }
-
- }
-
- NewMPE ->Data = (void*) NewElem;
- return NewMPE;
-}
-
-
-// *************************************************************************************************
-// Type cmsSigCLutElemType
-// *************************************************************************************************
-
-
-// Evaluate in true floating point
-static
-void EvaluateCLUTfloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
-{
- _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
-
- Data -> Params ->Interpolation.LerpFloat(In, Out, Data->Params);
-}
-
-
-// Convert to 16 bits, evaluate, and back to floating point
-static
-void EvaluateCLUTfloatIn16(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
-{
- _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
- cmsUInt16Number In16[MAX_STAGE_CHANNELS], Out16[MAX_STAGE_CHANNELS];
-
- _cmsAssert(mpe ->InputChannels <= MAX_STAGE_CHANNELS);
- _cmsAssert(mpe ->OutputChannels <= MAX_STAGE_CHANNELS);
-
- FromFloatTo16(In, In16, mpe ->InputChannels);
- Data -> Params ->Interpolation.Lerp16(In16, Out16, Data->Params);
- From16ToFloat(Out16, Out, mpe ->OutputChannels);
-}
-
-
-// Given an hypercube of b dimensions, with Dims[] number of nodes by dimension, calculate the total amount of nodes
-static
-cmsUInt32Number CubeSize(const cmsUInt32Number Dims[], cmsUInt32Number b)
-{
- cmsUInt32Number rv, dim;
-
- _cmsAssert(Dims != NULL);
-
- for (rv = 1; b > 0; b--) {
-
- dim = Dims[b-1];
- if (dim == 0) return 0; // Error
-
- rv *= dim;
-
- // Check for overflow
- if (rv > UINT_MAX / dim) return 0;
- }
-
- return rv;
-}
-
-static
-void* CLUTElemDup(cmsStage* mpe)
-{
- _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
- _cmsStageCLutData* NewElem;
-
-
- NewElem = (_cmsStageCLutData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageCLutData));
- if (NewElem == NULL) return NULL;
-
- NewElem ->nEntries = Data ->nEntries;
- NewElem ->HasFloatValues = Data ->HasFloatValues;
-
- if (Data ->Tab.T) {
-
- if (Data ->HasFloatValues) {
- NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.TFloat, Data ->nEntries * sizeof (cmsFloat32Number));
- if (NewElem ->Tab.TFloat == NULL)
- goto Error;
- } else {
- NewElem ->Tab.T = (cmsUInt16Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.T, Data ->nEntries * sizeof (cmsUInt16Number));
- if (NewElem ->Tab.TFloat == NULL)
- goto Error;
- }
- }
-
- NewElem ->Params = _cmsComputeInterpParamsEx(mpe ->ContextID,
- Data ->Params ->nSamples,
- Data ->Params ->nInputs,
- Data ->Params ->nOutputs,
- NewElem ->Tab.T,
- Data ->Params ->dwFlags);
- if (NewElem->Params != NULL)
- return (void*) NewElem;
- Error:
- if (NewElem->Tab.T)
- // This works for both types
- _cmsFree(mpe ->ContextID, NewElem -> Tab.T);
- _cmsFree(mpe ->ContextID, NewElem);
- return NULL;
-}
-
-
-static
-void CLutElemTypeFree(cmsStage* mpe)
-{
-
- _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
-
- // Already empty
- if (Data == NULL) return;
-
- // This works for both types
- if (Data -> Tab.T)
- _cmsFree(mpe ->ContextID, Data -> Tab.T);
-
- _cmsFreeInterpParams(Data ->Params);
- _cmsFree(mpe ->ContextID, mpe ->Data);
-}
-
-
-// Allocates a 16-bit multidimensional CLUT. This is evaluated at 16-bit precision. Table may have different
-// granularity on each dimension.
