diff options
Diffstat (limited to 'third_party')
-rw-r--r-- | third_party/base/nonstd_unique_ptr.h | 321 | ||||
-rw-r--r-- | third_party/base/nonstd_unique_ptr_unittest.cpp | 303 | ||||
-rw-r--r-- | third_party/base/template_util.h | 46 |
3 files changed, 574 insertions, 96 deletions
diff --git a/third_party/base/nonstd_unique_ptr.h b/third_party/base/nonstd_unique_ptr.h index d666e1eeb2..f519b345b1 100644 --- a/third_party/base/nonstd_unique_ptr.h +++ b/third_party/base/nonstd_unique_ptr.h @@ -73,6 +73,10 @@ #include <stddef.h> #include <stdlib.h> +#include <ostream> + +#include "template_util.h" + namespace nonstd { // Replacement for move, but doesn't allow things that are already @@ -82,47 +86,114 @@ T&& move(T& t) { return static_cast<T&&>(t); } +// Function object which deletes its parameter, which must be a pointer. +// If C is an array type, invokes 'delete[]' on the parameter; otherwise, +// invokes 'delete'. The default deleter for unique_ptr<T>. +template <class T> +struct DefaultDeleter { + DefaultDeleter() {} + template <typename U> + DefaultDeleter(const DefaultDeleter<U>& other) { + // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor + // if U* is implicitly convertible to T* and U is not an array type. + // + // Correct implementation should use SFINAE to disable this + // constructor. However, since there are no other 1-argument constructors, + // using a static_assert() based on is_convertible<> and requiring + // complete types is simpler and will cause compile failures for equivalent + // misuses. + // + // Note, the is_convertible<U*, T*> check also ensures that U is not an + // array. T is guaranteed to be a non-array, so any U* where U is an array + // cannot convert to T*. + enum { T_must_be_complete = sizeof(T) }; + enum { U_must_be_complete = sizeof(U) }; + static_assert((pdfium::base::is_convertible<U*, T*>::value), + "U_ptr_must_implicitly_convert_to_T_ptr"); + } + inline void operator()(T* ptr) const { + enum { type_must_be_complete = sizeof(T) }; + delete ptr; + } +}; + +// Specialization of DefaultDeleter for array types. +template <class T> +struct DefaultDeleter<T[]> { + inline void operator()(T* ptr) const { + enum { type_must_be_complete = sizeof(T) }; + delete[] ptr; + } + + private: + // Disable this operator for any U != T because it is undefined to execute + // an array delete when the static type of the array mismatches the dynamic + // type. + // + // References: + // C++98 [expr.delete]p3 + // http://cplusplus.github.com/LWG/lwg-defects.html#938 + template <typename U> + void operator()(U* array) const; +}; + +template <class T, int n> +struct DefaultDeleter<T[n]> { + // Never allow someone to declare something like unique_ptr<int[10]>. + static_assert(sizeof(T) == -1, "do_not_use_array_with_size_as_type"); +}; + +namespace internal { + // Common implementation for both pointers to elements and pointers to // arrays. These are differentiated below based on the need to invoke // delete vs. delete[] as appropriate. -template <class C> +template <class C, class D> class unique_ptr_base { public: - // The element type typedef C element_type; - explicit unique_ptr_base(C* p) : ptr_(p) { } + explicit unique_ptr_base(C* p) : data_(p) {} + + // Initializer for deleters that have data parameters. + unique_ptr_base(C* p, const D& d) : data_(p, d) {} // Move constructor. - unique_ptr_base(unique_ptr_base<C>&& that) { - ptr_ = that.ptr_; - that.ptr_ = nullptr; - } + unique_ptr_base(unique_ptr_base<C, D>&& that) + : data_(that.release(), that.get_deleter()) {} - // Accessors