diff options
Diffstat (limited to 'third_party/lcms2-2.6/src/cmslut.c')
-rw-r--r-- | third_party/lcms2-2.6/src/cmslut.c | 1820 |
1 files changed, 0 insertions, 1820 deletions
diff --git a/third_party/lcms2-2.6/src/cmslut.c b/third_party/lcms2-2.6/src/cmslut.c deleted file mode 100644 index 19d43361f0..0000000000 --- a/third_party/lcms2-2.6/src/cmslut.c +++ /dev/null @@ -1,1820 +0,0 @@ -//--------------------------------------------------------------------------------- -// -// Little Color Management System -// Copyright (c) 1998-2012 Marti Maria Saguer -// -// Permission is hereby granted, free of charge, to any person obtaining -// a copy of this software and associated documentation files (the "Software"), -// to deal in the Software without restriction, including without limitation -// the rights to use, copy, modify, merge, publish, distribute, sublicense, -// and/or sell copies of the Software, and to permit persons to whom the Software -// is furnished to do so, subject to the following conditions: -// -// The above copyright notice and this permission notice shall be included in -// all copies or substantial portions of the Software. -// -// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO -// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE -// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION -// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION -// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -// -//--------------------------------------------------------------------------------- -// - -#include "lcms2_internal.h" - - -// Allocates an empty multi profile element -cmsStage* CMSEXPORT _cmsStageAllocPlaceholder(cmsContext ContextID, - cmsStageSignature Type, - cmsUInt32Number InputChannels, - cmsUInt32Number OutputChannels, - _cmsStageEvalFn EvalPtr, - _cmsStageDupElemFn DupElemPtr, - _cmsStageFreeElemFn FreePtr, - void* Data) -{ - cmsStage* ph = (cmsStage*) _cmsMallocZero(ContextID, sizeof(cmsStage)); - - if (ph == NULL) return NULL; - - - ph ->ContextID = ContextID; - - ph ->Type = Type; - ph ->Implements = Type; // By default, no clue on what is implementing - - ph ->InputChannels = InputChannels; - ph ->OutputChannels = OutputChannels; - ph ->EvalPtr = EvalPtr; - ph ->DupElemPtr = DupElemPtr; - ph ->FreePtr = FreePtr; - ph ->Data = Data; - - return ph; -} - - -static -void EvaluateIdentity(const cmsFloat32Number In[], - cmsFloat32Number Out[], - const cmsStage *mpe) -{ - memmove(Out, In, mpe ->InputChannels * sizeof(cmsFloat32Number)); -} - - -cmsStage* CMSEXPORT cmsStageAllocIdentity(cmsContext ContextID, cmsUInt32Number nChannels) -{ - return _cmsStageAllocPlaceholder(ContextID, - cmsSigIdentityElemType, - nChannels, nChannels, - EvaluateIdentity, - NULL, - NULL, - NULL); - } - -// Conversion functions. From floating point to 16 bits -static -void FromFloatTo16(const cmsFloat32Number In[], cmsUInt16Number Out[], cmsUInt32Number n) -{ - cmsUInt32Number i; - - for (i=0; i < n; i++) { - Out[i] = _cmsQuickSaturateWord(In[i] * 65535.0); - } -} - -// From 16 bits to floating point -static -void From16ToFloat(const cmsUInt16Number In[], cmsFloat32Number Out[], cmsUInt32Number n) -{ - cmsUInt32Number i; - - for (i=0; i < n; i++) { - Out[i] = (cmsFloat32Number) In[i] / 65535.0F; - } -} - - -// This function is quite useful to analyze the structure of a LUT and retrieve the MPE elements -// that conform the LUT. It should be called with the LUT, the number of expected elements and -// then a list of expected types followed with a list of cmsFloat64Number pointers to MPE elements. If -// the function founds a match with current pipeline, it fills the pointers and returns TRUE -// if not, returns FALSE without touching anything. Setting pointers to NULL does bypass -// the storage process. -cmsBool CMSEXPORT cmsPipelineCheckAndRetreiveStages(const cmsPipeline* Lut, cmsUInt32Number n, ...) -{ - va_list args; - cmsUInt32Number i; - cmsStage* mpe; - cmsStageSignature Type; - void** ElemPtr; - - // Make sure same number of elements - if (cmsPipelineStageCount(Lut) != n) return FALSE; - - va_start(args, n); - - // Iterate across asked types - mpe = Lut ->Elements; - for (i=0; i < n; i++) { - - // Get asked type - Type = (cmsStageSignature)va_arg(args, cmsStageSignature); - if (mpe ->Type != Type) { - - va_end(args); // Mismatch. We are done. - return FALSE; - } - mpe = mpe ->Next; - } - - // Found a combination, fill pointers if not NULL - mpe = Lut ->Elements; - for (i=0; i < n; i++) { - - ElemPtr = va_arg(args, void**); - if (ElemPtr != NULL) - *ElemPtr = mpe; - - mpe = mpe ->Next; - } - - va_end(args); - return TRUE; -} - -// Below there are implementations for several types of elements. Each type may be implemented by a -// evaluation function, a duplication function, a function to free resources and a constructor. - -// ************************************************************************************************* -// Type cmsSigCurveSetElemType (curves) -// ************************************************************************************************* - -cmsToneCurve** _cmsStageGetPtrToCurveSet(const cmsStage* mpe) -{ - _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data; - - return Data ->TheCurves; -} - -static -void EvaluateCurves(const cmsFloat32Number In[], - cmsFloat32Number Out[], - const cmsStage *mpe) -{ - _cmsStageToneCurvesData* Data; - cmsUInt32Number i; - - _cmsAssert(mpe != NULL); - - Data = (_cmsStageToneCurvesData*) mpe ->Data; - if (Data == NULL) return; - - if (Data ->TheCurves == NULL) return; - - for (i=0; i < Data ->nCurves; i++) { - Out[i] = cmsEvalToneCurveFloat(Data ->TheCurves[i], In[i]); - } -} - -static -void