-cmsStage* CMSEXPORT cmsStageAllocCLut16bitGranular(cmsContext ContextID,
- const cmsUInt32Number clutPoints[],
- cmsUInt32Number inputChan,
- cmsUInt32Number outputChan,
- const cmsUInt16Number* Table)
-{
- cmsUInt32Number i, n;
- _cmsStageCLutData* NewElem;
- cmsStage* NewMPE;
-
- _cmsAssert(clutPoints != NULL);
-
- if (inputChan > MAX_INPUT_DIMENSIONS) {
- cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
- return NULL;
- }
-
- NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
- EvaluateCLUTfloatIn16, CLUTElemDup, CLutElemTypeFree, NULL );
-
- if (NewMPE == NULL) return NULL;
-
- NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
- if (NewElem == NULL) {
- cmsStageFree(NewMPE);
- return NULL;
- }
-
- NewMPE ->Data = (void*) NewElem;
-
- NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
- NewElem -> HasFloatValues = FALSE;
-
- if (n == 0) {
- cmsStageFree(NewMPE);
- return NULL;
- }
-
-
- NewElem ->Tab.T = (cmsUInt16Number*) _cmsCalloc(ContextID, n, sizeof(cmsUInt16Number));
- if (NewElem ->Tab.T == NULL) {
- cmsStageFree(NewMPE);
- return NULL;
- }
-
- if (Table != NULL) {
- for (i=0; i < n; i++) {
- NewElem ->Tab.T[i] = Table[i];
- }
- }
-
- NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.T, CMS_LERP_FLAGS_16BITS);
- if (NewElem ->Params == NULL) {
- cmsStageFree(NewMPE);
- return NULL;
- }
-
- return NewMPE;
-}
-
-cmsStage* CMSEXPORT cmsStageAllocCLut16bit(cmsContext ContextID,
- cmsUInt32Number nGridPoints,
- cmsUInt32Number inputChan,
- cmsUInt32Number outputChan,
- const cmsUInt16Number* Table)
-{
- cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
- int i;
-
- // Our resulting LUT would be same gridpoints on all dimensions
- for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
- Dimensions[i] = nGridPoints;
-
- return cmsStageAllocCLut16bitGranular(ContextID, Dimensions, inputChan, outputChan, Table);
-}
-
-
-cmsStage* CMSEXPORT cmsStageAllocCLutFloat(cmsContext ContextID,
- cmsUInt32Number nGridPoints,
- cmsUInt32Number inputChan,
- cmsUInt32Number outputChan,
- const cmsFloat32Number* Table)
-{
- cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
- int i;
-
- // Our resulting LUT would be same gridpoints on all dimensions
- for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
- Dimensions[i] = nGridPoints;
-
- return cmsStageAllocCLutFloatGranular(ContextID, Dimensions, inputChan, outputChan, Table);
-}
-
-
-
-cmsStage* CMSEXPORT cmsStageAllocCLutFloatGranular(cmsContext ContextID, const cmsUInt32Number clutPoints[], cmsUInt32Number inputChan, cmsUInt32Number outputChan, const cmsFloat32Number* Table)
-{
- cmsUInt32Number i, n;
- _cmsStageCLutData* NewElem;
- cmsStage* NewMPE;
-
- _cmsAssert(clutPoints != NULL);
-
- if (inputChan > MAX_INPUT_DIMENSIONS) {
- cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
- return NULL;
- }
-
- NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
- EvaluateCLUTfloat, CLUTElemDup, CLutElemTypeFree, NULL);
- if (NewMPE == NULL) return NULL;
-
-
- NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
- if (NewElem == NULL) {
- cmsStageFree(NewMPE);
- return NULL;
- }
-
- NewMPE ->Data = (void*) NewElem;
-
- // There is a potential integer overflow on conputing n and nEntries.
- NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
- NewElem -> HasFloatValues = TRUE;
-
- if (n == 0) {
- cmsStageFree(NewMPE);
- return NULL;
- }
-
- NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat32Number));
- if (NewElem ->Tab.TFloat == NULL) {
- cmsStageFree(NewMPE);
- return NULL;
- }
-
- if (Table != NULL) {
- for (i=0; i < n; i++) {
- NewElem ->Tab.TFloat[i] = Table[i];
- }
- }
-
- NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.TFloat, CMS_LERP_FLAGS_FLOAT);
- if (NewElem ->Params == NULL) {
- cmsStageFree(NewMPE);
- return NULL;
- }
-
- return NewMPE;
-}
-
-
-static
-int IdentitySampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo)
-{
- int nChan = *(int*) Cargo;
- int i;
-
- for (i=0; i < nChan; i++)
- Out[i] = In[i];
-
- return 1;
-}
-
-// Creates an MPE that just copies input to output
-cmsStage* _cmsStageAllocIdentityCLut(cmsContext ContextID, int nChan)
-{
- cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
- cmsStage* mpe ;
- int i;
-
- for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
- Dimensions[i] = 2;
-
- mpe = cmsStageAllocCLut16bitGranular(ContextID, Dimensions, nChan, nChan, NULL);
- if (mpe == NULL) return NULL;
-
- if (!cmsStageSampleCLut16bit(mpe, IdentitySampler, &nChan, 0)) {
- cmsStageFree(mpe);
- return NULL;
- }
-
- mpe ->Implements = cmsSigIdentityElemType;
- return mpe;
-}
-
-
-
-// Quantize a value 0 <= i < MaxSamples to 0..0xffff
-cmsUInt16Number _cmsQuantizeVal(cmsFloat64Number i, int MaxSamples)
-{
- cmsFloat64Number x;
-
- x = ((cmsFloat64Number) i * 65535.) / (cmsFloat64Number) (MaxSamples - 1);
- return _cmsQuickSaturateWord(x);
-}
-
-
-// This routine does a sweep on whole input space, and calls its callback
-// function on knots. returns TRUE if all ok, FALSE otherwise.