to get the owned object. - // operator* and operator-> will assert() if there is no current object. - C& operator*() const { - assert(ptr_ != NULL); - return *ptr_; + ~unique_ptr_base() { + enum { type_must_be_complete = sizeof(C) }; + if (data_.ptr != nullptr) { + // Not using get_deleter() saves one function call in non-optimized + // builds. + static_cast<D&>(data_)(data_.ptr); + } } - C* operator->() const { - assert(ptr_ != NULL); - return ptr_; + + void reset(C* p = nullptr) { + C* old = data_.ptr; + data_.ptr = p; + if (old != nullptr) + static_cast<D&>(data_)(old); } - C* get() const { return ptr_; } + + C* get() const { return data_.ptr; } + D& get_deleter() { return data_; } + const D& get_deleter() const { return data_; } // Comparison operators. // These return whether two unique_ptr refer to the same object, not just to // two different but equal objects. - bool operator==(C* p) const { return ptr_ == p; } - bool operator!=(C* p) const { return ptr_ != p; } + bool operator==(C* p) const { return data_.ptr == p; } + bool operator!=(C* p) const { return data_.ptr != p; } - // Swap two scoped pointers. + // Swap two unique pointers. void swap(unique_ptr_base& p2) { - C* tmp = ptr_; - ptr_ = p2.ptr_; - p2.ptr_ = tmp; + Data tmp = data_; + data_ = p2.data_; + p2.data_ = tmp; } // Release a pointer. @@ -131,125 +202,180 @@ class unique_ptr_base { // After this operation, this object will hold a NULL pointer, // and will not own the object any more. C* release() { - C* retVal = ptr_; - ptr_ = NULL; - return retVal; + C* ptr = data_.ptr; + data_.ptr = nullptr; + return ptr; } // Allow promotion to bool for conditional statements. - explicit operator bool() const { return ptr_ != NULL; } + explicit operator bool() const { return data_.ptr != nullptr; } protected: - C* ptr_; + // Use the empty base class optimization to allow us to have a D + // member, while avoiding any space overhead for it when D is an + // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good + // discussion of this technique. + struct Data : public D { + explicit Data(C* ptr_in) : ptr(ptr_in) {} + Data(C* ptr_in, const D& other) : D(other), ptr(ptr_in) {} + C* ptr; + }; + + Data data_; }; +} // namespace internal + // Implementation for ordinary pointers using delete. -template <class C> -class unique_ptr : public unique_ptr_base<C> { +template <class C, class D = DefaultDeleter<C>> +class unique_ptr : public internal::unique_ptr_base<C, D> { public: - using unique_ptr_base<C>::ptr_; + // Constructor. Defaults to initializing with nullptr. + unique_ptr() : internal::unique_ptr_base<C, D>(nullptr) {} - // Constructor. Defaults to initializing with NULL. There is no way - // to create an uninitialized unique_ptr. The input parameter must be - // allocated with new (not new[] - see below). - explicit unique_ptr(C* p = NULL) : unique_ptr_base<C>(p) { } + // Constructor. Takes ownership of p. + explicit unique_ptr(C* p) : internal::unique_ptr_base<C, D>(p) {} - // Move constructor. - unique_ptr(unique_ptr<C>&& that) : unique_ptr_base<C>(nonstd::move(that)) {} + // Constructor. Allows initialization of a stateful deleter. + unique_ptr(C* p, const D& d) : internal::unique_ptr_base<C, D>(p, d) {} - // Destructor. If there is a C object, delete it. - // We don't need to test ptr_ == NULL because C++ does that for us. - ~unique_ptr() { - enum { type_must_be_complete = sizeof(C) }; - delete ptr_; - } + // Constructor. Allows construction from a nullptr. + unique_ptr(decltype(nullptr)) : internal::unique_ptr_base<C, D>(nullptr) {} - // Reset. Deletes