From 41872fa5ac7448a50f66ad56d7bde8d1aa77db4b Mon Sep 17 00:00:00 2001 From: dsinclair Date: Tue, 4 Oct 2016 11:29:35 -0700 Subject: Move core/fpdfapi/fpdf_page to core/fpdfapi/page BUG=pdfium:603 Review-Url: https://codereview.chromium.org/2386423004 --- core/fpdfapi/page/fpdf_page_func.cpp | 845 +++++++++++++++++++++++++++++++++++ 1 file changed, 845 insertions(+) create mode 100644 core/fpdfapi/page/fpdf_page_func.cpp (limited to 'core/fpdfapi/page/fpdf_page_func.cpp') diff --git a/core/fpdfapi/page/fpdf_page_func.cpp b/core/fpdfapi/page/fpdf_page_func.cpp new file mode 100644 index 0000000000..e11d8dd754 --- /dev/null +++ b/core/fpdfapi/page/fpdf_page_func.cpp @@ -0,0 +1,845 @@ +// Copyright 2014 PDFium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com + +#include "core/fpdfapi/page/pageint.h" + +#include + +#include +#include +#include +#include + +#include "core/fpdfapi/fpdf_parser/cpdf_array.h" +#include "core/fpdfapi/fpdf_parser/cpdf_dictionary.h" +#include "core/fpdfapi/fpdf_parser/cpdf_simple_parser.h" +#include "core/fpdfapi/fpdf_parser/cpdf_stream.h" +#include "core/fpdfapi/fpdf_parser/cpdf_stream_acc.h" +#include "core/fpdfapi/page/cpdf_psengine.h" +#include "core/fxcrt/fx_safe_types.h" +#include "third_party/base/numerics/safe_conversions_impl.h" + +class CPDF_PSOP { + public: + explicit CPDF_PSOP(PDF_PSOP op) : m_op(op), m_value(0) { + ASSERT(m_op != PSOP_CONST); + ASSERT(m_op != PSOP_PROC); + } + explicit CPDF_PSOP(FX_FLOAT value) : m_op(PSOP_CONST), m_value(value) {} + explicit CPDF_PSOP(std::unique_ptr proc) + : m_op(PSOP_PROC), m_value(0), m_proc(std::move(proc)) {} + + FX_FLOAT GetFloatValue() const { + if (m_op == PSOP_CONST) + return m_value; + + ASSERT(false); + return 0; + } + CPDF_PSProc* GetProc() const { + if (m_op == PSOP_PROC) + return m_proc.get(); + ASSERT(false); + return nullptr; + } + + PDF_PSOP GetOp() const { return m_op; } + + private: + const PDF_PSOP m_op; + const FX_FLOAT m_value; + std::unique_ptr m_proc; +}; + +FX_BOOL CPDF_PSEngine::Execute() { + return m_MainProc.Execute(this); +} + +CPDF_PSProc::CPDF_PSProc() {} +CPDF_PSProc::~CPDF_PSProc() {} + +FX_BOOL CPDF_PSProc::Execute(CPDF_PSEngine* pEngine) { + for (size_t i = 0; i < m_Operators.size(); ++i) { + const PDF_PSOP op = m_Operators[i]->GetOp(); + if (op == PSOP_PROC) + continue; + + if (op == PSOP_CONST) { + pEngine->Push(m_Operators[i]->GetFloatValue()); + continue; + } + + if (op == PSOP_IF) { + if (i == 0 || m_Operators[i - 1]->GetOp() != PSOP_PROC) + return FALSE; + + if (static_cast(pEngine->Pop())) + m_Operators[i - 1]->GetProc()->Execute(pEngine); + } else if (op == PSOP_IFELSE) { + if (i < 2 || m_Operators[i - 1]->GetOp() != PSOP_PROC || + m_Operators[i - 2]->GetOp() != PSOP_PROC) { + return FALSE; + } + size_t offset = static_cast(pEngine->Pop()) ? 