-cmsBool CMSEXPORT cmsStageSampleCLut16bit(cmsStage* mpe, cmsSAMPLER16 Sampler, void * Cargo, cmsUInt32Number dwFlags)
-{
- int i, t, nTotalPoints, index, rest;
- int nInputs, nOutputs;
- cmsUInt32Number* nSamples;
- cmsUInt16Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
- _cmsStageCLutData* clut;
-
- if (mpe == NULL) return FALSE;
-
- clut = (_cmsStageCLutData*) mpe->Data;
-
- if (clut == NULL) return FALSE;
-
- nSamples = clut->Params ->nSamples;
- nInputs = clut->Params ->nInputs;
- nOutputs = clut->Params ->nOutputs;
-
- if (nInputs <= 0) return FALSE;
- if (nOutputs <= 0) return FALSE;
- if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE;
- if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
-
- nTotalPoints = CubeSize(nSamples, nInputs);
- if (nTotalPoints == 0) return FALSE;
-
- index = 0;
- for (i = 0; i < nTotalPoints; i++) {
-
- rest = i;
- for (t = nInputs-1; t >=0; --t) {
-
- cmsUInt32Number Colorant = rest % nSamples[t];
-
- rest /= nSamples[t];
-
- In[t] = _cmsQuantizeVal(Colorant, nSamples[t]);
- }
-
- if (clut ->Tab.T != NULL) {
- for (t=0; t < nOutputs; t++)
- Out[t] = clut->Tab.T[index + t];
- }
-
- if (!Sampler(In, Out, Cargo))
- return FALSE;
-
- if (!(dwFlags & SAMPLER_INSPECT)) {
-
- if (clut ->Tab.T != NULL) {
- for (t=0; t < nOutputs; t++)
- clut->Tab.T[index + t] = Out[t];
- }
- }
-
- index += nOutputs;
- }
-
- return TRUE;
-}
-
-// Same as anterior, but for floting point
-cmsBool CMSEXPORT cmsStageSampleCLutFloat(cmsStage* mpe, cmsSAMPLERFLOAT Sampler, void * Cargo, cmsUInt32Number dwFlags)
-{
- int i, t, nTotalPoints, index, rest;
- int nInputs, nOutputs;
- cmsUInt32Number* nSamples;
- cmsFloat32Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
- _cmsStageCLutData* clut = (_cmsStageCLutData*) mpe->Data;
-
- nSamples = clut->Params ->nSamples;
- nInputs = clut->Params ->nInputs;
- nOutputs = clut->Params ->nOutputs;
-
- if (nInputs <= 0) return FALSE;
- if (nOutputs <= 0) return FALSE;
- if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE;
- if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
-
- nTotalPoints = CubeSize(nSamples, nInputs);
- if (nTotalPoints == 0) return FALSE;
-
- index = 0;
- for (i = 0; i < nTotalPoints; i++) {
-
- rest = i;
- for (t = nInputs-1; t >=0; --t) {
-
- cmsUInt32Number Colorant = rest % nSamples[t];
-
- rest /= nSamples[t];
-
- In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, nSamples[t]) / 65535.0);
- }
-
- if (clut ->Tab.TFloat != NULL) {
- for (t=0; t < nOutputs; t++)
- Out[t] = clut->Tab.TFloat[index + t];
- }
-
- if (!Sampler(In, Out, Cargo))
- return FALSE;
-
- if (!(dwFlags & SAMPLER_INSPECT)) {
-
- if (clut ->Tab.TFloat != NULL) {
- for (t=0; t < nOutputs; t++)
- clut->Tab.TFloat[index + t] = Out[t];
- }
- }
-
- index += nOutputs;
- }
-
- return TRUE;
-}
-
-
-
-// This routine does a sweep on whole input space, and calls its callback
-// function on knots. returns TRUE if all ok, FALSE otherwise.
-cmsBool CMSEXPORT cmsSliceSpace16(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
- cmsSAMPLER16 Sampler, void * Cargo)
-{
- int i, t, nTotalPoints, rest;
- cmsUInt16Number In[cmsMAXCHANNELS];
-
- if (nInputs >= cmsMAXCHANNELS) return FALSE;
-
- nTotalPoints = CubeSize(clutPoints, nInputs);
- if (nTotalPoints == 0) return FALSE;
-
- for (i = 0; i < nTotalPoints; i++) {
-
- rest = i;
- for (t = nInputs-1; t >=0; --t) {
-
- cmsUInt32Number Colorant = rest % clutPoints[t];
-
- rest /= clutPoints[t];
- In[t] = _cmsQuantizeVal(Colorant, clutPoints[t]);
-
- }
-
- if (!Sampler(In, NULL, Cargo))
- return FALSE;
- }
-
- return TRUE;
-}
-
-cmsInt32Number CMSEXPORT cmsSliceSpaceFloat(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
- cmsSAMPLERFLOAT Sampler, void * Cargo)
-{
- int i, t, nTotalPoints, rest;
- cmsFloat32Number In[cmsMAXCHANNELS];
-
- if (nInputs >= cmsMAXCHANNELS) return FALSE;
-
- nTotalPoints = CubeSize(clutPoints, nInputs);
- if (nTotalPoints == 0) return FALSE;
-
- for (i = 0; i < nTotalPoints; i++) {
-
- rest = i;
- for (t = nInputs-1; t >=0; --t) {
-
- cmsUInt32Number Colorant = rest % clutPoints[t];
-
- rest /= clutPoints[t];
- In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, clutPoints[t]) / 65535.0);
-
- }
-
- if (!Sampler(In, NULL, Cargo))
- return FALSE;
- }
-
- return TRUE;
-}
-
-// ********************************************************************************
-// Type cmsSigLab2XYZElemType
-// ********************************************************************************
-
-
-static
-void EvaluateLab2XYZ(const cmsFloat32Number In[],
- cmsFloat32Number Out[],
- const cmsStage *mpe)
-{
- cmsCIELab Lab;
- cmsCIEXYZ XYZ;
- const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
-
- // V4 rules
- Lab.L = In[0] * 100.0;
- Lab.a = In[1] * 255.0 - 128.0;
- Lab.b = In[2] * 255.0 - 128.0;
-
- cmsLab2XYZ(NULL, &XYZ, &Lab);
-
- // From XYZ, range 0..19997 to 0..1.0, note that 1.99997 comes from 0xffff
- // encoded as 1.15 fixed point, so 1 + (32767.0 / 32768.0)
-
- Out[0] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.X / XYZadj);
- Out[1] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Y / XYZadj);
- Out[2] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Z / XYZadj);
- return;
-
- cmsUNUSED_PARAMETER(mpe);
-}
-
-
-// No dup or free routines needed, as the structure has no pointers in it.