the current owned object, if any. - // Then takes ownership of a new object, if given. - // this->reset(this->get()) works. - void reset(C* p = NULL) { - if (p != ptr_) { - enum { type_must_be_complete = sizeof(C) }; - C* old_ptr = ptr_; - ptr_ = p; - delete old_ptr; - } + // Move constructor. + unique_ptr(unique_ptr&& that) + : internal::unique_ptr_base<C, D>(nonstd::move(that)) {} + + // operator=. Allows assignment from a nullptr. Deletes the currently owned + // object, if any. + unique_ptr& operator=(decltype(nullptr)) { + this->reset(); + return *this; } // Move assignment. unique_ptr<C>& operator=(unique_ptr<C>&& that) { - if (that.ptr_ != ptr_) - reset(that.release()); + this->reset(that.release()); return *this; } -private: - // Forbid comparison of unique_ptr types. If C2 != C, it totally doesn't - // make sense, and if C2 == C, it still doesn't make sense because you should - // never have the same object owned by two different unique_ptrs. - template <class C2> bool operator==(unique_ptr<C2> const& p2) const; - template <class C2> bool operator!=(unique_ptr<C2> const& p2) const; + // Accessors to get the owned object. + // operator* and operator-> will assert() if there is no current object. + C& operator*() const { + assert(this->data_.ptr != nullptr); + return *this->data_.ptr; + } + C* operator->() const { + assert(this->data_.ptr != nullptr); + return this->data_.ptr; + } + + // Comparison operators. + // These return whether two unique_ptr refer to the same object, not just to + // two different but equal objects. + bool operator==(const C* p) const { return this->get() == p; } + bool operator!=(const C* p) const { return this->get() != p; } + private: // Disallow evil constructors. It doesn't make sense to make a copy of // something that's allegedly unique. unique_ptr(const unique_ptr&) = delete; void operator=(const unique_ptr&) = delete; + + // Forbid comparison of unique_ptr types. If U != C, it totally + // doesn't make sense, and if U == C, it still doesn't make sense + // because you should never have the same object owned by two different + // unique_ptrs. + template <class U> + bool operator==(unique_ptr<U> const& p2) const; + template <class U> + bool operator!=(unique_ptr<U> const& p2) const; }; // Specialization for arrays using delete[]. -template <class C> -class unique_ptr<C[]> : public unique_ptr_base<C> { +template <class C, class D> +class unique_ptr<C[], D> : public internal::unique_ptr_base<C, D> { public: - using unique_ptr_base<C>::ptr_; - - // Constructor. Defaults to initializing with NULL. There is no way - // to create an uninitialized unique_ptr. The input parameter must be - // allocated with new[] (not new - see above). - explicit unique_ptr(C* p = NULL) : unique_ptr_base<C>(p) { } + // Constructor. Defaults to initializing with nullptr. + unique_ptr() : internal::unique_ptr_base<C, D>(nullptr) {} + + // Constructor. Stores the given array. Note that the argument's type + // must exactly match T*. In particular: + // - it cannot be a pointer to a type derived from T, because it is + // inherently unsafe in the general case to access an array through a + // pointer whose dynamic type does not match its static type (eg., if + // T and the derived types had different sizes access would be + // incorrectly calculated). Deletion is also always undefined + // (C++98 [expr.delete]p3). If you're doing this, fix your code. + // - it cannot be const-qualified differently from T per unique_ptr spec + // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting + // to work around this may use const_cast<const T*>(). + explicit unique_ptr(C* p) : internal::unique_ptr_base<C, D>(p) {} + + // Constructor. Allows construction from a nullptr. + unique_ptr(decltype(nullptr)) : internal::unique_ptr_base<C, D>(nullptr) {} // Move constructor. - unique_ptr(unique_ptr<C>&& that) : unique_ptr_base<C>(nonstd::move(that)) {} + unique_ptr(unique_ptr&& that) + : internal::unique_ptr_base<C, D>(nonstd::move(that)) {} - // Destructor. If there is a C object, delete it. - // We don't need to test ptr_ == NULL because C++ does that for us. - ~unique_ptr() { - enum { type_must_be_complete = sizeof(C) }; - delete[] ptr_; - } - - // Reset. Deletes the current owned object, if any. - // Then takes ownership of a new object, if given. - // this->reset(this->get()) works. - void reset(C* p = NULL) { - if (p != ptr_) { - enum { type_must_be_complete = sizeof(C) }; - C* old_ptr = ptr_; - ptr_ = p; - delete[] old_ptr; - } + // operator=. Allows assignment from a nullptr. Deletes the currently owned + // array, if any. + unique_ptr& operator=(decltype(nullptr)) { + this->reset(); + return *this; } // Move assignment. unique_ptr<C>& operator=(unique_ptr<C>&& that) { - if (that.ptr_ != ptr_) - reset(that.release()); + this->reset(that.release()); return *this; } + // Reset. Deletes the currently owned array, if any. + // Then takes ownership of a new object, if given. + void reset(C* array = nullptr) { + static_cast<internal::unique_ptr_base<C, D>*>(this)->reset(array); + } + // Support indexing since it is holding array. - C& operator[] (size_t i) { return ptr_[i]; } + C& operator[](size_t i) { return this->data_.ptr[i]; } -private: - // Forbid comparison of unique_ptr types. If C2 != C, it totally doesn't - // make sense, and if C2 == C, it still doesn't make sense because you should - // never have the same object owned by two different unique_ptrs. - template <class C2> bool operator==(unique_ptr<C2> const& p2) const; - template <class C2> bool operator!=(unique_ptr<C2> const& p2) const; + // Comparison operators. + // These return whether two unique_ptr refer to the same object, not just to + // two different but equal objects. + bool operator==(C* array) const { return this->get() == array; } + bool operator!=(C* array) const { return this->get() != array; } + + private: + // Disable initialization from any type other than element_type*, by + // providing a constructor that matches such an initialization, but is + // private and has no definition. This is disabled because it is not safe to + // call delete[] on an array whose static type does not match its dynamic + // type. + template <typename U> + explicit unique_ptr(U* array); + explicit unique_ptr(int disallow_construction_from_null); + + // Disable reset() from any type other than element_type*, for the same + // reasons as the constructor above. + template <typename U> + void reset(U* array); + void reset(int disallow_reset_from_null); // Disallow evil constructors. It doesn't make sense to make a copy of // something that's allegedly unique. unique_ptr(const unique_ptr&) = delete; void operator=(const unique_ptr&) = delete; + + // Forbid comparison of unique_ptr types. If U != C, it totally + // doesn't make sense, and if U == C, it still doesn't make sense + // because you should never have the same object owned by two different + // unique_ptrs. + template <class U> + bool operator==(unique_ptr<U> const& p2) const; + template <class U> + bool operator!=(unique_ptr<U> const& p2) const; }; // Free functions @@ -268,6 +394,11 @@ bool operator!