CurveSetElemTypeFree(cmsStage* mpe) -{ - _cmsStageToneCurvesData* Data; - cmsUInt32Number i; - - _cmsAssert(mpe != NULL); - - Data = (_cmsStageToneCurvesData*) mpe ->Data; - if (Data == NULL) return; - - if (Data ->TheCurves != NULL) { - for (i=0; i < Data ->nCurves; i++) { - if (Data ->TheCurves[i] != NULL) - cmsFreeToneCurve(Data ->TheCurves[i]); - } - } - _cmsFree(mpe ->ContextID, Data ->TheCurves); - _cmsFree(mpe ->ContextID, Data); -} - - -static -void* CurveSetDup(cmsStage* mpe) -{ - _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data; - _cmsStageToneCurvesData* NewElem; - cmsUInt32Number i; - - NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageToneCurvesData)); - if (NewElem == NULL) return NULL; - - NewElem ->nCurves = Data ->nCurves; - NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(mpe ->ContextID, NewElem ->nCurves, sizeof(cmsToneCurve*)); - - if (NewElem ->TheCurves == NULL) goto Error; - - for (i=0; i < NewElem ->nCurves; i++) { - - // Duplicate each curve. It may fail. - NewElem ->TheCurves[i] = cmsDupToneCurve(Data ->TheCurves[i]); - if (NewElem ->TheCurves[i] == NULL) goto Error; - - - } - return (void*) NewElem; - -Error: - - if (NewElem ->TheCurves != NULL) { - for (i=0; i < NewElem ->nCurves; i++) { - if (NewElem ->TheCurves[i]) - cmsFreeToneCurve(NewElem ->TheCurves[i]); - } - } - _cmsFree(mpe ->ContextID, NewElem ->TheCurves); - _cmsFree(mpe ->ContextID, NewElem); - return NULL; -} - - -// Curves == NULL forces identity curves -cmsStage* CMSEXPORT cmsStageAllocToneCurves(cmsContext ContextID, cmsUInt32Number nChannels, cmsToneCurve* const Curves[]) -{ - cmsUInt32Number i; - _cmsStageToneCurvesData* NewElem; - cmsStage* NewMPE; - - - NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCurveSetElemType, nChannels, nChannels, - EvaluateCurves, CurveSetDup, CurveSetElemTypeFree, NULL ); - if (NewMPE == NULL) return NULL; - - NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(ContextID, sizeof(_cmsStageToneCurvesData)); - if (NewElem == NULL) { - cmsStageFree(NewMPE); - return NULL; - } - - NewMPE ->Data = (void*) NewElem; - - NewElem ->nCurves = nChannels; - NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(ContextID, nChannels, sizeof(cmsToneCurve*)); - if (NewElem ->TheCurves == NULL) { - cmsStageFree(NewMPE); - return NULL; - } - - for (i=0; i < nChannels; i++) { - - if (Curves == NULL) { - NewElem ->TheCurves[i] = cmsBuildGamma(ContextID, 1.0); - } - else { - NewElem ->TheCurves[i] = cmsDupToneCurve(Curves[i]); - } - - if (NewElem ->TheCurves[i] == NULL) { - cmsStageFree(NewMPE); - return NULL; - } - - } - - return NewMPE; -} - - -// Create a bunch of identity curves -cmsStage* _cmsStageAllocIdentityCurves(cmsContext ContextID, int nChannels) -{ - cmsStage* mpe = cmsStageAllocToneCurves(ContextID, nChannels, NULL); - - if (mpe == NULL) return NULL; - mpe ->Implements = cmsSigIdentityElemType; - return mpe; -} - - -// ************************************************************************************************* -// Type cmsSigMatrixElemType (Matrices) -// ************************************************************************************************* - - -// Special care should be taken here because precision loss. A temporary cmsFloat64Number buffer is being used -static -void EvaluateMatrix(const cmsFloat32Number In[], - cmsFloat32Number Out[], - const cmsStage *mpe) -{ - cmsUInt32Number i, j; - _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; - cmsFloat64Number Tmp; - - // Input is already in 0..1.0 notation - for (i=0; i < mpe ->OutputChannels; i++) { - - Tmp = 0; - for (j=0; j < mpe->InputChannels; j++) { - Tmp += In[j] * Data->Double[i*mpe->InputChannels + j]; - } - - if (Data ->Offset != NULL) - Tmp += Data->Offset[i]; - - Out[i] = (cmsFloat32Number) Tmp; - } - - - // Output in 0..1.0 domain -} - - -// Duplicate a yet-existing matrix element -static -void* MatrixElemDup(cmsStage* mpe) -{ - _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; - _cmsStageMatrixData* NewElem; - cmsUInt32Number sz; - - NewElem = (_cmsStageMatrixData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageMatrixData)); - if (NewElem == NULL) return NULL; - - sz = mpe ->InputChannels * mpe ->OutputChannels; - - NewElem ->Double = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, Data ->Double, sz * sizeof(cmsFloat64Number)) ; - - if (Data ->Offset) - NewElem ->Offset = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, - Data ->Offset, mpe -> OutputChannels * sizeof(cmsFloat64Number)) ; - - return (void*) NewElem; -} - - -static -void MatrixElemTypeFree(cmsStage* mpe) -{ - _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; - if (Data == NULL) - return; - if (Data ->Double) - _cmsFree(mpe ->ContextID, Data ->Double); - - if (Data ->Offset) - _cmsFree(mpe ->ContextID, Data ->Offset); - - _cmsFree(mpe ->ContextID, mpe ->Data); -} - - - -cmsStage* CMSEXPORT cmsStageAllocMatrix(cmsContext ContextID, cmsUInt32Number Rows, cmsUInt32Number Cols, - const cmsFloat64Number* Matrix, const cmsFloat64Number* Offset) -{ - cmsUInt32Number i, n; - _cmsStageMatrixData* NewElem; - cmsStage* NewMPE; - - n = Rows * Cols; - - // Check for overflow - if (n == 0) return NULL; - if (n >= UINT_MAX / Cols) return NULL; - if (n >= UINT_MAX / Rows) return NULL; - if (n < Rows || n < Cols) return NULL; - - NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigMatrixElemType, Cols, Rows, - EvaluateMatrix, MatrixElemDup, MatrixElemTypeFree, NULL ); - if (NewMPE == NULL) return NULL; - - - NewElem = (_cmsStageMatrixData*) _cmsMallocZero(ContextID, sizeof(_cmsStageMatrixData)); - if (NewElem == NULL) return NULL; - - - NewElem ->Double = (cmsFloat64Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat64Number)); - - if (NewElem->Double == NULL) { - MatrixElemTypeFree(NewMPE); - return NULL; - } - - for (i=0; i < n; i++) { - NewElem ->Double[i] = Matrix[i]; - } - - - if (Offset != NULL) { - - NewElem ->Offset = (cmsFloat64Number*) _cmsCalloc(ContextID, Rows, sizeof(cmsFloat64Number)); - if (NewElem->Offset == NULL) { - MatrixElemTypeFree(NewMPE); - return NULL; - } - - for (i=0; i < Rows; i++) { - NewElem ->Offset[i] = Offset[i]; - } - - } - - NewMPE ->Data = (void*) NewElem; - return NewMPE; -} - - -// ************************************************************************************************* -// Type cmsSigCLutElemType -// ************************************************************************************************* - - -// Evaluate in true floating point -static -void EvaluateCLUTfloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) -{ - _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; - - Data -> Params ->Interpolation.LerpFloat(In, Out, Data->Params); -} - - -// Convert to 16 bits, evaluate, and back to floating point -static -void EvaluateCLUTfloatIn16(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) -{ - _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; - cmsUInt16Number In16[MAX_STAGE_CHANNELS], Out16[MAX_STAGE_CHANNELS]; - - _cmsAssert(mpe ->InputChannels <= MAX_STAGE_CHANNELS); - _cmsAssert(mpe ->OutputChannels <= MAX_STAGE_CHANNELS); - - FromFloatTo16(In, In16, mpe ->InputChannels); - Data -> Params ->Interpolation.Lerp16(In16, Out16, Data->Params); - From16ToFloat(Out16, Out, mpe ->OutputChannels); -} - - -// Given an hypercube of b dimensions, with Dims[] number of nodes by dimension, calculate the total amount of nodes -static -cmsUInt32Number CubeSize(const cmsUInt32Number Dims[], cmsUInt32Number b) -{ - cmsUInt32Number rv, dim; - - _cmsAssert(Dims != NULL); - - for (rv = 1; b > 0; b--) { - - dim = Dims[b-1]; - if (dim == 0) return 0; // Error - - rv *= dim; - - // Check for overflow - if (rv > UINT_MAX / dim) return 0; - } - - return rv; -} - -static -void* CLUTElemDup(cmsStage* mpe) -{ - _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; - _cmsStageCLutData* NewElem; - - - NewElem = (_cmsStageCLutData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageCLutData)); - if (NewElem == NULL) return NULL; - - NewElem ->nEntries = Data ->nEntries; - NewElem ->HasFloatValues = Data ->HasFloatValues; - - if (Data ->Tab.T) { - - if (Data ->HasFloatValues) { - NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.TFloat, Data ->nEntries * sizeof (cmsFloat32Number)); - if (NewElem ->Tab.TFloat == NULL) - goto Error; - } else { - NewElem ->Tab.T = (cmsUInt16Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.T, Data ->nEntries * sizeof (cmsUInt16Number)); - if (NewElem ->Tab.TFloat == NULL) - goto Error; - } - } - - NewElem ->Params = _cmsComputeInterpParamsEx(mpe ->ContextID, - Data ->Params ->nSamples, - Data ->Params ->nInputs, - Data ->Params ->nOutputs, - NewElem ->Tab.T, - Data ->Params ->dwFlags); - if (NewElem->Params != NULL) - return (void*) NewElem; - Error: - if (NewElem->Tab.T) - // This works for both types - _cmsFree(mpe ->ContextID, NewElem -> Tab.T); - _cmsFree(mpe ->ContextID, NewElem); - return NULL; -} - - -static -void CLutElemTypeFree(cmsStage* mpe) -{ - - _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; - - // Already empty - if (Data == NULL) return; - - // This works for both types - if (Data -> Tab.T) - _cmsFree(mpe ->ContextID, Data -> Tab.T); - - _cmsFreeInterpParams(Data ->Params); - _cmsFree(mpe ->ContextID, mpe ->Data); -} - - -// Allocates a 16-bit multidimensional CLUT. This is evaluated at 16-bit precision. Table may have different -// granularity on each dimension. -cmsStage* CMSEXPORT cmsStageAllocCLut16bitGranular(cmsContext ContextID, - const cmsUInt32Number clutPoints[], - cmsUInt32Number inputChan, - cmsUInt32Number outputChan, - const cmsUInt16Number* Table) -{ - cmsUInt32Number i, n; - _cmsStageCLutData* NewElem; - cmsStage* NewMPE; - - _cmsAssert(clutPoints != NULL); - - if (inputChan > MAX_INPUT_DIMENSIONS) { - cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS); - return NULL; - } - - NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan, - EvaluateCLUTfloatIn16, CLUTElemDup, CLutElemTypeFree, NULL ); - - if (NewMPE == NULL) return NULL; - - NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData)); - if (NewElem == NULL) { - cmsStageFree(NewMPE); - return NULL; - } - - NewMPE ->Data = (void*) NewElem; - - NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan); - NewElem -> HasFloatValues = FALSE; - - if (n == 0) { - cmsStageFree(NewMPE); - return NULL; - } - - - NewElem ->Tab.T = (cmsUInt16Number*) _cmsCalloc(ContextID, n, sizeof(cmsUInt16Number)); - if (NewElem ->Tab.T == NULL) { - cmsStageFree(NewMPE); - return NULL; - } - - if (Table != NULL) { - for (i=0; i < n; i++) { - NewElem ->Tab.T[i] = Table[i]; - } - } - - NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.T, CMS_LERP_FLAGS_16BITS); - if (NewElem ->Params == NULL) { - cmsStageFree(NewMPE); - return NULL; - } - - return NewMPE; -} - -cmsStage* CMSEXPORT cmsStageAllocCLut16bit(cmsContext ContextID, - cmsUInt32Number nGridPoints, - cmsUInt32Number inputChan, - cmsUInt32Number outputChan, - const cmsUInt16Number* Table) -{ - cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS]; - int i; - - // Our resulting LUT would be same gridpoints on all dimensions - for (i=0; i < MAX_INPUT_DIMENSIONS; i++) - Dimensions[i] = nGridPoints; - - return cmsStageAllocCLut16bitGranular(ContextID, Dimensions, inputChan, outputChan, Table); -} - - -cmsStage* CMSEXPORT