-cmsStage* _cmsStageAllocLab2XYZ(cmsContext ContextID)
-{
- return _cmsStageAllocPlaceholder(ContextID, cmsSigLab2XYZElemType, 3, 3, EvaluateLab2XYZ, NULL, NULL, NULL);
-}
-
-// ********************************************************************************
-
-// v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable
-// number of gridpoints that would make exact match. However, a prelinearization
-// of 258 entries, would map 0xFF00 exactly on entry 257, and this is good to avoid scum dot.
-// Almost all what we need but unfortunately, the rest of entries should be scaled by
-// (255*257/256) and this is not exact.
-
-cmsStage* _cmsStageAllocLabV2ToV4curves(cmsContext ContextID)
-{
- cmsStage* mpe;
- cmsToneCurve* LabTable[3];
- int i, j;
-
- LabTable[0] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
- LabTable[1] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
- LabTable[2] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
-
- for (j=0; j < 3; j++) {
-
- if (LabTable[j] == NULL) {
- cmsFreeToneCurveTriple(LabTable);
- return NULL;
- }
-
- // We need to map * (0xffff / 0xff00), thats same as (257 / 256)
- // So we can use 258-entry tables to do the trick (i / 257) * (255 * 257) * (257 / 256);
- for (i=0; i < 257; i++) {
-
- LabTable[j]->Table16[i] = (cmsUInt16Number) ((i * 0xffff + 0x80) >> 8);
- }
-
- LabTable[j] ->Table16[257] = 0xffff;
- }
-
- mpe = cmsStageAllocToneCurves(ContextID, 3, LabTable);
- cmsFreeToneCurveTriple(LabTable);
-
- if (mpe == NULL) return NULL;
- mpe ->Implements = cmsSigLabV2toV4;
- return mpe;
-}
-
-// ********************************************************************************
-
-// Matrix-based conversion, which is more accurate, but slower and cannot properly be saved in devicelink profiles
-cmsStage* _cmsStageAllocLabV2ToV4(cmsContext ContextID)
-{
- static const cmsFloat64Number V2ToV4[] = { 65535.0/65280.0, 0, 0,
- 0, 65535.0/65280.0, 0,
- 0, 0, 65535.0/65280.0
- };
-
- cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V2ToV4, NULL);
-
- if (mpe == NULL) return mpe;
- mpe ->Implements = cmsSigLabV2toV4;
- return mpe;
-}
-
-
-// Reverse direction
-cmsStage* _cmsStageAllocLabV4ToV2(cmsContext ContextID)
-{
- static const cmsFloat64Number V4ToV2[] = { 65280.0/65535.0, 0, 0,
- 0, 65280.0/65535.0, 0,
- 0, 0, 65280.0/65535.0
- };
-
- cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V4ToV2, NULL);
-
- if (mpe == NULL) return mpe;
- mpe ->Implements = cmsSigLabV4toV2;
- return mpe;
-}
-
-
-// To Lab to float. Note that the MPE gives numbers in normal Lab range
-// and we need 0..1.0 range for the formatters
-// L* : 0...100 => 0...1.0 (L* / 100)
-// ab* : -128..+127 to 0..1 ((ab* + 128) / 255)
-
-cmsStage* _cmsStageNormalizeFromLabFloat(cmsContext ContextID)
-{
- static const cmsFloat64Number a1[] = {
- 1.0/100.0, 0, 0,
- 0, 1.0/255.0, 0,
- 0, 0, 1.0/255.0
- };
-
- static const cmsFloat64Number o1[] = {
- 0,
- 128.0/255.0,
- 128.0/255.0
- };
-
- cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
-
- if (mpe == NULL) return mpe;
- mpe ->Implements = cmsSigLab2FloatPCS;
- return mpe;
-}
-
-// Fom XYZ to floating point PCS
-cmsStage* _cmsStageNormalizeFromXyzFloat(cmsContext ContextID)
-{
-#define n (32768.0/65535.0)
- static const cmsFloat64Number a1[] = {
- n, 0, 0,
- 0, n, 0,
- 0, 0, n
- };
-#undef n
-
- cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
-
- if (mpe == NULL) return mpe;
- mpe ->Implements = cmsSigXYZ2FloatPCS;
- return mpe;
-}
-
-cmsStage* _cmsStageNormalizeToLabFloat(cmsContext ContextID)
-{
- static const cmsFloat64Number a1[] = {
- 100.0, 0, 0,
- 0, 255.0, 0,
- 0, 0, 255.0
- };
-
- static const cmsFloat64Number o1[] = {
- 0,
- -128.0,
- -128.0
- };
-
- cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
- if (mpe == NULL) return mpe;
- mpe ->Implements = cmsSigFloatPCS2Lab;
- return mpe;
-}
-
-cmsStage* _cmsStageNormalizeToXyzFloat(cmsContext ContextID)
-{
