diff options
Diffstat (limited to 'third_party/lcms2-2.6/src/cmswtpnt.c')
-rw-r--r-- | third_party/lcms2-2.6/src/cmswtpnt.c | 349 |
1 files changed, 0 insertions, 349 deletions
diff --git a/third_party/lcms2-2.6/src/cmswtpnt.c b/third_party/lcms2-2.6/src/cmswtpnt.c deleted file mode 100644 index 903fdd7497..0000000000 --- a/third_party/lcms2-2.6/src/cmswtpnt.c +++ /dev/null @@ -1,349 +0,0 @@ -//--------------------------------------------------------------------------------- -// -// Little Color Management System -// Copyright (c) 1998-2014 Marti Maria Saguer -// -// Permission is hereby granted, free of charge, to any person obtaining -// a copy of this software and associated documentation files (the "Software"), -// to deal in the Software without restriction, including without limitation -// the rights to use, copy, modify, merge, publish, distribute, sublicense, -// and/or sell copies of the Software, and to permit persons to whom the Software -// is furnished to do so, subject to the following conditions: -// -// The above copyright notice and this permission notice shall be included in -// all copies or substantial portions of the Software. -// -// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO -// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE -// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION -// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION -// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -// -//--------------------------------------------------------------------------------- -// - -#include "lcms2_internal.h" - - -// D50 - Widely used -const cmsCIEXYZ* CMSEXPORT cmsD50_XYZ(void) -{ - static cmsCIEXYZ D50XYZ = {cmsD50X, cmsD50Y, cmsD50Z}; - - return &D50XYZ; -} - -const cmsCIExyY* CMSEXPORT cmsD50_xyY(void) -{ - static cmsCIExyY D50xyY; - - cmsXYZ2xyY(&D50xyY, cmsD50_XYZ()); - - return &D50xyY; -} - -// Obtains WhitePoint from Temperature -cmsBool CMSEXPORT cmsWhitePointFromTemp(cmsCIExyY* WhitePoint, cmsFloat64Number TempK) -{ - cmsFloat64Number x, y; - cmsFloat64Number T, T2, T3; - // cmsFloat64Number M1, M2; - - _cmsAssert(WhitePoint != NULL); - - T = TempK; - T2 = T*T; // Square - T3 = T2*T; // Cube - - // For correlated color temperature (T) between 4000K and 7000K: - - if (T >= 4000. && T <= 7000.) - { - x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063; - } - else - // or for correlated color temperature (T) between 7000K and 25000K: - - if (T > 7000.0 && T <= 25000.0) - { - x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040; - } - else { - cmsSignalError(0, cmsERROR_RANGE, "cmsWhitePointFromTemp: invalid temp"); - return FALSE; - } - - // Obtain y(x) - - y = -3.000*(x*x) + 2.870*x - 0.275; - - // wave factors (not used, but here for futures extensions) - - // M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y); - // M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y); - - WhitePoint -> x = x; - WhitePoint -> y = y; - WhitePoint -> Y = 1.0; - - return TRUE; -} - - - -typedef struct { - - cmsFloat64Number mirek; // temp (in microreciprocal kelvin) - cmsFloat64Number ut; // u coord of intersection w/ blackbody locus - cmsFloat64Number vt; // v coord of intersection w/ blackbody locus - cmsFloat64Number tt; // slope of ISOTEMPERATURE. line - - } ISOTEMPERATURE; - -static ISOTEMPERATURE isotempdata[] = { -// {Mirek, Ut, Vt, Tt } - {0, 0.18006, 0.26352, -0.24341}, - {10, 0.18066, 0.26589, -0.25479}, - {20, 0.18133, 0.26846, -0.26876}, - {30, 0.18208, 0.27119, -0.28539}, - {40, 0.18293, 0.27407, -0.30470}, - {50, 0.18388, 0.27709, -0.32675}, - {60, 0.18494, 0.28021, -0.35156}, - {70, 0.18611, 0.28342, -0.37915}, - {80, 0.18740, 0.28668, -0.40955}, - {90, 0.18880, 0.28997, -0.44278}, - {100, 0.19032, 0.29326, -0.47888}, - {125, 0.19462, 0.30141, -0.58204}, - {150, 0.19962, 0.30921, -0.70471}, - {175, 0.20525, 0.31647, -0.84901}, - {200, 0.21142, 0.32312, -1.0182 }, - {225, 0.21807, 0.32909, -1.2168 }, - {250, 0.22511, 0.33439, -1.4512 }, - {275, 0.23247, 0.33904, -1.7298 }, - {300, 0.24010, 0.34308, -2.0637 }, - {325, 0.24702, 0.34655, -2.4681 }, - {350, 0.25591, 0.34951, -2.9641 }, - {375, 0.26400, 0.35200, -3.5814 }, - {400, 0.27218, 0.35407, -4.3633 }, - {425, 0.28039, 0.35577, -5.3762 }, - {450, 0.28863, 0.35714, -6.7262 }, - {475, 0.29685, 0.35823, -8.5955 }, - {500, 0.30505, 0.35907, -11.324 }, - {525, 0.31320, 0.35968, -15.628 }, - {550, 0.32129, 0.36011, -23.325 }, - {575, 0.32931, 0.36038, -40.770 }, - {600, 0.33724, 0.36051, -116.45 } -}; - -#define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE) - - -// Robertson's method -cmsBool CMSEXPORT cmsTempFromWhitePoint(cmsFloat64Number* TempK, const cmsCIExyY* WhitePoint) -{ - cmsUInt32Number j; - cmsFloat64Number us,vs; - cmsFloat64Number uj,vj,tj,di,dj,mi,mj; - cmsFloat64Number xs, ys; - - _cmsAssert(WhitePoint != NULL); - _cmsAssert(TempK != NULL); - - di = mi = 0; - xs = WhitePoint -> x; - ys = WhitePoint -> y; - - // convert (x,y) to CIE 1960 (u,WhitePoint) - - us = (2*xs) / (-xs + 6*ys + 1.5); - vs = (3*ys) / (-xs + 6*ys + 1.5); - - - for (j=0; j < NISO; j++) { - - uj = isotempdata[j].ut; - vj = isotempdata[j].vt; - tj = isotempdata[j].tt; - mj = isotempdata[j].mirek; - - dj = ((vs - vj) - tj * (us - uj)) / sqrt(1.0 + tj * tj); - - if ((j != 0) && (di/dj < 0.0)) { - - // Found a match - *TempK = 1000000.0 / (mi + (di / (di - dj)) * (mj - mi)); - return TRUE; - } - - di = dj; - mi = mj; - } - - // Not found - return FALSE; -} - - -// Compute chromatic adaptation matrix using Chad as cone matrix - -static -cmsBool ComputeChromaticAdaptation(cmsMAT3* Conversion, - const cmsCIEXYZ* SourceWhitePoint, - const cmsCIEXYZ* DestWhitePoint, - const cmsMAT3* Chad) - -{ - - cmsMAT3 Chad_Inv; - cmsVEC3 ConeSourceXYZ, ConeSourceRGB; - cmsVEC3 ConeDestXYZ, ConeDestRGB; - cmsMAT3 Cone, Tmp; - - - Tmp = *Chad; - if (!_cmsMAT3inverse(&Tmp, &Chad_Inv)) return FALSE; - - _cmsVEC3init(&ConeSourceXYZ, SourceWhitePoint -> X, - SourceWhitePoint -> Y, - SourceWhitePoint -> Z); - - _cmsVEC3init(&ConeDestXYZ, DestWhitePoint -> X, - DestWhitePoint -> Y, - DestWhitePoint -> Z); - - _cmsMAT3eval(&ConeSourceRGB, Chad, &ConeSourceXYZ); - _cmsMAT3eval(&ConeDestRGB, Chad, &ConeDestXYZ); - - // Build matrix - _cmsVEC3init(&Cone.v[0], ConeDestRGB.n[0]/ConeSourceRGB.n[0], 0.0, 0.0); - _cmsVEC3init(&Cone.v[1], 0.0, ConeDestRGB.n[1]/ConeSourceRGB.n[1], 0.0); - _cmsVEC3init(&Cone.v[2], 0.0, 0.0, ConeDestRGB.n[2]/ConeSourceRGB.n[2]); - - - // Normalize - _cmsMAT3per(&Tmp, &Cone, Chad); - _cmsMAT3per(Conversion, &Chad_Inv, &Tmp); - - return TRUE; -} - -// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll -// The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed -cmsBool _cmsAdaptationMatrix(cmsMAT3* r, const cmsMAT3* ConeMatrix, const cmsCIEXYZ* FromIll, const cmsCIEXYZ* ToIll) -{ - cmsMAT3 LamRigg = {{ // Bradford matrix - {{ 0.8951, 0.2664, -0.1614 }}, - {{ -0.7502, 1.7135, 0.0367 }}, - {{ 0.0389, -0.0685, 1.0296 }} - }}; - - if (ConeMatrix == NULL) - ConeMatrix = &LamRigg; - - return ComputeChromaticAdaptation(r, FromIll, ToIll, ConeMatrix); -} - -// Same as anterior, but assuming D50 destination. White point is given in xyY -static -cmsBool _cmsAdaptMatrixToD50(cmsMAT3* r, const cmsCIExyY* SourceWhitePt) -{ - cmsCIEXYZ Dn; - cmsMAT3 Bradford; - cmsMAT3 Tmp; - - cmsxyY2XYZ(&Dn, SourceWhitePt); - - if (!_cmsAdaptationMatrix(&Bradford, NULL, &Dn, cmsD50_XYZ())) return FALSE; - - Tmp = *r; - _cmsMAT3per(r, &Bradford, &Tmp); - - return TRUE; -} - -// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ -// This is just an approximation, I am not handling all the non-linear -// aspects of the RGB to XYZ process, and assumming that the gamma correction -// has transitive property in the tranformation chain. -// -// the alghoritm: -// -// - First I build the absolute conversion matrix using -// primaries in XYZ. This matrix is next inverted -// - Then I eval the source white point across this matrix -// obtaining the coeficients of the transformation -// - Then, I apply these coeficients to the original matrix -// -cmsBool _cmsBuildRGB2XYZtransferMatrix(cmsMAT3* r, const cmsCIExyY* WhitePt, const cmsCIExyYTRIPLE* Primrs) -{ - cmsVEC3 WhitePoint, Coef; - cmsMAT3 Result, Primaries; - cmsFloat64Number xn, yn; - cmsFloat64Number xr, yr; - cmsFloat64Number xg, yg; - cmsFloat64Number xb, yb; - - xn = WhitePt -> x; - yn = WhitePt -> y; - xr = Primrs -> Red.x; - yr = Primrs -> Red.y; - xg = Primrs -> Green.x; - yg = Primrs -> Green.y; - xb = Primrs -> Blue.x; - yb = Primrs -> Blue.y; - - // Build Primaries matrix - _cmsVEC3init(&Primaries.v[0], xr, xg, xb); - _cmsVEC3init(&Primaries.v[1], yr, yg, yb); - _cmsVEC3init(&Primaries.v[2], (1-xr-yr), (1-xg-yg), (1-xb-yb)); - - - // Result = Primaries ^ (-1) inverse matrix - if (!_cmsMAT3inverse(&Primaries, &Result)) - return FALSE; - - - _cmsVEC3init(&WhitePoint, xn/yn, 1.0, (1.0-xn-yn)/yn); - - // Across inverse primaries ... - _cmsMAT3eval(&Coef, &Result, &WhitePoint); - - // Give us the Coefs, then I build transformation matrix - _cmsVEC3init(&r -> v[0], Coef.n[VX]*xr, Coef.n[VY]*xg, Coef.n[VZ]*xb); - _cmsVEC3init(&r -> v[1], Coef.n[VX]*yr, Coef.n[VY]*yg, Coef.n[VZ]*yb); - _cmsVEC3init(&r -> v[2], Coef.n[VX]*(1.0-xr-yr), Coef.n[VY]*(1.0-xg-yg), Coef.n[VZ]*(1.0-xb-yb)); - - - return _cmsAdaptMatrixToD50(r, WhitePt); - -} - - -// Adapts a color to a given illuminant. Original color is expected to have -// a SourceWhitePt white point. -cmsBool CMSEXPORT cmsAdaptToIlluminant(cmsCIEXYZ* Result, - const cmsCIEXYZ* SourceWhitePt, - const cmsCIEXYZ* Illuminant, - const cmsCIEXYZ* Value) -{ - cmsMAT3 Bradford; - cmsVEC3 In, Out; - - _cmsAssert(Result != NULL); - _cmsAssert(SourceWhitePt != NULL); - _cmsAssert(Illuminant != NULL); - _cmsAssert(Value != NULL); - - if (!_cmsAdaptationMatrix(&Bradford, NULL, SourceWhitePt, Illuminant)) return FALSE; - - _cmsVEC3init(&In, Value -> X, Value -> Y, Value -> Z); - _cmsMAT3eval(&Out, &Bradford, &In); - - Result -> X = Out.n[0]; - Result -> Y = Out.n[1]; - Result -> Z = Out.n[2]; - - return TRUE; -} |