2 : 1; + m_Operators[i - offset]->GetProc()->Execute(pEngine); + } else { + pEngine->DoOperator(op); + } + } + return TRUE; +} + +CPDF_PSEngine::CPDF_PSEngine() { + m_StackCount = 0; +} +CPDF_PSEngine::~CPDF_PSEngine() {} +void CPDF_PSEngine::Push(FX_FLOAT v) { + if (m_StackCount == PSENGINE_STACKSIZE) { + return; + } + m_Stack[m_StackCount++] = v; +} +FX_FLOAT CPDF_PSEngine::Pop() { + if (m_StackCount == 0) { + return 0; + } + return m_Stack[--m_StackCount]; +} +const struct PDF_PSOpName { + const FX_CHAR* name; + PDF_PSOP op; +} PDF_PSOpNames[] = {{"add", PSOP_ADD}, {"sub", PSOP_SUB}, + {"mul", PSOP_MUL}, {"div", PSOP_DIV}, + {"idiv", PSOP_IDIV}, {"mod", PSOP_MOD}, + {"neg", PSOP_NEG}, {"abs", PSOP_ABS}, + {"ceiling", PSOP_CEILING}, {"floor", PSOP_FLOOR}, + {"round", PSOP_ROUND}, {"truncate", PSOP_TRUNCATE}, + {"sqrt", PSOP_SQRT}, {"sin", PSOP_SIN}, + {"cos", PSOP_COS}, {"atan", PSOP_ATAN}, + {"exp", PSOP_EXP}, {"ln", PSOP_LN}, + {"log", PSOP_LOG}, {"cvi", PSOP_CVI}, + {"cvr", PSOP_CVR}, {"eq", PSOP_EQ}, + {"ne", PSOP_NE}, {"gt", PSOP_GT}, + {"ge", PSOP_GE}, {"lt", PSOP_LT}, + {"le", PSOP_LE}, {"and", PSOP_AND}, + {"or", PSOP_OR}, {"xor", PSOP_XOR}, + {"not", PSOP_NOT}, {"bitshift", PSOP_BITSHIFT}, + {"true", PSOP_TRUE}, {"false", PSOP_FALSE}, + {"if", PSOP_IF}, {"ifelse", PSOP_IFELSE}, + {"pop", PSOP_POP}, {"exch", PSOP_EXCH}, + {"dup", PSOP_DUP}, {"copy", PSOP_COPY}, + {"index", PSOP_INDEX}, {"roll", PSOP_ROLL}}; + +FX_BOOL CPDF_PSEngine::Parse(const FX_CHAR* str, int size) { + CPDF_SimpleParser parser((uint8_t*)str, size); + CFX_ByteStringC word = parser.GetWord(); + if (word != "{") { + return FALSE; + } + return m_MainProc.Parse(&parser, 0); +} + +FX_BOOL CPDF_PSProc::Parse(CPDF_SimpleParser* parser, int depth) { + if (depth > kMaxDepth) + return FALSE; + + while (1) { + CFX_ByteStringC word = parser->GetWord(); + if (word.IsEmpty()) { + return FALSE; + } + if (word == "}") { + return TRUE; + } + if (word == "{") { + std::unique_ptr proc(new CPDF_PSProc); + std::unique_ptr op(new CPDF_PSOP(std::move(proc))); + m_Operators.push_back(std::move(op)); + if (!m_Operators.back()->GetProc()->Parse(parser, depth + 1)) { + return FALSE; + } + } else { + bool found = false; + for (const PDF_PSOpName& op_name : PDF_PSOpNames) { + if (word == CFX_ByteStringC(op_name.name)) { + std::unique_ptr op(new CPDF_PSOP(op_name.op)); + m_Operators.push_back(std::move(op)); + found = true; + break; + } + } + if (!found) { + std::unique_ptr op(new CPDF_PSOP(FX_atof(word))); + m_Operators.push_back(std::move(op)); + } + } + } +} + +FX_BOOL CPDF_PSEngine::DoOperator(PDF_PSOP