diff options
Diffstat (limited to 'third_party/libpng16/intel')
-rw-r--r-- | third_party/libpng16/intel/filter_sse2_intrinsics.c | 406 | ||||
-rw-r--r-- | third_party/libpng16/intel/intel_init.c | 53 |
2 files changed, 0 insertions, 459 deletions
diff --git a/third_party/libpng16/intel/filter_sse2_intrinsics.c b/third_party/libpng16/intel/filter_sse2_intrinsics.c deleted file mode 100644 index 7a7d426960..0000000000 --- a/third_party/libpng16/intel/filter_sse2_intrinsics.c +++ /dev/null @@ -1,406 +0,0 @@ - -/* filter_sse2_intrinsics.c - SSE2 optimized filter functions - * - * Copyright (c) 2016-2017 Glenn Randers-Pehrson - * Written by Mike Klein and Matt Sarett - * Derived from arm/filter_neon_intrinsics.c - * - * Last changed in libpng 1.6.31 [July 27, 2017] - * - * This code is released under the libpng license. - * For conditions of distribution and use, see the disclaimer - * and license in png.h - */ - -#include "../pngpriv.h" - -#ifdef PNG_READ_SUPPORTED - -#if PNG_INTEL_SSE_IMPLEMENTATION > 0 - -#include <immintrin.h> - -/* Functions in this file look at most 3 pixels (a,b,c) to predict the 4th (d). - * They're positioned like this: - * prev: c b - * row: a d - * The Sub filter predicts d=a, Avg d=(a+b)/2, and Paeth predicts d to be - * whichever of a, b, or c is closest to p=a+b-c. - */ - -static __m128i load4(const void* p) { - return _mm_cvtsi32_si128(*(const int*)p); -} - -static void store4(void* p, __m128i v) { - *(int*)p = _mm_cvtsi128_si32(v); -} - -static __m128i load3(const void* p) { - /* We'll load 2 bytes, then 1 byte, - * then mask them together, and finally load into SSE. - */ - const png_uint_16* p01 = (png_const_uint_16p)p; - const png_byte* p2 = (const png_byte*)(p01+1); - - png_uint_32 v012 = (png_uint_32)(*p01) - | (png_uint_32)(*p2) << 16; - return load4(&v012); -} - -static void store3(void* p, __m128i v) { - /* We'll pull from SSE as a 32-bit int, then write - * its bottom two bytes, then its third byte. - */ - png_uint_32 v012; - png_uint_16* p01; - png_byte* p2; - - store4(&v012, v); - - p01 = (png_uint_16p)p; - p2 = (png_byte*)(p01+1); - *p01 = (png_uint_16)v012; - *p2 = (png_byte)(v012 >> 16); -} - -void png_read_filter_row_sub3_sse2(png_row_infop row_info, png_bytep row, - png_const_bytep prev) -{ - /* The Sub filter predicts each pixel as the previous pixel, a. - * There is no pixel to the left of the first pixel. It's encoded directly. - * That works with our main loop if we just say that left pixel was zero. - */ - png_size_t rb; - - __m128i a, d = _mm_setzero_si128(); - - png_debug(1, "in png_read_filter_row_sub3_sse2"); - - rb = row_info->rowbytes; - while (rb >= 4) { - a = d; d = load4(row); - d = _mm_add_epi8(d, a); - store3(row, d); - - row += 3; - rb -= 3; - } - if (rb > 0) { - a = d; d = load3(row); - d = _mm_add_epi8(d, a); - store3(row, d); - - row += 3; - rb -= 3; - } - PNG_UNUSED(prev) -} - -void png_read_filter_row_sub4_sse2(png_row_infop row_info, png_bytep row, - png_const_bytep prev) -{ - /* The Sub filter predicts each pixel as the previous pixel, a. - * There is no pixel to the left of the first pixel. It's encoded directly. - * That works with our main loop if we just say that left pixel was zero. - */ - png_size_t rb; - - __m128i a, d = _mm_setzero_si128(); - - png_debug(1, "in png_read_filter_row_sub4_sse2"); - - rb = row_info->rowbytes+4; - while (rb > 4) { - a = d; d = load4(row); - d = _mm_add_epi8(d, a); - store4(row, d); - - row += 4; - rb -= 4; - } - PNG_UNUSED(prev) -} - -void png_read_filter_row_avg3_sse2(png_row_infop row_info, png_bytep row, - png_const_bytep prev) -{ - /* The Avg filter predicts each pixel as the (truncated) average of a and b. - * There's no pixel to the left of the first pixel. Luckily, it's - * predicted to be half of the pixel above it. So again, this works - * perfectly with our loop if we make sure a starts at zero. - */ - - png_size_t rb; - - const __m128i zero = _mm_setzero_si128(); - - __m128i b; - __m128i a, d = zero; - - png_debug(1, "in png_read_filter_row_avg3_sse2"); - rb = row_info->rowbytes; - while (rb >= 4) { - __m128i avg; - b = load4(prev); - a = d; d = load4(row ); - - /* PNG requires a truncating average, so we can't just use _mm_avg_epu8 */ - avg = _mm_avg_epu8(a,b); - /* ...but we can fix it up by subtracting off 1 if it rounded up. */ - avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), - _mm_set1_epi8(1))); - d = _mm_add_epi8(d, avg); - store3(row, d); - - prev += 3; - row += 3; - rb -= 3; - } - if (rb > 0) { - __m128i avg; - b = load3(prev); - a = d; d = load3(row ); - - /* PNG requires a truncating average, so we can't just use _mm_avg_epu8 */ - avg = _mm_avg_epu8(a,b); - /* ...but we can fix it up by subtracting off 1 if it rounded up. */ - avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), - _mm_set1_epi8(1))); - - d = _mm_add_epi8(d, avg); - store3(row, d); - - prev += 3; - row += 3; - rb -= 3; - } -} - -void png_read_filter_row_avg4_sse2(png_row_infop row_info, png_bytep row, - png_const_bytep prev) -{ - /* The Avg filter predicts each pixel as the (truncated) average of a and b. - * There's no pixel to the left of the first pixel. Luckily, it's - * predicted to be half of the pixel above it. So again, this works - * perfectly with our loop if we make sure a starts at zero. - */ - png_size_t rb; - const __m128i zero = _mm_setzero_si128(); - __m128i b; - __m128i a, d = zero; - - png_debug(1, "in png_read_filter_row_avg4_sse2"); - - rb = row_info->rowbytes+4; - while (rb > 4) { - __m128i avg; - b = load4(prev); - a = d; d = load4(row ); - - /* PNG requires a truncating average, so we can't just use _mm_avg_epu8 */ - avg = _mm_avg_epu8(a,b); - /* ...but we can fix it up by subtracting off 1 if it rounded up. */ - avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), - _mm_set1_epi8(1))); - - d = _mm_add_epi8(d, avg); - store4(row, d); - - prev += 4; - row += 4; - rb -= 4; - } -} - -/* Returns |x| for 16-bit lanes. */ -static __m128i abs_i16(__m128i x) { -#if PNG_INTEL_SSE_IMPLEMENTATION >= 2 - return _mm_abs_epi16(x); -#else - /* Read this all as, return x<0 ? -x : x. - * To negate two's complement, you flip all the bits then add 1. - */ - __m128i is_negative = _mm_cmplt_epi16(x, _mm_setzero_si128()); - - /* Flip negative lanes. */ - x = _mm_xor_si128(x, is_negative); - - /* +1 to negative lanes, else +0. */ - x = _mm_sub_epi16(x, is_negative); - return x; -#endif -} - -/* Bytewise c ? t : e. */ -static __m128i if_then_else(__m128i c, __m128i t, __m128i e) { -#if PNG_INTEL_SSE_IMPLEMENTATION >= 3 - return _mm_blendv_epi8(e,t,c); -#else - return _mm_or_si128(_mm_and_si128(c, t), _mm_andnot_si128(c, e)); -#endif -} - -void png_read_filter_row_paeth3_sse2(png_row_infop row_info, png_bytep row, - png_const_bytep prev) -{ - /* Paeth tries to predict pixel d using the pixel to the left of it, a, - * and two pixels from the previous row, b and c: - * prev: c b - * row: a d - * The Paeth function predicts d to be whichever of a, b, or c is nearest to - * p=a+b-c. - * - * The first pixel has no left context, and so uses an Up filter, p = b. - * This works naturally with our main loop's p = a+b-c if we force a and c - * to zero. - * Here we zero b and d, which become c and a respectively at the start of - * the loop. - */ - png_size_t rb; - const __m128i zero = _mm_setzero_si128(); - __m128i c, b = zero, - a, d = zero; - - png_debug(1, "in png_read_filter_row_paeth3_sse2"); - - rb = row_info->rowbytes; - while (rb >= 4) { - /* It's easiest to do this math (particularly, deal with pc) with 16-bit - * intermediates. - */ - __m128i pa,pb,pc,smallest,nearest; - c = b; b = _mm_unpacklo_epi8(load4(prev), zero); - a = d; d = _mm_unpacklo_epi8(load4(row ), zero); - - /* (p-a) == (a+b-c - a) == (b-c) */ - - pa = _mm_sub_epi16(b,c); - - /* (p-b) == (a+b-c - b) == (a-c) */ - pb = _mm_sub_epi16(a,c); - - /* (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) */ - pc = _mm_add_epi16(pa,pb); - - pa = abs_i16(pa); /* |p-a| */ - pb = abs_i16(pb); /* |p-b| */ - pc = abs_i16(pc); /* |p-c| */ - - smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); - - /* Paeth breaks ties favoring a over b over c. */ - nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, - if_then_else(_mm_cmpeq_epi16(smallest, pb), b, - c)); - - /* Note `_epi8`: we need addition to wrap modulo 255. */ - d = _mm_add_epi8(d, nearest); - store3(row, _mm_packus_epi16(d,d)); - - prev += 3; - row += 3; - rb -= 3; - } - if (rb > 0) { - /* It's easiest to do this math (particularly, deal with pc) with 16-bit - * intermediates. - */ - __m128i pa,pb,pc,smallest,nearest; - c = b; b = _mm_unpacklo_epi8(load3(prev), zero); - a = d; d = _mm_unpacklo_epi8(load3(row ), zero); - - /* (p-a) == (a+b-c - a) == (b-c) */ - pa = _mm_sub_epi16(b,c); - - /* (p-b) == (a+b-c - b) == (a-c) */ - pb = _mm_sub_epi16(a,c); - - /* (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) */ - pc = _mm_add_epi16(pa,pb); - - pa = abs_i16(pa); /* |p-a| */ - pb = abs_i16(pb); /* |p-b| */ - pc = abs_i16(pc); /* |p-c| */ - - smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); - - /* Paeth breaks ties favoring a over b over c. */ - nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, - if_then_else(_mm_cmpeq_epi16(smallest, pb), b, - c)); - - /* Note `_epi8`: we need addition to wrap modulo 255. */ - d = _mm_add_epi8(d, nearest); - store3(row, _mm_packus_epi16(d,d)); - - prev += 3; - row += 3; - rb -= 3; - } -} - -void png_read_filter_row_paeth4_sse2(png_row_infop row_info, png_bytep row, - png_const_bytep prev) -{ - /* Paeth tries to predict pixel d using the pixel to the left of it, a, - * and two pixels from the previous row, b and c: - * prev: c b - * row: a d - * The Paeth function predicts d to be whichever of a, b, or c is nearest to - * p=a+b-c. - * - * The first pixel has no left context, and so uses an Up filter, p = b. - * This works naturally with our main loop's p = a+b-c if we force a and c - * to zero. - * Here we