=(C* p1, const unique_ptr<C>& p2) { return p1 != p2.get(); } +template <typename T> +std::ostream& operator<<(std::ostream& out, const unique_ptr<T>& p) { + return out << p.get(); +} + } // namespace nonstd #endif // NONSTD_UNIQUE_PTR_H_ diff --git a/third_party/base/nonstd_unique_ptr_unittest.cpp b/third_party/base/nonstd_unique_ptr_unittest.cpp index 49cc901fe2..2b120581f4 100644 --- a/third_party/base/nonstd_unique_ptr_unittest.cpp +++ b/third_party/base/nonstd_unique_ptr_unittest.cpp @@ -85,3 +85,306 @@ TEST(UniquePtrTest, MoveTest) { } EXPECT_EQ(0, constructed); } + +TEST(UniquePtrTest, UniquePtr) { + int constructed = 0; + + // Ensure size of unique_ptr<> doesn't increase unexpectedly. + static_assert(sizeof(int*) >= sizeof(unique_ptr<int>), + "unique_ptr_larger_than_raw_ptr"); + + { + unique_ptr<CtorDtorLogger> scoper(new CtorDtorLogger(&constructed)); + EXPECT_EQ(1, constructed); + EXPECT_TRUE(scoper.get()); + + EXPECT_EQ(10, scoper->SomeMeth(10)); + EXPECT_EQ(10, scoper.get()->SomeMeth(10)); + EXPECT_EQ(10, (*scoper).SomeMeth(10)); + } + EXPECT_EQ(0, constructed); + + // Test reset() and release() + { + unique_ptr<CtorDtorLogger> scoper(new CtorDtorLogger(&constructed)); + EXPECT_EQ(1, constructed); + EXPECT_TRUE(scoper.get()); + + scoper.reset(new CtorDtorLogger(&constructed)); + EXPECT_EQ(1, constructed); + EXPECT_TRUE(scoper.get()); + + scoper.reset(); + EXPECT_EQ(0, constructed); + EXPECT_FALSE(scoper.get()); + + scoper.reset(new CtorDtorLogger(&constructed)); + EXPECT_EQ(1, constructed); + EXPECT_TRUE(scoper.get()); + + CtorDtorLogger* take = scoper.release(); + EXPECT_EQ(1, constructed); + EXPECT_FALSE(scoper.get()); + delete take; + EXPECT_EQ(0, constructed); + + scoper.reset(new CtorDtorLogger(&constructed)); + EXPECT_EQ(1, constructed); + EXPECT_TRUE(scoper.get()); + } + EXPECT_EQ(0, constructed); + + // Test swap(), == and != + { + unique_ptr<CtorDtorLogger> scoper1; + unique_ptr<CtorDtorLogger> scoper2; + EXPECT_TRUE(scoper1 == scoper2.get()); + EXPECT_FALSE(scoper1 != scoper2.get()); + + CtorDtorLogger* logger = new CtorDtorLogger(&constructed); + scoper1.reset(logger); + EXPECT_EQ(logger, scoper1.get()); + EXPECT_FALSE(scoper2.get()); + EXPECT_FALSE(scoper1 == scoper2.get()); + EXPECT_TRUE(scoper1 != scoper2.get()); + + scoper2.swap(scoper1); + EXPECT_EQ(logger, scoper2.get()); + EXPECT_FALSE(scoper1.get()); + EXPECT_FALSE(scoper1 == scoper2.get()); + EXPECT_TRUE(scoper1 != scoper2.get()); + } + EXPECT_EQ(0, constructed); +} + +TEST(UniquePtrTest, UniquePtrWithArray) { + static const int kNumLoggers = 12; + + int constructed = 0; + + { + unique_ptr<CtorDtorLogger[]> scoper(new CtorDtorLogger[kNumLoggers]); + EXPECT_TRUE(scoper); + EXPECT_EQ(&scoper[0], scoper.get()); + for (int i = 0; i < kNumLoggers; ++i) { + scoper[i].SetPtr(&constructed); + } + EXPECT_EQ(12, constructed); + + EXPECT_EQ(10, scoper.get()->SomeMeth(10)); + EXPECT_EQ(10, scoper[2].SomeMeth(10)); + } + EXPECT_EQ(0, constructed); + + // Test reset() and release() + { + unique_ptr<CtorDtorLogger[]> scoper; + EXPECT_FALSE(scoper.get()); + EXPECT_FALSE(scoper.release()); + EXPECT_FALSE(scoper.get()); + scoper.reset(); + EXPECT_FALSE(scoper.get()); + + scoper.reset(new CtorDtorLogger[kNumLoggers]); + for (int i = 0; i < kNumLoggers; ++i) { + scoper[i].SetPtr(&constructed); + } + EXPECT_EQ(12, constructed); + scoper.reset(); + EXPECT_EQ(0, constructed); + + scoper.reset(new CtorDtorLogger[kNumLoggers]); + for (int i = 0; i < kNumLoggers; ++i) { + scoper[i].SetPtr(&constructed); + } + EXPECT_EQ(12, constructed); + CtorDtorLogger* ptr = scoper.release(); + EXPECT_EQ(12, constructed); + delete[] ptr; + EXPECT_EQ(0, constructed); + } + EXPECT_EQ(0, constructed); + + // Test swap(), ==, !