op) { + int i1, i2; + FX_FLOAT d1, d2; + switch (op) { + case PSOP_ADD: + d1 = Pop(); + d2 = Pop(); + Push(d1 + d2); + break; + case PSOP_SUB: + d2 = Pop(); + d1 = Pop(); + Push(d1 - d2); + break; + case PSOP_MUL: + d1 = Pop(); + d2 = Pop(); + Push(d1 * d2); + break; + case PSOP_DIV: + d2 = Pop(); + d1 = Pop(); + Push(d1 / d2); + break; + case PSOP_IDIV: + i2 = (int)Pop(); + i1 = (int)Pop(); + Push(i2 ? i1 / i2 : 0); + break; + case PSOP_MOD: + i2 = (int)Pop(); + i1 = (int)Pop(); + Push(i2 ? i1 % i2 : 0); + break; + case PSOP_NEG: + d1 = Pop(); + Push(-d1); + break; + case PSOP_ABS: + d1 = Pop(); + Push((FX_FLOAT)FXSYS_fabs(d1)); + break; + case PSOP_CEILING: + d1 = Pop(); + Push((FX_FLOAT)FXSYS_ceil(d1)); + break; + case PSOP_FLOOR: + d1 = Pop(); + Push((FX_FLOAT)FXSYS_floor(d1)); + break; + case PSOP_ROUND: + d1 = Pop(); + Push(FXSYS_round(d1)); + break; + case PSOP_TRUNCATE: + i1 = (int)Pop(); + Push(i1); + break; + case PSOP_SQRT: + d1 = Pop(); + Push((FX_FLOAT)FXSYS_sqrt(d1)); + break; + case PSOP_SIN: + d1 = Pop(); + Push((FX_FLOAT)FXSYS_sin(d1 * FX_PI / 180.0f)); + break; + case PSOP_COS: + d1 = Pop(); + Push((FX_FLOAT)FXSYS_cos(d1 * FX_PI / 180.0f)); + break; + case PSOP_ATAN: + d2 = Pop(); + d1 = Pop(); + d1 = (FX_FLOAT)(FXSYS_atan2(d1, d2) * 180.0 / FX_PI); + if (d1 < 0) { + d1 += 360; + } + Push(d1); + break; + case PSOP_EXP: + d2 = Pop(); + d1 = Pop(); + Push((FX_FLOAT)FXSYS_pow(d1, d2)); + break; + case PSOP_LN: + d1 = Pop(); + Push((FX_FLOAT)FXSYS_log(d1)); + break; + case PSOP_LOG: + d1 = Pop(); + Push((FX_FLOAT)FXSYS_log10(d1)); + break; + case PSOP_CVI: + i1 = (int)Pop(); + Push(i1); + break; + case PSOP_CVR: + break; + case PSOP_EQ: + d2 = Pop(); + d1 = Pop(); + Push((int)(d1 == d2)); + break; + case PSOP_NE: + d2 = Pop(); + d1 = Pop(); + Push((int)(d1 != d2)); + break; + case PSOP_GT: + d2 = Pop(); + d1 = Pop(); + Push((int)(d1 > d2)); + break; + case PSOP_GE: + d2 = Pop(); + d1 = Pop(); + Push((int)(d1 >= d2)); + break; + case PSOP_LT: + d2 = Pop(); + d1 = Pop(); + Push((int)(d1 < d2)); + break; + case PSOP_LE: + d2 = Pop(); + d1 = Pop(); + Push((int)(d1 <= d2)); + break; + case PSOP_AND: + i1 = (int)Pop(); + i2 = (int)Pop(); + Push(i1 & i2); + break; + case PSOP_OR: + i1 = (int)Pop(); + i2 = (int)Pop(); + Push(i1 | i2); + break; + case PSOP_XOR: + i1 = (int)Pop(); + i2 = (int)Pop(); + Push(i1 ^ i2); + break; + case PSOP_NOT: + i1 = (int)Pop(); + Push((int)!i1); + break; + case PSOP_BITSHIFT: { + int shift = (int)Pop(); + int i = (int)Pop(); + if (shift > 0) { + Push(i << shift); + } else { + Push(i >> -shift); + } + break; + } + case PSOP_TRUE: + Push(1); + break; + case PSOP_FALSE: + Push(0); + break; + case PSOP_POP: + Pop(); + break; + case PSOP_EXCH: + d2 = Pop(); + d1 = Pop(); + Push(d2); + Push(d1); + break; + case PSOP_DUP: + d1 = Pop(); + Push(d1); + Push(d1); + break; + case PSOP_COPY: { + int n = static_cast(Pop()); + if (n < 0 || m_StackCount + n > PSENGINE_STACKSIZE || + n > static_cast(m_StackCount)) + break; + for (int i = 0; i < n; i++) + m_Stack[m_StackCount + i] = m_Stack[m_StackCount + i - n]; + m_StackCount += n; + break; + } + case PSOP_INDEX: { + int n = static_cast(Pop()); + if (n < 0 || n >= static_cast(m_StackCount)) + break; + Push(m_Stack[m_StackCount - n - 1]); + break; + } + case PSOP_ROLL: { + int j = static_cast(Pop()); + int n = static_cast(Pop()); + if (m_StackCount == 0) + break; + if (n < 0 || n > static_cast(m_StackCount)) + break; + if (j < 0) { + for (int i = 0; i < -j; i++) { + FX_FLOAT first = m_Stack[m_StackCount - n]; + for (int ii = 0; ii < n - 1; ii++) + m_Stack[m_StackCount - n + ii] = m_Stack[m_StackCount - n + ii + 1]; + m_Stack[m_StackCount - 1] = first; + } + } else { + for (int i = 0; i < j; i++) { + FX_FLOAT last = m_Stack[m_StackCount - 1]; + int ii; + for (ii = 0; ii < n - 1; ii++) + m_Stack[m_StackCount - ii - 1] = m_Stack[m_StackCount - ii - 2]; + m_Stack[m_StackCount - ii - 1] = last; + } + } + break; + } + default: + break; + } + return TRUE; +} + +// See PDF Reference 1.7, page 170, table 3.36. +bool IsValidBitsPerSample(uint32_t x) { + switch (x) { + case 1: + case 2: + case 4: + case 8: + case 12: + case 16: + case 24: + case 32: + return true; + default: + return false; + } +} + +// See PDF Reference 1.7, page 170. +FX_FLOAT PDF_Interpolate(FX_FLOAT x, + FX_FLOAT xmin, + FX_FLOAT xmax, + FX_FLOAT ymin, + FX_FLOAT ymax) { + FX_FLOAT divisor = xmax - xmin; + return ymin + (divisor ? (x - xmin) * (ymax - ymin) / divisor : 0); +} + +class CPDF_PSFunc : public CPDF_Function { + public: + CPDF_PSFunc() : CPDF_Function(Type::kType4PostScript) {} + ~CPDF_PSFunc() override {} + + // CPDF_Function + FX_BOOL v_Init(CPDF_Object* pObj) override; + FX_BOOL v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const override; + + private: + CPDF_PSEngine m_PS; +}; + +FX_BOOL CPDF_PSFunc::v_Init(CPDF_Object* pObj) { + CPDF_StreamAcc acc; + acc.LoadAllData(pObj->AsStream(), FALSE); + return m_PS.Parse(reinterpret_cast(acc.GetData()), + acc.GetSize()); +} + +FX_BOOL CPDF_PSFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const { + CPDF_PSEngine& PS = const_cast(m_PS); + PS.Reset(); + for (uint32_t i = 0; i < m_nInputs; i++) + PS.Push(inputs[i]); + PS.Execute(); + if (PS.GetStackSize() < m_nOutputs) + return FALSE; + for (uint32_t i = 0; i < m_nOutputs; i++) + results[m_nOutputs - i - 1] = PS.Pop(); + return