cmsStageAllocCLutFloat(cmsContext ContextID, - cmsUInt32Number nGridPoints, - cmsUInt32Number inputChan, - cmsUInt32Number outputChan, - const cmsFloat32Number* Table) -{ - cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS]; - int i; - - // Our resulting LUT would be same gridpoints on all dimensions - for (i=0; i < MAX_INPUT_DIMENSIONS; i++) - Dimensions[i] = nGridPoints; - - return cmsStageAllocCLutFloatGranular(ContextID, Dimensions, inputChan, outputChan, Table); -} - - - -cmsStage* CMSEXPORT cmsStageAllocCLutFloatGranular(cmsContext ContextID, const cmsUInt32Number clutPoints[], cmsUInt32Number inputChan, cmsUInt32Number outputChan, const cmsFloat32Number* Table) -{ - cmsUInt32Number i, n; - _cmsStageCLutData* NewElem; - cmsStage* NewMPE; - - _cmsAssert(clutPoints != NULL); - - if (inputChan > MAX_INPUT_DIMENSIONS) { - cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS); - return NULL; - } - - NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan, - EvaluateCLUTfloat, CLUTElemDup, CLutElemTypeFree, NULL); - if (NewMPE == NULL) return NULL; - - - NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData)); - if (NewElem == NULL) { - cmsStageFree(NewMPE); - return NULL; - } - - NewMPE ->Data = (void*) NewElem; - - // There is a potential integer overflow on conputing n and nEntries. - NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan); - NewElem -> HasFloatValues = TRUE; - - if (n == 0) { - cmsStageFree(NewMPE); - return NULL; - } - - NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat32Number)); - if (NewElem ->Tab.TFloat == NULL) { - cmsStageFree(NewMPE); - return NULL; - } - - if (Table != NULL) { - for (i=0; i < n; i++) { - NewElem ->Tab.TFloat[i] = Table[i]; - } - } - - NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.TFloat, CMS_LERP_FLAGS_FLOAT); - if (NewElem ->Params == NULL) { - cmsStageFree(NewMPE); - return NULL; - } - - return NewMPE; -} - - -static -int IdentitySampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo) -{ - int nChan = *(int*) Cargo; - int i; - - for (i=0; i < nChan; i++) - Out[i] = In[i]; - - return 1; -} - -// Creates an MPE that just copies input to output -cmsStage* _cmsStageAllocIdentityCLut(cmsContext ContextID, int nChan) -{ - cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS]; - cmsStage* mpe ; - int i; - - for (i=0; i < MAX_INPUT_DIMENSIONS; i++) - Dimensions[i] = 2; - - mpe = cmsStageAllocCLut16bitGranular(ContextID, Dimensions, nChan, nChan, NULL); - if (mpe == NULL) return NULL; - - if (!cmsStageSampleCLut16bit(mpe, IdentitySampler, &nChan, 0)) { - cmsStageFree(mpe); - return NULL; - } - - mpe ->Implements = cmsSigIdentityElemType; - return mpe; -} - - - -// Quantize a value 0 <= i < MaxSamples to 0..0xffff -cmsUInt16Number _cmsQuantizeVal(cmsFloat64Number i, int MaxSamples) -{ - cmsFloat64Number x; - - x = ((cmsFloat64Number) i * 65535.) / (cmsFloat64Number) (MaxSamples - 1); - return _cmsQuickSaturateWord(x); -} - - -// This routine does a sweep on whole input space, and calls its callback -// function on knots. returns TRUE if all ok, FALSE otherwise. -cmsBool CMSEXPORT cmsStageSampleCLut16bit(cmsStage* mpe, cmsSAMPLER16 Sampler, void * Cargo, cmsUInt32Number dwFlags) -{ - int i, t, nTotalPoints, index, rest; - int nInputs, nOutputs; - cmsUInt32Number* nSamples; - cmsUInt16Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS]; - _cmsStageCLutData* clut; - - if (mpe == NULL) return FALSE; - - clut = (_cmsStageCLutData*) mpe->Data; - - if (clut == NULL) return FALSE; - - nSamples = clut->Params ->nSamples; - nInputs = clut->Params ->nInputs; - nOutputs = clut->Params ->nOutputs; - - if (nInputs <= 0) return FALSE; - if (nOutputs <= 0) return FALSE; - if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE; - if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE; - - nTotalPoints = CubeSize(nSamples, nInputs); - if (nTotalPoints == 0) return FALSE; - - index = 0; - for (i = 0; i < nTotalPoints; i++) { - - rest = i; - for (t = nInputs-1; t >=0; --t) { - - cmsUInt32Number Colorant = rest % nSamples[t]; - - rest /= nSamples[t]; - - In[t] = _cmsQuantizeVal(Colorant, nSamples[t]); - } - - if (clut ->Tab.T != NULL) { - for (t=0; t < nOutputs; t++) - Out[t] = clut->Tab.T[index + t]; - } - - if (!Sampler(In, Out, Cargo)) - return FALSE; - - if (!(dwFlags & SAMPLER_INSPECT)) { - - if (clut ->Tab.T != NULL) { - for (t=0; t < nOutputs; t++) - clut->Tab.T[index + t] = Out[t]; - } - } - - index += nOutputs; - } - - return TRUE; -} - -// Same as anterior, but for floting point -cmsBool CMSEXPORT cmsStageSampleCLutFloat(cmsStage* mpe, cmsSAMPLERFLOAT Sampler, void * Cargo, cmsUInt32Number dwFlags) -{ - int i, t, nTotalPoints, index, rest; - int nInputs, nOutputs; - cmsUInt32Number* nSamples; - cmsFloat32Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS]; - _cmsStageCLutData* clut = (_cmsStageCLutData*) mpe->Data; - - nSamples = clut->Params ->nSamples; - nInputs = clut->Params ->nInputs; - nOutputs = clut->Params ->nOutputs; - - if (nInputs <= 0) return FALSE; - if (nOutputs <= 0) return FALSE; - if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE; - if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE; - - nTotalPoints = CubeSize(nSamples, nInputs); - if (nTotalPoints == 0) return FALSE; - - index = 0; - for (i = 0; i < nTotalPoints; i++) { - - rest = i; - for (t = nInputs-1; t >=0; --t) { - - cmsUInt32Number Colorant = rest % nSamples[t]; - - rest /= nSamples[t]; - - In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, nSamples[t]) / 65535.0); - } - - if (clut ->Tab.TFloat != NULL) { - for (t=0; t < nOutputs; t++) - Out[t] = clut->Tab.TFloat[index + t]; - } - - if (!Sampler(In, Out, Cargo)) - return FALSE; - - if (!