=, and type-safe Boolean. + { + unique_ptr<CtorDtorLogger[]> scoper1; + unique_ptr<CtorDtorLogger[]> scoper2; + EXPECT_TRUE(scoper1 == scoper2.get()); + EXPECT_FALSE(scoper1 != scoper2.get()); + + CtorDtorLogger* loggers = new CtorDtorLogger[kNumLoggers]; + for (int i = 0; i < kNumLoggers; ++i) { + loggers[i].SetPtr(&constructed); + } + scoper1.reset(loggers); + EXPECT_TRUE(scoper1); + EXPECT_EQ(loggers, scoper1.get()); + EXPECT_FALSE(scoper2); + EXPECT_FALSE(scoper2.get()); + EXPECT_FALSE(scoper1 == scoper2.get()); + EXPECT_TRUE(scoper1 != scoper2.get()); + + scoper2.swap(scoper1); + EXPECT_EQ(loggers, scoper2.get()); + EXPECT_FALSE(scoper1.get()); + EXPECT_FALSE(scoper1 == scoper2.get()); + EXPECT_TRUE(scoper1 != scoper2.get()); + } + EXPECT_EQ(0, constructed); +} + +TEST(UniquePtrTest, ReturnTypeBehavior) { + int constructed = 0; + + // Test that we can return a unique_ptr. + { + CtorDtorLogger* logger = new CtorDtorLogger(&constructed); + unique_ptr<CtorDtorLogger> scoper(logger); + EXPECT_EQ(1, constructed); + } + EXPECT_EQ(0, constructed); + + // Test uncaught return type not leak. + { + CtorDtorLogger* logger = new CtorDtorLogger(&constructed); + unique_ptr<CtorDtorLogger> scoper(logger); + EXPECT_EQ(1, constructed); + } + EXPECT_EQ(0, constructed); + + // Call TestReturnOfType() so the compiler doesn't warn for an unused + // function. + { TestReturnOfType(&constructed); } + EXPECT_EQ(0, constructed); +} + +TEST(UniquePtrTest, CustomDeleter) { + double dummy_value; // Custom deleter never touches this value. + int deletes = 0; + int alternate_deletes = 0; + + // Normal delete support. + { + deletes = 0; + unique_ptr<double, CountingDeleter> scoper(&dummy_value, + CountingDeleter(&deletes)); + EXPECT_EQ(0, deletes); + EXPECT_TRUE(scoper.get()); + } + EXPECT_EQ(1, deletes); + + // Test reset() and release(). + deletes = 0; + { + unique_ptr<double, CountingDeleter> scoper(nullptr, + CountingDeleter(&deletes)); + EXPECT_FALSE(scoper.get()); + EXPECT_FALSE(scoper.release()); + EXPECT_FALSE(scoper.get()); + scoper.reset(); + EXPECT_FALSE(scoper.get()); + EXPECT_EQ(0, deletes); + + scoper.reset(&dummy_value); + scoper.reset(); + EXPECT_EQ(1, deletes); + + scoper.reset(&dummy_value); + EXPECT_EQ(&dummy_value, scoper.release()); + } + EXPECT_EQ(1, deletes); + + // Test get_deleter(). + deletes = 0; + alternate_deletes = 0; + { + unique_ptr<double, CountingDeleter> scoper(&dummy_value, + CountingDeleter(&deletes)); + // Call deleter manually. + EXPECT_EQ(0, deletes); + scoper.get_deleter()(&dummy_value); + EXPECT_EQ(1, deletes); + + // Deleter is still there after reset. + scoper.reset(); + EXPECT_EQ(2, deletes); + scoper.get_deleter()(&dummy_value); + EXPECT_EQ(3, deletes); + + // Deleter can be assigned into (matches C++11 unique_ptr<> spec). + scoper.get_deleter() = CountingDeleter(&alternate_deletes); + scoper.reset(&dummy_value); + EXPECT_EQ(0, alternate_deletes); + } + EXPECT_EQ(3, deletes); + EXPECT_EQ(1, alternate_deletes); + + // Test swap(), ==, !