zero b and d, which become c and a respectively at the start of - * the loop. - */ - png_size_t rb; - const __m128i zero = _mm_setzero_si128(); - __m128i pa,pb,pc,smallest,nearest; - __m128i c, b = zero, - a, d = zero; - - png_debug(1, "in png_read_filter_row_paeth4_sse2"); - - rb = row_info->rowbytes+4; - while (rb > 4) { - /* It's easiest to do this math (particularly, deal with pc) with 16-bit - * intermediates. - */ - c = b; b = _mm_unpacklo_epi8(load4(prev), zero); - a = d; d = _mm_unpacklo_epi8(load4(row ), zero); - - /* (p-a) == (a+b-c - a) == (b-c) */ - pa = _mm_sub_epi16(b,c); - - /* (p-b) == (a+b-c - b) == (a-c) */ - pb = _mm_sub_epi16(a,c); - - /* (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c) */ - pc = _mm_add_epi16(pa,pb); - - pa = abs_i16(pa); /* |p-a| */ - pb = abs_i16(pb); /* |p-b| */ - pc = abs_i16(pc); /* |p-c| */ - - smallest = _mm_min_epi16(pc, _mm_min_epi16(pa, pb)); - - /* Paeth breaks ties favoring a over b over c. */ - nearest = if_then_else(_mm_cmpeq_epi16(smallest, pa), a, - if_then_else(_mm_cmpeq_epi16(smallest, pb), b, - c)); - - /* Note `_epi8`: we need addition to wrap modulo 255. */ - d = _mm_add_epi8(d, nearest); - store4(row, _mm_packus_epi16(d,d)); - - prev += 4; - row += 4; - rb -= 4; - } -} - -#endif /* PNG_INTEL_SSE_IMPLEMENTATION > 0 */ -#endif /* READ */ diff --git a/third_party/libpng16/intel/intel_init.c b/third_party/libpng16/intel/intel_init.c deleted file mode 100644 index 8f08baf8c5..0000000000 --- a/third_party/libpng16/intel/intel_init.c +++ /dev/null @@ -1,53 +0,0 @@ - -/* intel_init.c - SSE2 optimized filter functions - * - * Copyright (c) 2016-2017 Glenn Randers-Pehrson - * Written by Mike Klein and Matt Sarett, Google, Inc. - * Derived from arm/arm_init.c - * - * Last changed in libpng 1.6.29 [March 16, 2017] - * - * This code is released under the libpng license. - * For conditions of distribution and use, see the disclaimer - * and license in png.h - */ - -#include "../pngpriv.h" - -#ifdef PNG_READ_SUPPORTED -#if PNG_INTEL_SSE_IMPLEMENTATION > 0 - -void -png_init_filter_functions_sse2(png_structp pp, unsigned int bpp) -{ - /* The techniques used to implement each of these filters in SSE operate on - * one pixel at a time. - * So they generally speed up 3bpp images about 3x, 4bpp images about 4x. - * They can scale up to 6 and 8 bpp images and down to 2 bpp images, - * but they'd not likely have any benefit for 1bpp images. - * Most of these can be implemented using only MMX and 64-bit registers, - * but they end up a bit slower than using the equally-ubiquitous SSE2. - */ - png_debug(1, "in png_init_filter_functions_sse2"); - if (bpp == 3) - { - pp->read_filter[PNG_FILTER_VALUE_SUB-1] = png_read_filter_row_sub3_sse2; - pp->read_filter[PNG_FILTER_VALUE_AVG-1] = png_read_filter_row_avg3_sse2; - pp->read_filter[PNG_FILTER_VALUE_PAETH-1] = - png_read_filter_row_paeth3_sse2; - } - else if (bpp == 4) - { - pp->read_filter[PNG_FILTER_VALUE_SUB-1] = png_read_filter_row_sub4_sse2; - pp->read_filter[PNG_FILTER_VALUE_AVG-1] = png_read_filter_row_avg4_sse2; - pp->read_filter[PNG_FILTER_VALUE_PAETH-1] = - png_read_filter_row_paeth4_sse2; - } - - /* No need optimize PNG_FILTER_VALUE_UP. The compiler should - * autovectorize. - */ -} - -#endif /* PNG_INTEL_SSE_IMPLEMENTATION > 0 */ -#endif /* PNG_READ_SUPPORTED */ |