(dwFlags & SAMPLER_INSPECT)) { - - if (clut ->Tab.TFloat != NULL) { - for (t=0; t < nOutputs; t++) - clut->Tab.TFloat[index + t] = Out[t]; - } - } - - index += nOutputs; - } - - return TRUE; -} - - - -// This routine does a sweep on whole input space, and calls its callback -// function on knots. returns TRUE if all ok, FALSE otherwise. -cmsBool CMSEXPORT cmsSliceSpace16(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[], - cmsSAMPLER16 Sampler, void * Cargo) -{ - int i, t, nTotalPoints, rest; - cmsUInt16Number In[cmsMAXCHANNELS]; - - if (nInputs >= cmsMAXCHANNELS) return FALSE; - - nTotalPoints = CubeSize(clutPoints, nInputs); - if (nTotalPoints == 0) return FALSE; - - for (i = 0; i < nTotalPoints; i++) { - - rest = i; - for (t = nInputs-1; t >=0; --t) { - - cmsUInt32Number Colorant = rest % clutPoints[t]; - - rest /= clutPoints[t]; - In[t] = _cmsQuantizeVal(Colorant, clutPoints[t]); - - } - - if (!Sampler(In, NULL, Cargo)) - return FALSE; - } - - return TRUE; -} - -cmsInt32Number CMSEXPORT cmsSliceSpaceFloat(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[], - cmsSAMPLERFLOAT Sampler, void * Cargo) -{ - int i, t, nTotalPoints, rest; - cmsFloat32Number In[cmsMAXCHANNELS]; - - if (nInputs >= cmsMAXCHANNELS) return FALSE; - - nTotalPoints = CubeSize(clutPoints, nInputs); - if (nTotalPoints == 0) return FALSE; - - for (i = 0; i < nTotalPoints; i++) { - - rest = i; - for (t = nInputs-1; t >=0; --t) { - - cmsUInt32Number Colorant = rest % clutPoints[t]; - - rest /= clutPoints[t]; - In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, clutPoints[t]) / 65535.0); - - } - - if (!Sampler(In, NULL, Cargo)) - return FALSE; - } - - return TRUE; -} - -// ******************************************************************************** -// Type cmsSigLab2XYZElemType -// ******************************************************************************** - - -static -void EvaluateLab2XYZ(const cmsFloat32Number In[], - cmsFloat32Number Out[], - const cmsStage *mpe) -{ - cmsCIELab Lab; - cmsCIEXYZ XYZ; - const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ; - - // V4 rules - Lab.L = In[0] * 100.0; - Lab.a = In[1] * 255.0 - 128.0; - Lab.b = In[2] * 255.0 - 128.0; - - cmsLab2XYZ(NULL, &XYZ, &Lab); - - // From XYZ, range 0..19997 to 0..1.0, note that 1.99997 comes from 0xffff - // encoded as 1.15 fixed point, so 1 + (32767.0 / 32768.0) - - Out[0] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.X / XYZadj); - Out[1] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Y / XYZadj); - Out[2] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Z / XYZadj); - return; - - cmsUNUSED_PARAMETER(mpe); -} - - -// No dup or free routines needed, as the structure has no pointers in it. -cmsStage* _cmsStageAllocLab2XYZ(cmsContext ContextID) -{ - return _cmsStageAllocPlaceholder(ContextID, cmsSigLab2XYZElemType, 3, 3, EvaluateLab2XYZ, NULL, NULL, NULL); -} - -// ******************************************************************************** - -// v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable -// number of gridpoints that would make exact match. However, a prelinearization -// of 258 entries, would map 0xFF00 exactly on entry 257, and this is good to avoid scum dot. -// Almost all what we need but unfortunately, the rest of entries should be scaled by -// (255*257/256) and this is not exact. - -cmsStage* _cmsStageAllocLabV2ToV4curves(cmsContext ContextID) -{ - cmsStage* mpe; - cmsToneCurve* LabTable[3]; - int i, j; - - LabTable[0] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL); - LabTable[1] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL); - LabTable[2] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL); - - for (j=0; j < 3; j++) { - - if (LabTable[j] == NULL) { - cmsFreeToneCurveTriple(LabTable); - return NULL; - } - - // We need to map * (0xffff / 0xff00), thats same as (257 / 256) - // So we can use 258-entry tables to do the trick (i / 257) * (255 * 257) * (257 / 256); - for (i=0; i < 257; i++) { - - LabTable[j]->Table16[i] = (cmsUInt16Number) ((i * 0xffff + 0x80) >> 8); - } - - LabTable[j] ->Table16[257] = 0xffff; - } - - mpe = cmsStageAllocToneCurves(ContextID, 3, LabTable); - cmsFreeToneCurveTriple(LabTable); - - if (mpe == NULL) return NULL; - mpe ->Implements = cmsSigLabV2toV4; - return mpe; -} - -// ******************************************************************************** - -// Matrix-based conversion, which is more accurate, but slower and cannot properly be saved in devicelink profiles -cmsStage* _cmsStageAllocLabV2ToV4(cmsContext ContextID) -{ - static const cmsFloat64Number V2ToV4[] = { 65535.0/65280.0, 0, 0, - 0, 65535.0/65280.0, 0, - 0, 0, 65535.0/65280.0 - }; - - cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V2ToV4, NULL); - - if (mpe == NULL) return mpe; - mpe ->Implements = cmsSigLabV2toV4; - return mpe; -} - - -// Reverse direction -cmsStage* _cmsStageAllocLabV4ToV2(cmsContext ContextID) -{ - static const cmsFloat64Number V4ToV2[] = { 65280.0/65535.0, 0, 0, - 0, 65280.0/65535.0, 0, - 0, 0, 65280.0/65535.0 - }; - - cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V4ToV2, NULL); - - if (mpe == NULL) return mpe; - mpe ->Implements = cmsSigLabV4toV2; - return mpe; -} - - -// To Lab to float. Note that the MPE gives numbers in normal Lab range -// and we need 0..1.0 range for the formatters -// L* : 0...100 => 0...1.0 (L* / 100) -// ab* : -128..