=, and type-safe Boolean. + { + unique_ptr<double, CountingDeleter> scoper1(nullptr, + CountingDeleter(&deletes)); + unique_ptr<double, CountingDeleter> scoper2(nullptr, + CountingDeleter(&deletes)); + EXPECT_TRUE(scoper1 == scoper2.get()); + EXPECT_FALSE(scoper1 != scoper2.get()); + + scoper1.reset(&dummy_value); + EXPECT_TRUE(scoper1); + EXPECT_EQ(&dummy_value, scoper1.get()); + EXPECT_FALSE(scoper2); + EXPECT_FALSE(scoper2.get()); + EXPECT_FALSE(scoper1 == scoper2.get()); + EXPECT_TRUE(scoper1 != scoper2.get()); + + scoper2.swap(scoper1); + EXPECT_EQ(&dummy_value, scoper2.get()); + EXPECT_FALSE(scoper1.get()); + EXPECT_FALSE(scoper1 == scoper2.get()); + EXPECT_TRUE(scoper1 != scoper2.get()); + } +} + +unique_ptr<int> NullIntReturn() { + return nullptr; +} + +TEST(UniquePtrTest, Nullptr) { + unique_ptr<int> scoper1(nullptr); + unique_ptr<int> scoper2(new int); + scoper2 = nullptr; + unique_ptr<int> scoper3(NullIntReturn()); + unique_ptr<int> scoper4 = NullIntReturn(); + EXPECT_EQ(nullptr, scoper1.get()); + EXPECT_EQ(nullptr, scoper2.get()); + EXPECT_EQ(nullptr, scoper3.get()); + EXPECT_EQ(nullptr, scoper4.get()); +} + +unique_ptr<int[]> NullIntArrayReturn() { + return nullptr; +} + +TEST(UniquePtrTest, NullptrArray) { + unique_ptr<int[]> scoper1(nullptr); + unique_ptr<int[]> scoper2(new int[3]); + scoper2 = nullptr; + unique_ptr<int[]> scoper3(NullIntArrayReturn()); + unique_ptr<int[]> scoper4 = NullIntArrayReturn(); + EXPECT_EQ(nullptr, scoper1.get()); + EXPECT_EQ(nullptr, scoper2.get()); + EXPECT_EQ(nullptr, scoper3.get()); + EXPECT_EQ(nullptr, scoper4.get()); +} + +// Logging a unique_ptr<T> to an ostream shouldn't convert it to a boolean +// value first. +TEST(ScopedPtrTest, LoggingDoesntConvertToBoolean) { + unique_ptr<int> x(new int); + std::stringstream s1; + s1 << x; + + std::stringstream s2; + s2 << x.get(); + + EXPECT_EQ(s2.str(), s1.str()); +} diff --git a/third_party/base/template_util.h b/third_party/base/template_util.h index ab660940f0..719f3f1c3a 100644 --- a/third_party/base/template_util.h +++ b/third_party/base/template_util.h @@ -21,7 +21,8 @@ typedef integral_constant<bool, true> true_type; typedef integral_constant<bool, false> false_type; template <class T, class U> struct is_same : public false_type {}; -template <class T> struct is_same<T,T> : true_type {}; +template <class T> +struct is_same<T, T> : true_type {}; template<bool B, class T = void> struct enable_if {}; @@ -29,6 +30,49 @@ struct enable_if {}; template<class T> struct enable_if<true, T> { typedef T type; }; +namespace internal { + +// Types YesType and NoType are guaranteed such that sizeof(YesType) < +// sizeof(NoType). +typedef char YesType; + +struct NoType { + YesType dummy[2]; +}; + +// This class is an implementation detail for is_convertible, and you +// don't need to know how it works to use is_convertible. For those +// who care: we declare two different functions, one whose argument is +// of type To and one with a variadic argument list. We give them +// return types of different size, so we can use sizeof to trick the +// compiler into telling us which function it would have chosen if we +// had called it with an argument of type From. See Alexandrescu's +// _Modern C++ Design_ for more details on this sort of trick. + +struct ConvertHelper { + template <typename To> + static YesType Test(To); + + template <typename To> + static NoType Test(...); + + template <typename From> + static From& Create(); +}; + +} // namespace internal + +// Inherits from true_type if From is convertible to To, false_type otherwise. +// +// Note that if the type is convertible, this will be a true_type REGARDLESS +// of whether or not the conversion would emit a warning. +template <typename From, typename To> +struct is_convertible + : integral_constant<bool, + sizeof(internal::ConvertHelper::Test<To>( + internal::ConvertHelper::Create<From>())) == + sizeof(internal::YesType)> {}; + } // namespace base } // namespace pdfium |