-#define n (65535.0/32768.0)
-
- static const cmsFloat64Number a1[] = {
- n, 0, 0,
- 0, n, 0,
- 0, 0, n
- };
-#undef n
-
- cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
- if (mpe == NULL) return mpe;
- mpe ->Implements = cmsSigFloatPCS2XYZ;
- return mpe;
-}
-
-
-
-// ********************************************************************************
-// Type cmsSigXYZ2LabElemType
-// ********************************************************************************
-
-static
-void EvaluateXYZ2Lab(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
-{
- cmsCIELab Lab;
- cmsCIEXYZ XYZ;
- const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
-
- // From 0..1.0 to XYZ
-
- XYZ.X = In[0] * XYZadj;
- XYZ.Y = In[1] * XYZadj;
- XYZ.Z = In[2] * XYZadj;
-
- cmsXYZ2Lab(NULL, &Lab, &XYZ);
-
- // From V4 Lab to 0..1.0
-
- Out[0] = (cmsFloat32Number) (Lab.L / 100.0);
- Out[1] = (cmsFloat32Number) ((Lab.a + 128.0) / 255.0);
- Out[2] = (cmsFloat32Number) ((Lab.b + 128.0) / 255.0);
- return;
-
- cmsUNUSED_PARAMETER(mpe);
-}
-
-cmsStage* _cmsStageAllocXYZ2Lab(cmsContext ContextID)
-{
- return _cmsStageAllocPlaceholder(ContextID, cmsSigXYZ2LabElemType, 3, 3, EvaluateXYZ2Lab, NULL, NULL, NULL);
-
-}
-
-// ********************************************************************************
-
-// For v4, S-Shaped curves are placed in a/b axis to increase resolution near gray
-
-cmsStage* _cmsStageAllocLabPrelin(cmsContext ContextID)
-{
- cmsToneCurve* LabTable[3];
- cmsFloat64Number Params[1] = {2.4} ;
-
- LabTable[0] = cmsBuildGamma(ContextID, 1.0);
- LabTable[1] = cmsBuildParametricToneCurve(ContextID, 108, Params);
- LabTable[2] = cmsBuildParametricToneCurve(ContextID, 108, Params);
-
- return cmsStageAllocToneCurves(ContextID, 3, LabTable);
-}
-
-
-// Free a single MPE
-void CMSEXPORT cmsStageFree(cmsStage* mpe)
-{
- if (mpe ->FreePtr)
- mpe ->FreePtr(mpe);
-
- _cmsFree(mpe ->ContextID, mpe);
-}
-
-
-cmsUInt32Number CMSEXPORT cmsStageInputChannels(const cmsStage* mpe)
-{
- return mpe ->InputChannels;
-}
-
-cmsUInt32Number CMSEXPORT cmsStageOutputChannels(const cmsStage* mpe)
-{
- return mpe ->OutputChannels;
-}
-
-cmsStageSignature CMSEXPORT cmsStageType(const cmsStage* mpe)
-{
- return mpe -> Type;
-}
-
-void* CMSEXPORT cmsStageData(const cmsStage* mpe)
-{
- return mpe -> Data;
-}
-
-cmsStage* CMSEXPORT cmsStageNext(const cmsStage* mpe)
-{
- return mpe -> Next;
-}
-
-
-// Duplicates an MPE
-cmsStage* CMSEXPORT cmsStageDup(cmsStage* mpe)
-{
- cmsStage* NewMPE;
-
- if (mpe == NULL) return NULL;
- NewMPE = _cmsStageAllocPlaceholder(mpe ->ContextID,
- mpe ->Type,
- mpe ->InputChannels,
- mpe ->OutputChannels,
- mpe ->EvalPtr,
- mpe ->DupElemPtr,
- mpe ->FreePtr,
- NULL);
- if (NewMPE == NULL) return NULL;
-
- NewMPE ->Implements = mpe ->Implements;
-
- if (mpe ->DupElemPtr) {
-
- NewMPE ->Data = mpe ->DupElemPtr(mpe);
-
- if (NewMPE->Data == NULL) {
-
- cmsStageFree(NewMPE);
- return NULL;
- }
-
- } else {
-
- NewMPE ->Data = NULL;
- }
-
- return NewMPE;
-}
-
-
-// ***********************************************************************************************************
-
-// This function sets up the channel count
-static
-cmsBool BlessLUT(cmsPipeline* lut)
-{
- // We can set the input/ouput channels only if we have elements.
- if (lut ->Elements != NULL) {
-
- cmsStage* prev;
- cmsStage* next;
- cmsStage* First;
- cmsStage* Last;
-
- First = cmsPipelineGetPtrToFirstStage(lut);
- Last = cmsPipelineGetPtrToLastStage(lut);
-
- if (First == NULL || Last == NULL) return FALSE;
-
- lut->InputChannels = First->InputChannels;
- lut->OutputChannels = Last->OutputChannels;
-
- // Check chain consistency
- prev = First;
- next = prev->Next;
-
- while (next != NULL)
- {
- if (next->InputChannels != prev->OutputChannels)
- return FALSE;
-
- next = next->Next;
- prev = prev->Next;
- }
- }
- return TRUE;
-}
-
-
-// Default to evaluate the LUT on 16 bit-basis. Precision is retained.