+127 to 0..1 ((ab* + 128) / 255) - -cmsStage* _cmsStageNormalizeFromLabFloat(cmsContext ContextID) -{ - static const cmsFloat64Number a1[] = { - 1.0/100.0, 0, 0, - 0, 1.0/255.0, 0, - 0, 0, 1.0/255.0 - }; - - static const cmsFloat64Number o1[] = { - 0, - 128.0/255.0, - 128.0/255.0 - }; - - cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1); - - if (mpe == NULL) return mpe; - mpe ->Implements = cmsSigLab2FloatPCS; - return mpe; -} - -// Fom XYZ to floating point PCS -cmsStage* _cmsStageNormalizeFromXyzFloat(cmsContext ContextID) -{ -#define n (32768.0/65535.0) - static const cmsFloat64Number a1[] = { - n, 0, 0, - 0, n, 0, - 0, 0, n - }; -#undef n - - cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL); - - if (mpe == NULL) return mpe; - mpe ->Implements = cmsSigXYZ2FloatPCS; - return mpe; -} - -cmsStage* _cmsStageNormalizeToLabFloat(cmsContext ContextID) -{ - static const cmsFloat64Number a1[] = { - 100.0, 0, 0, - 0, 255.0, 0, - 0, 0, 255.0 - }; - - static const cmsFloat64Number o1[] = { - 0, - -128.0, - -128.0 - }; - - cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1); - if (mpe == NULL) return mpe; - mpe ->Implements = cmsSigFloatPCS2Lab; - return mpe; -} - -cmsStage* _cmsStageNormalizeToXyzFloat(cmsContext ContextID) -{ -#define n (65535.0/32768.0) - - static const cmsFloat64Number a1[] = { - n, 0, 0, - 0, n, 0, - 0, 0, n - }; -#undef n - - cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL); - if (mpe == NULL) return mpe; - mpe ->Implements = cmsSigFloatPCS2XYZ; - return mpe; -} - - - -// ******************************************************************************** -// Type cmsSigXYZ2LabElemType -// ******************************************************************************** - -static -void EvaluateXYZ2Lab(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) -{ - cmsCIELab Lab; - cmsCIEXYZ XYZ; - const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ; - - // From 0..1.0 to XYZ - - XYZ.X = In[0] * XYZadj; - XYZ.Y = In[1] * XYZadj; - XYZ.Z = In[2] * XYZadj; - - cmsXYZ2Lab(NULL, &Lab, &XYZ); - - // From V4 Lab to 0..1.0 - - Out[0] = (cmsFloat32Number) (Lab.L / 100.0); - Out[1] = (cmsFloat32Number) ((Lab.a + 128.0) / 255.0); - Out[2] = (cmsFloat32Number) ((Lab.b + 128.0) / 255.0); - return; - - cmsUNUSED_PARAMETER(mpe); -} - -cmsStage* _cmsStageAllocXYZ2Lab(cmsContext ContextID) -{ - return _cmsStageAllocPlaceholder(ContextID, cmsSigXYZ2LabElemType, 3, 3, EvaluateXYZ2Lab, NULL, NULL, NULL); - -} - -// ******************************************************************************** - -// For v4, S-Shaped curves are placed in a/b axis to increase resolution near gray - -cmsStage* _cmsStageAllocLabPrelin(cmsContext ContextID) -{ - cmsToneCurve* LabTable[3]; - cmsFloat64Number Params[1] = {2.4} ; - - LabTable[0] = cmsBuildGamma(ContextID, 1.0); - LabTable[1] = cmsBuildParametricToneCurve(ContextID, 108, Params); - LabTable[2] = cmsBuildParametricToneCurve(ContextID, 108, Params); - - return cmsStageAllocToneCurves(ContextID, 3, LabTable); -} - - -// Free a single MPE -void CMSEXPORT cmsStageFree(cmsStage* mpe) -{ - if (mpe ->FreePtr) - mpe ->FreePtr(mpe); - - _cmsFree(mpe ->ContextID, mpe); -} - - -cmsUInt32Number CMSEXPORT cmsStageInputChannels(const cmsStage* mpe) -{ - return mpe ->InputChannels; -} - -cmsUInt32Number CMSEXPORT cmsStageOutputChannels(const cmsStage* mpe) -{ - return mpe ->OutputChannels; -} - -cmsStageSignature CMSEXPORT cmsStageType(const cmsStage* mpe) -{ - return mpe -> Type; -} - -void* CMSEXPORT cmsStageData(const cmsStage* mpe) -{ - return mpe -> Data; -} - -cmsStage* CMSEXPORT cmsStageNext(const cmsStage* mpe) -{ - return mpe -> Next; -} - - -// Duplicates an MPE -cmsStage* CMSEXPORT cmsStageDup(cmsStage* mpe) -{ - cmsStage* NewMPE; - - if (mpe == NULL) return NULL; - NewMPE = _cmsStageAllocPlaceholder(mpe ->ContextID, - mpe ->Type, - mpe ->InputChannels, - mpe ->OutputChannels, - mpe ->EvalPtr, - mpe ->DupElemPtr, - mpe ->FreePtr, - NULL); - if (NewMPE == NULL) return NULL; - - NewMPE ->Implements = mpe ->Implements; - - if (mpe ->DupElemPtr) { - - NewMPE ->Data = mpe ->DupElemPtr(mpe); - - if (NewMPE->Data == NULL) { - - cmsStageFree(NewMPE); - return NULL; - } - - } else { - - NewMPE ->Data = NULL; - } - - return NewMPE; -} - - -// *********************************************************************************************************** - -// This function sets up the channel count -static -cmsBool BlessLUT(cmsPipeline* lut) -{ - // We can set the input/ouput channels only if we have elements. - if (lut ->Elements != NULL) { - - cmsStage* prev; - cmsStage* next; - cmsStage* First; - cmsStage* Last; - - First = cmsPipelineGetPtrToFirstStage(lut); - Last = cmsPipelineGetPtrToLastStage(lut); - - if (First == NULL || Last == NULL) return FALSE; - - lut->InputChannels = First->InputChannels; - lut->OutputChannels = Last->OutputChannels; - - // Check chain consistency - prev = First; - next = prev->Next; - - while (next != NULL) - { - if (next->InputChannels != prev->OutputChannels) - return FALSE; - - next = next->Next; - prev = prev->Next; - } - } - return TRUE; -} - - -// Default to evaluate the LUT on 16 bit-basis. Precision is retained. -static -void _LUTeval16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register const void* D) -{ - cmsPipeline* lut = (cmsPipeline*) D; - cmsStage *mpe; - cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS] = {0.0f}; - int Phase = 0, NextPhase; - - From16ToFloat(In, &Storage[Phase][0], lut ->InputChannels); - - for (mpe = lut ->Elements; - mpe != NULL; - mpe = mpe ->Next) { - - NextPhase = Phase ^ 1; - mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe); - Phase = NextPhase; - } - - - FromFloatTo16(&Storage[Phase][0], Out, lut ->OutputChannels); -} - - - -// Does evaluate the LUT on cmsFloat32Number-basis. -static -void _LUTevalFloat(register const cmsFloat32Number In[], register cmsFloat32Number