-static
-void _LUTeval16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register const void* D)
-{
- cmsPipeline* lut = (cmsPipeline*) D;
- cmsStage *mpe;
- cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS] = {0.0f};
- int Phase = 0, NextPhase;
-
- From16ToFloat(In, &Storage[Phase][0], lut ->InputChannels);
-
- for (mpe = lut ->Elements;
- mpe != NULL;
- mpe = mpe ->Next) {
-
- NextPhase = Phase ^ 1;
- mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
- Phase = NextPhase;
- }
-
-
- FromFloatTo16(&Storage[Phase][0], Out, lut ->OutputChannels);
-}
-
-
-
-// Does evaluate the LUT on cmsFloat32Number-basis.
-static
-void _LUTevalFloat(register const cmsFloat32Number In[], register cmsFloat32Number Out[], const void* D)
-{
- cmsPipeline* lut = (cmsPipeline*) D;
- cmsStage *mpe;
- cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS] = {0.0f};
- int Phase = 0, NextPhase;
-
- memmove(&Storage[Phase][0], In, lut ->InputChannels * sizeof(cmsFloat32Number));
-
- for (mpe = lut ->Elements;
- mpe != NULL;
- mpe = mpe ->Next) {
-
- NextPhase = Phase ^ 1;
- mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
- Phase = NextPhase;
- }
-
- memmove(Out, &Storage[Phase][0], lut ->OutputChannels * sizeof(cmsFloat32Number));
-}
-
-
-
-
-// LUT Creation & Destruction
-
-cmsPipeline* CMSEXPORT cmsPipelineAlloc(cmsContext ContextID, cmsUInt32Number InputChannels, cmsUInt32Number OutputChannels)
-{
- cmsPipeline* NewLUT;
-
- // A value of zero in channels is allowed as placeholder
- if (InputChannels >= cmsMAXCHANNELS ||
- OutputChannels >= cmsMAXCHANNELS) return NULL;
-
- NewLUT = (cmsPipeline*) _cmsMallocZero(ContextID, sizeof(cmsPipeline));
- if (NewLUT == NULL) return NULL;
-
-
- NewLUT -> InputChannels = InputChannels;
- NewLUT -> OutputChannels = OutputChannels;
-
- NewLUT ->Eval16Fn = _LUTeval16;
- NewLUT ->EvalFloatFn = _LUTevalFloat;
- NewLUT ->DupDataFn = NULL;
- NewLUT ->FreeDataFn = NULL;
- NewLUT ->Data = NewLUT;
- NewLUT ->ContextID = ContextID;
-
- if (!BlessLUT(NewLUT))
- {
- _cmsFree(ContextID, NewLUT);
- return NULL;
- }
-
- return NewLUT;
-}
-
-cmsContext CMSEXPORT cmsGetPipelineContextID(const cmsPipeline* lut)
-{
- _cmsAssert(lut != NULL);
- return lut ->ContextID;
-}
-
-cmsUInt32Number CMSEXPORT cmsPipelineInputChannels(const cmsPipeline* lut)
-{
- _cmsAssert(lut != NULL);
- return lut ->InputChannels;
-}
-
-cmsUInt32Number CMSEXPORT cmsPipelineOutputChannels(const cmsPipeline* lut)
-{
- _cmsAssert(lut != NULL);
- return lut ->OutputChannels;
-}
-
-// Free a profile elements LUT
-void CMSEXPORT cmsPipelineFree(cmsPipeline* lut)
-{
- cmsStage *mpe, *Next;
-
- if (lut == NULL) return;
-
- for (mpe = lut ->Elements;
- mpe != NULL;
- mpe = Next) {
-
- Next = mpe ->Next;
- cmsStageFree(mpe);
- }
-
- if (lut ->FreeDataFn) lut ->FreeDataFn(lut ->ContextID, lut ->Data);
-
- _cmsFree(lut ->ContextID, lut);
-}
-
-
-// Default to evaluate the LUT on 16 bit-basis.
-void CMSEXPORT cmsPipelineEval16(const cmsUInt16Number In[], cmsUInt16Number Out[], const cmsPipeline* lut)
-{
- _cmsAssert(lut != NULL);
- lut ->Eval16Fn(In, Out, lut->Data);
-}
-
-
-// Does evaluate the LUT on cmsFloat32Number-basis.
-void CMSEXPORT cmsPipelineEvalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsPipeline* lut)
-{
- _cmsAssert(lut != NULL);
- lut ->EvalFloatFn(In, Out, lut);
-}
-
-
-
-// Duplicates a LUT
-cmsPipeline* CMSEXPORT cmsPipelineDup(const cmsPipeline* lut)
-{
- cmsPipeline* NewLUT;
- cmsStage *NewMPE, *Anterior = NULL, *mpe;
- cmsBool First = TRUE;
-
- if (lut == NULL) return NULL;
-
- NewLUT = cmsPipelineAlloc(lut ->ContextID, lut ->InputChannels, lut ->OutputChannels);
- if (NewLUT == NULL) return NULL;
-
- for (mpe = lut ->Elements;
- mpe != NULL;
- mpe = mpe ->Next) {
-
- NewMPE = cmsStageDup(mpe);
-
- if (NewMPE == NULL) {
- cmsPipelineFree(NewLUT);
- return NULL;
- }
-
- if (First) {
- NewLUT ->Elements = NewMPE;
- First = FALSE;
- }
- else {
- Anterior ->Next = NewMPE;
- }
-
- Anterior = NewMPE;
- }
-
- NewLUT ->Eval16Fn = lut ->Eval16Fn;
- NewLUT ->EvalFloatFn = lut ->EvalFloatFn;
- NewLUT ->DupDataFn = lut ->DupDataFn;
- NewLUT ->FreeDataFn = lut ->FreeDataFn;
-
- if (NewLUT ->DupDataFn != NULL)
- NewLUT ->Data = NewLUT ->DupDataFn(lut ->ContextID, lut->Data);
-
-
- NewLUT ->SaveAs8Bits = lut ->SaveAs8Bits;
-
- if (!BlessLUT(NewLUT))
- {
- _cmsFree(lut->ContextID, NewLUT);
- return NULL;
- }
-
- return NewLUT;
-}
-
-
-int CMSEXPORT cmsPipelineInsertStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage* mpe)
-{
- cmsStage* Anterior = NULL, *pt;
-
- if (lut == NULL || mpe == NULL)
- return FALSE;
-
- switch (loc) {
-
- case cmsAT_BEGIN:
- mpe ->Next = lut ->Elements;
- lut ->Elements = mpe;
- break;
-
- case cmsAT_END:
-
- if (lut ->Elements == NULL)
- lut ->Elements = mpe;
- else {
-
- for (pt = lut ->Elements;
- pt != NULL;
- pt = pt -> Next) Anterior = pt;
-
- Anterior ->Next = mpe;
- mpe ->Next = NULL;
- }
- break;
- default:;
- return FALSE;
- }
-
- return BlessLUT(lut);
-}
-
-// Unlink an element and return the pointer to it
-void CMSEXPORT cmsPipelineUnlinkStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage** mpe)
-{
- cmsStage *Anterior, *pt, *Last;
- cmsStage *Unlinked = NULL;
-
-
- // If empty LUT, there is nothing to remove
- if (lut ->Elements == NULL) {
- if (mpe) *mpe = NULL;
- return;
- }
-
- // On depending on the strategy...
- switch (loc) {
-
- case cmsAT_BEGIN:
- {
- cmsStage* elem = lut ->Elements;
-
- lut ->Elements = elem -> Next;
- elem ->Next = NULL;
- Unlinked = elem;
-
- }
- break;
-
- case cmsAT_END:
- Anterior = Last = NULL;
- for (pt = lut ->Elements;
- pt != NULL;
- pt = pt -> Next) {
- Anterior = Last;
- Last = pt;
- }
-
- Unlinked = Last; // Next already points to NULL
-
- // Truncate the chain
- if (Anterior)
- Anterior ->Next = NULL;
- else
- lut ->Elements = NULL;
- break;
- default:;
- }
-
- if (mpe)
- *mpe = Unlinked;
- else
- cmsStageFree(Unlinked);
-
- // May fail, but we ignore it
- BlessLUT(lut);
-}
-
-
-// Concatenate two LUT into a new single one
-cmsBool CMSEXPORT cmsPipelineCat(cmsPipeline* l1, const cmsPipeline* l2)
-{
- cmsStage* mpe;
-
- // If both LUTS does not have elements, we need to inherit
- // the number of channels
- if (l1 ->Elements == NULL && l2 ->Elements == NULL) {
- l1 ->InputChannels = l2 ->InputChannels;
- l1 ->OutputChannels = l2 ->OutputChannels;
- }
-
- // Cat second
- for (mpe = l2 ->Elements;
- mpe != NULL;
- mpe = mpe ->Next) {
-
- // We have to dup each element
- if (!cmsPipelineInsertStage(l1, cmsAT_END, cmsStageDup(mpe)))
- return FALSE;
- }
-
- return BlessLUT(l1);
-}
-
-
-cmsBool CMSEXPORT cmsPipelineSetSaveAs8bitsFlag(cmsPipeline* lut, cmsBool On)
-{
- cmsBool Anterior = lut ->SaveAs8Bits;
-
- lut ->SaveAs8Bits = On;
- return Anterior;
-}
-
-
-cmsStage* CMSEXPORT cmsPipelineGetPtrToFirstStage(const cmsPipeline* lut)
-{
- return lut ->Elements;
-}
-
-cmsStage* CMSEXPORT cmsPipelineGetPtrToLastStage(const cmsPipeline* lut)
-{
- cmsStage *mpe, *Anterior = NULL;
-
- for (mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
- Anterior = mpe;
-
- return Anterior;
-}
-
-cmsUInt32Number CMSEXPORT cmsPipelineStageCount(const cmsPipeline* lut)
-{
- cmsStage *mpe;
- cmsUInt32Number n;
-
- for (n=0, mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
- n++;
-
- return n;
-}
-
-// This function may be used to set the optional evaluator and a block of private data. If private data is being used, an optional
-// duplicator and free functions should also be specified in order to duplicate the LUT construct. Use NULL to inhibit such functionality.