Out[], const void* D) -{ - cmsPipeline* lut = (cmsPipeline*) D; - cmsStage *mpe; - cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS] = {0.0f}; - int Phase = 0, NextPhase; - - memmove(&Storage[Phase][0], In, lut ->InputChannels * sizeof(cmsFloat32Number)); - - for (mpe = lut ->Elements; - mpe != NULL; - mpe = mpe ->Next) { - - NextPhase = Phase ^ 1; - mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe); - Phase = NextPhase; - } - - memmove(Out, &Storage[Phase][0], lut ->OutputChannels * sizeof(cmsFloat32Number)); -} - - - - -// LUT Creation & Destruction - -cmsPipeline* CMSEXPORT cmsPipelineAlloc(cmsContext ContextID, cmsUInt32Number InputChannels, cmsUInt32Number OutputChannels) -{ - cmsPipeline* NewLUT; - - // A value of zero in channels is allowed as placeholder - if (InputChannels >= cmsMAXCHANNELS || - OutputChannels >= cmsMAXCHANNELS) return NULL; - - NewLUT = (cmsPipeline*) _cmsMallocZero(ContextID, sizeof(cmsPipeline)); - if (NewLUT == NULL) return NULL; - - - NewLUT -> InputChannels = InputChannels; - NewLUT -> OutputChannels = OutputChannels; - - NewLUT ->Eval16Fn = _LUTeval16; - NewLUT ->EvalFloatFn = _LUTevalFloat; - NewLUT ->DupDataFn = NULL; - NewLUT ->FreeDataFn = NULL; - NewLUT ->Data = NewLUT; - NewLUT ->ContextID = ContextID; - - if (!BlessLUT(NewLUT)) - { - _cmsFree(ContextID, NewLUT); - return NULL; - } - - return NewLUT; -} - -cmsContext CMSEXPORT cmsGetPipelineContextID(const cmsPipeline* lut) -{ - _cmsAssert(lut != NULL); - return lut ->ContextID; -} - -cmsUInt32Number CMSEXPORT cmsPipelineInputChannels(const cmsPipeline* lut) -{ - _cmsAssert(lut != NULL); - return lut ->InputChannels; -} - -cmsUInt32Number CMSEXPORT cmsPipelineOutputChannels(const cmsPipeline* lut) -{ - _cmsAssert(lut != NULL); - return lut ->OutputChannels; -} - -// Free a profile elements LUT -void CMSEXPORT cmsPipelineFree(cmsPipeline* lut) -{ - cmsStage *mpe, *Next; - - if (lut == NULL) return; - - for (mpe = lut ->Elements; - mpe != NULL; - mpe = Next) { - - Next = mpe ->Next; - cmsStageFree(mpe); - } - - if (lut ->FreeDataFn) lut ->FreeDataFn(lut ->ContextID, lut ->Data); - - _cmsFree(lut ->ContextID, lut); -} - - -// Default to evaluate the LUT on 16 bit-basis. -void CMSEXPORT cmsPipelineEval16(const cmsUInt16Number In[], cmsUInt16Number Out[], const cmsPipeline* lut) -{ - _cmsAssert(lut != NULL); - lut ->Eval16Fn(In, Out, lut->Data); -} - - -// Does evaluate the LUT on cmsFloat32Number-basis. -void CMSEXPORT cmsPipelineEvalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsPipeline* lut) -{ - _cmsAssert(lut != NULL); - lut ->EvalFloatFn(In, Out, lut); -} - - - -// Duplicates a LUT -cmsPipeline* CMSEXPORT cmsPipelineDup(const cmsPipeline* lut) -{ - cmsPipeline* NewLUT; - cmsStage *NewMPE, *Anterior = NULL, *mpe; - cmsBool First = TRUE; - - if (lut == NULL) return NULL; - - NewLUT = cmsPipelineAlloc(lut ->ContextID, lut ->InputChannels, lut ->OutputChannels); - if (NewLUT == NULL) return NULL; - - for (mpe = lut ->Elements; - mpe != NULL; - mpe = mpe ->Next) { - - NewMPE = cmsStageDup(mpe); - - if (NewMPE == NULL) { - cmsPipelineFree(NewLUT); - return NULL; - } - - if (First) { - NewLUT ->Elements = NewMPE; - First = FALSE; - } - else { - Anterior ->Next = NewMPE; - } - - Anterior = NewMPE; - } - - NewLUT ->Eval16Fn = lut ->Eval16Fn; - NewLUT ->EvalFloatFn = lut ->EvalFloatFn; - NewLUT ->DupDataFn = lut ->DupDataFn; - NewLUT ->FreeDataFn = lut ->FreeDataFn; - - if (NewLUT ->DupDataFn != NULL) - NewLUT ->Data = NewLUT ->DupDataFn(lut ->ContextID, lut->Data); - - - NewLUT ->SaveAs8Bits = lut ->SaveAs8Bits; - - if (!BlessLUT(NewLUT)) - { - _cmsFree(lut->ContextID, NewLUT); - return NULL; - } - - return NewLUT; -} - - -int CMSEXPORT cmsPipelineInsertStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage* mpe) -{ - cmsStage* Anterior = NULL, *pt; - - if (lut == NULL || mpe == NULL) - return FALSE; - - switch (loc) { - - case cmsAT_BEGIN: - mpe ->Next = lut ->Elements; - lut ->Elements = mpe; - break; - - case cmsAT_END: - - if (lut ->Elements == NULL) - lut ->Elements = mpe; - else { - - for (pt = lut ->Elements; - pt != NULL; - pt = pt -> Next) Anterior = pt; - - Anterior ->Next = mpe; - mpe ->Next = NULL; - } - break; - default:; - return FALSE; - } - - return BlessLUT(lut); -} - -// Unlink an element and return the pointer to it -void CMSEXPORT cmsPipelineUnlinkStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage** mpe) -{ - cmsStage *Anterior, *pt, *Last; - cmsStage *Unlinked = NULL; - - - // If empty LUT, there is nothing to remove - if (lut ->Elements == NULL) { - if (mpe) *mpe = NULL; - return; - } - - // On depending on the strategy... - switch (loc) { - - case cmsAT_BEGIN: - { - cmsStage* elem = lut ->Elements; - - lut ->Elements = elem -> Next; - elem ->Next = NULL; - Unlinked = elem; - - } - break; - - case cmsAT_END: - Anterior = Last = NULL; - for (pt = lut ->Elements; - pt != NULL; - pt = pt -> Next) { - Anterior = Last; - Last = pt; - } - - Unlinked = Last; // Next already points to NULL - - // Truncate the chain - if (Anterior) - Anterior ->Next = NULL; - else - lut ->Elements = NULL; - break; - default:; - } - - if (mpe) - *mpe = Unlinked; - else - cmsStageFree(Unlinked); - - // May fail, but we ignore it - BlessLUT(lut); -} - - -// Concatenate two LUT into a new single one -cmsBool CMSEXPORT cmsPipelineCat(cmsPipeline* l1, const cmsPipeline* l2) -{ - cmsStage* mpe; - - // If both LUTS does not have elements, we need to inherit - // the number of channels - if (l1 ->Elements == NULL && l2 ->Elements == NULL) { - l1 ->InputChannels = l2 ->InputChannels; - l1 ->OutputChannels = l2 ->OutputChannels; - } - - // Cat second - for (mpe = l2 ->Elements; - mpe != NULL; - mpe = mpe ->Next) { - - // We have to dup each element - if (!cmsPipelineInsertStage(l1, cmsAT_END, cmsStageDup(mpe))) - return FALSE; - } - - return BlessLUT(l1); -} - - -cmsBool CMSEXPORT cmsPipelineSetSaveAs8bitsFlag(cmsPipeline* lut, cmsBool On) -{ - cmsBool Anterior = lut ->SaveAs8Bits; - - lut ->SaveAs8Bits = On; - return Anterior; -} - - -cmsStage* CMSEXPORT cmsPipelineGetPtrToFirstStage(const cmsPipeline* lut) -{ - return lut ->Elements; -} - -cmsStage* CMSEXPORT cmsPipelineGetPtrToLastStage(const cmsPipeline* lut) -{ - cmsStage *mpe, *Anterior = NULL; - - for (mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next) - Anterior = mpe; - - return Anterior; -} - -cmsUInt32Number CMSEXPORT cmsPipelineStageCount(const cmsPipeline* lut) -{ - cmsStage *mpe; - cmsUInt32Number n; - - for (n=0, mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next) - n++; - - return n; -} - -// This function may be used to set the optional evaluator and a block of private data. If private data is being used, an optional -// duplicator and free functions should also be specified in order to duplicate the LUT construct. Use NULL to inhibit such functionality. -void CMSEXPORT _cmsPipelineSetOptimizationParameters(cmsPipeline* Lut, - _cmsOPTeval16Fn Eval16, - void* PrivateData, - _cmsFreeUserDataFn FreePrivateDataFn, - _cmsDupUserDataFn DupPrivateDataFn) -{ - - Lut ->Eval16Fn = Eval16; - Lut ->DupDataFn = DupPrivateDataFn; - Lut ->FreeDataFn = FreePrivateDataFn; - Lut ->Data = PrivateData; -} - - -// ----------------------------------------------------------- Reverse interpolation -// Here's how it goes. The derivative Df(x) of the function f is the linear -// transformation that best approximates f near the point x. It can be represented -// by a matrix A whose entries are the partial derivatives of the components of f -// with respect to all the coordinates. This is know as the Jacobian -// -// The best linear approximation to f is given by the matrix equation: -// -// y-y0 = A (x-x0) -// -// So, if x0 is a good "guess" for the zero of f, then solving for the zero of this -// linear approximation will give a "better guess" for the zero of f. Thus let y=0, -// and since y0=f(x0) one can solve the above equation for x. This leads to the -// Newton's method formula: -// -// xn+1 = xn - A-1 f(xn) -// -// where xn+1 denotes the (n+1)-st guess, obtained from the n-th guess xn in the -// fashion described above. Iterating this will give better and better approximations -// if you have a "good enough" initial guess. - - -#define JACOBIAN_EPSILON 0.001f -#define INVERSION_MAX_ITERATIONS 30 - -// Increment with reflexion on boundary -static -void IncDelta(cmsFloat32Number *Val) -{ - if (*Val < (1.0 - JACOBIAN_EPSILON)) - - *Val += JACOBIAN_EPSILON; - - else - *Val -= JACOBIAN_EPSILON; - -} - - - -// Euclidean distance between two vectors of n elements each one -static -cmsFloat32Number EuclideanDistance(cmsFloat32Number a[], cmsFloat32Number b[], int n) -{ - cmsFloat32Number sum = 0; - int i; - - for (i=0; i < n; i++) { - cmsFloat32Number dif = b[i] - a[i]; - sum += dif * dif; - } - - return sqrtf(sum); -} - - -// Evaluate a LUT in reverse direction. It only searches on 3->3 LUT. Uses Newton method -// -// x1 <- x - [J(x)]^-1 * f(x) -// -// lut: The LUT on where to do the search -// Target: LabK, 3 values of Lab plus destination K which is fixed -// Result: The obtained CMYK -// Hint: Location where begin the search - -cmsBool CMSEXPORT cmsPipelineEvalReverseFloat(cmsFloat32Number Target[], - cmsFloat32Number Result[], - cmsFloat32Number Hint[], - const cmsPipeline* lut) -{ - cmsUInt32Number i, j; - cmsFloat64Number error, LastError = 1E20; - cmsFloat32Number fx[4], x[4], xd[4], fxd[4]; - cmsVEC3 tmp, tmp2; - cmsMAT3 Jacobian; - - // Only 3->3 and 4->3 are supported - if (lut ->InputChannels != 3 && lut ->InputChannels != 4) return FALSE; - if (lut ->OutputChannels != 3) return FALSE; - - // Take the hint as starting point if specified - if (Hint == NULL) { - - // Begin at any point, we choose 1/3 of CMY axis - x[0] = x[1] = x[2] = 0.3f; - } - else { - - // Only copy 3 channels from hint... - for (j=0; j < 3; j++) - x[j] = Hint[j]; - } - - // If Lut is 4-dimensions, then grab target[3], which is fixed - if (lut ->InputChannels == 4) { - x[3] = Target[3]; - } - else x[3] = 0; // To keep lint happy - - - // Iterate - for (i = 0; i < INVERSION_MAX_ITERATIONS; i++) { - - // Get beginning fx - cmsPipelineEvalFloat(x, fx, lut); - - // Compute error - error = EuclideanDistance(fx, Target, 3); - - // If not convergent, return last safe value - if (error >= LastError) - break; - - // Keep latest values - LastError = error; - for (j=0; j < lut ->InputChannels; j++) - Result[j] = x[j]; - - // Found an exact match? - if (error <= 0) - break; - - // Obtain slope (the Jacobian) - for (j = 0; j < 3; j++) { - - xd[0] = x[0]; - xd[1] = x[1]; - xd[2] = x[2]; - xd[3] = x[3]; // Keep fixed channel - - IncDelta(&xd[j]); - - cmsPipelineEvalFloat(xd, fxd, lut); - - Jacobian.v[0].n[j] = ((fxd[0] - fx[0]) / JACOBIAN_EPSILON); - Jacobian.v[1].n[j] = ((fxd[1] - fx[1]) / JACOBIAN_EPSILON); - Jacobian.v[2].n[j] = ((fxd[2] - fx[2]) / JACOBIAN_EPSILON); - } - - // Solve system - tmp2.n[0] = fx[0] - Target[0]; - tmp2.n[1] = fx[1] - Target[1]; - tmp2.n[2] = fx[2] - Target[2]; - - if (!_cmsMAT3solve(&tmp, &Jacobian, &tmp2)) - return FALSE; - - // Move our guess - x[0] -= (cmsFloat32Number) tmp.n[0]; - x[1] -= (cmsFloat32Number) tmp.n[1]; - x[2] -= (cmsFloat32Number) tmp.n[2]; - - // Some clipping.... - for (j=0; j < 3; j++) { - if (x[j] < 0) x[j] = 0; - else - if (x[j] > 1.0) x[j] = 1.0; - } - } - - return TRUE; -} |