-void CMSEXPORT _cmsPipelineSetOptimizationParameters(cmsPipeline* Lut,
- _cmsOPTeval16Fn Eval16,
- void* PrivateData,
- _cmsFreeUserDataFn FreePrivateDataFn,
- _cmsDupUserDataFn DupPrivateDataFn)
-{
-
- Lut ->Eval16Fn = Eval16;
- Lut ->DupDataFn = DupPrivateDataFn;
- Lut ->FreeDataFn = FreePrivateDataFn;
- Lut ->Data = PrivateData;
-}
-
-
-// ----------------------------------------------------------- Reverse interpolation
-// Here's how it goes. The derivative Df(x) of the function f is the linear
-// transformation that best approximates f near the point x. It can be represented
-// by a matrix A whose entries are the partial derivatives of the components of f
-// with respect to all the coordinates. This is know as the Jacobian
-//
-// The best linear approximation to f is given by the matrix equation:
-//
-// y-y0 = A (x-x0)
-//
-// So, if x0 is a good "guess" for the zero of f, then solving for the zero of this
-// linear approximation will give a "better guess" for the zero of f. Thus let y=0,
-// and since y0=f(x0) one can solve the above equation for x. This leads to the
-// Newton's method formula:
-//
-// xn+1 = xn - A-1 f(xn)
-//
-// where xn+1 denotes the (n+1)-st guess, obtained from the n-th guess xn in the
-// fashion described above. Iterating this will give better and better approximations
-// if you have a "good enough" initial guess.
-
-
-#define JACOBIAN_EPSILON 0.001f
-#define INVERSION_MAX_ITERATIONS 30
-
-// Increment with reflexion on boundary
-static
-void IncDelta(cmsFloat32Number *Val)
-{
- if (*Val < (1.0 - JACOBIAN_EPSILON))
-
- *Val += JACOBIAN_EPSILON;
-
- else
- *Val -= JACOBIAN_EPSILON;
-
-}
-
-
-
-// Euclidean distance between two vectors of n elements each one
-static
-cmsFloat32Number EuclideanDistance(cmsFloat32Number a[], cmsFloat32Number b[], int n)
-{
- cmsFloat32Number sum = 0;
- int i;
-
- for (i=0; i < n; i++) {
- cmsFloat32Number dif = b[i] - a[i];
- sum += dif * dif;
- }
-
- return sqrtf(sum);
-}
-
-
-// Evaluate a LUT in reverse direction. It only searches on 3->3 LUT. Uses Newton method
-//
-// x1 <- x - [J(x)]^-1 * f(x)
-//
-// lut: The LUT on where to do the search
-// Target: LabK, 3 values of Lab plus destination K which is fixed
-// Result: The obtained CMYK
-// Hint: Location where begin the search
-
-cmsBool CMSEXPORT cmsPipelineEvalReverseFloat(cmsFloat32Number Target[],
- cmsFloat32Number Result[],
- cmsFloat32Number Hint[],
- const cmsPipeline* lut)
-{
- cmsUInt32Number i, j;
- cmsFloat64Number error, LastError = 1E20;
- cmsFloat32Number fx[4], x[4], xd[4], fxd[4];
- cmsVEC3 tmp, tmp2;
- cmsMAT3 Jacobian;
-
- // Only 3->3 and 4->3 are supported
- if (lut ->InputChannels != 3 && lut ->InputChannels != 4) return FALSE;
- if (lut ->OutputChannels != 3) return FALSE;
-
- // Take the hint as starting point if specified
- if (Hint == NULL) {
-
- // Begin at any point, we choose 1/3 of CMY axis
- x[0] = x[1] = x[2] = 0.3f;
- }
- else {
-
- // Only copy 3 channels from hint...
- for (j=0; j < 3; j++)
- x[j] = Hint[j];
- }
-
- // If Lut is 4-dimensions, then grab target[3], which is fixed
- if (lut ->InputChannels == 4) {
- x[3] = Target[3];
- }
- else x[3] = 0; // To keep lint happy
-
-
- // Iterate
- for (i = 0; i < INVERSION_MAX_ITERATIONS; i++) {
-
- // Get beginning fx
- cmsPipelineEvalFloat(x, fx, lut);
-
- // Compute error
- error = EuclideanDistance(fx, Target, 3);
-
- // If not convergent, return last safe value
- if (error >= LastError)
- break;
-
- // Keep latest values
- LastError = error;
- for (j=0; j < lut ->InputChannels; j++)
- Result[j] = x[j];
-
- // Found an exact match?
- if (error <= 0)
- break;
-
- // Obtain slope (the Jacobian)
- for (j = 0; j < 3; j++) {
-
- xd[0] = x[0];
- xd[1] = x[1];
- xd[2] = x[2];
- xd[3] = x[3]; // Keep fixed channel
-
- IncDelta(&xd[j]);
-
- cmsPipelineEvalFloat(xd, fxd, lut);
-
- Jacobian.v[0].n[j] = ((fxd[0] - fx[0]) / JACOBIAN_EPSILON);
- Jacobian.v[1].n[j] = ((fxd[1] - fx[1]) / JACOBIAN_EPSILON);
- Jacobian.v[2].n[j] = ((fxd[2] - fx[2]) / JACOBIAN_EPSILON);
- }
-
- // Solve system
- tmp2.n[0] = fx[0] - Target[0];
- tmp2.n[1] = fx[1] - Target[1];
- tmp2.n[2] = fx[2] - Target[2];
-
- if (!_cmsMAT3solve(&tmp, &Jacobian, &tmp2))
- return FALSE;
-
- // Move our guess
- x[0] -= (cmsFloat32Number) tmp.n[0];
- x[1] -= (cmsFloat32Number) tmp.n[1];
- x[2] -= (cmsFloat32Number) tmp.n[2];
-
- // Some clipping....
- for (j=0; j < 3; j++) {
- if (x[j] < 0) x[j] = 0;
- else
- if (x[j] > 1.0) x[j] = 1.0;
- }
- }
-
- return TRUE;
-}