TRUE; +} + +CPDF_SampledFunc::CPDF_SampledFunc() : CPDF_Function(Type::kType0Sampled) {} + +CPDF_SampledFunc::~CPDF_SampledFunc() {} + +FX_BOOL CPDF_SampledFunc::v_Init(CPDF_Object* pObj) { + CPDF_Stream* pStream = pObj->AsStream(); + if (!pStream) + return false; + + CPDF_Dictionary* pDict = pStream->GetDict(); + CPDF_Array* pSize = pDict->GetArrayFor("Size"); + CPDF_Array* pEncode = pDict->GetArrayFor("Encode"); + CPDF_Array* pDecode = pDict->GetArrayFor("Decode"); + m_nBitsPerSample = pDict->GetIntegerFor("BitsPerSample"); + if (!IsValidBitsPerSample(m_nBitsPerSample)) + return FALSE; + + m_SampleMax = 0xffffffff >> (32 - m_nBitsPerSample); + m_pSampleStream.reset(new CPDF_StreamAcc); + m_pSampleStream->LoadAllData(pStream, FALSE); + FX_SAFE_UINT32 nTotalSampleBits = 1; + m_EncodeInfo.resize(m_nInputs); + for (uint32_t i = 0; i < m_nInputs; i++) { + m_EncodeInfo[i].sizes = pSize ? pSize->GetIntegerAt(i) : 0; + if (!pSize && i == 0) + m_EncodeInfo[i].sizes = pDict->GetIntegerFor("Size"); + nTotalSampleBits *= m_EncodeInfo[i].sizes; + if (pEncode) { + m_EncodeInfo[i].encode_min = pEncode->GetFloatAt(i * 2); + m_EncodeInfo[i].encode_max = pEncode->GetFloatAt(i * 2 + 1); + } else { + m_EncodeInfo[i].encode_min = 0; + m_EncodeInfo[i].encode_max = + m_EncodeInfo[i].sizes == 1 ? 1 : (FX_FLOAT)m_EncodeInfo[i].sizes - 1; + } + } + nTotalSampleBits *= m_nBitsPerSample; + nTotalSampleBits *= m_nOutputs; + FX_SAFE_UINT32 nTotalSampleBytes = nTotalSampleBits; + nTotalSampleBytes += 7; + nTotalSampleBytes /= 8; + if (!nTotalSampleBytes.IsValid() || nTotalSampleBytes.ValueOrDie() == 0 || + nTotalSampleBytes.ValueOrDie() > m_pSampleStream->GetSize()) { + return FALSE; + } + m_DecodeInfo.resize(m_nOutputs); + for (uint32_t i = 0; i < m_nOutputs; i++) { + if (pDecode) { + m_DecodeInfo[i].decode_min = pDecode->GetFloatAt(2 * i); + m_DecodeInfo[i].decode_max = pDecode->GetFloatAt(2 * i + 1); + } else { + m_DecodeInfo[i].decode_min = m_pRanges[i * 2]; + m_DecodeInfo[i].decode_max = m_pRanges[i * 2 + 1]; + } + } + return TRUE; +} + +FX_BOOL CPDF_SampledFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const { + int pos = 0; + CFX_FixedBufGrow encoded_input_buf(m_nInputs); + FX_FLOAT* encoded_input = encoded_input_buf; + CFX_FixedBufGrow int_buf(m_nInputs * 2); + uint32_t* index = int_buf; + uint32_t* blocksize = index + m_nInputs; + for (uint32_t i = 0; i < m_nInputs; i++) { + if (i == 0) + blocksize[i] = 1; + else + blocksize[i] = blocksize[i - 1] * m_EncodeInfo[i - 1].sizes; + encoded_input[i] = + PDF_Interpolate(inputs[i], m_pDomains[i * 2], m_pDomains[i * 2 + 1], + m_EncodeInfo[i].encode_min, m_EncodeInfo[i].encode_max); + index[i] = std::min((uint32_t)std::max(0.f, encoded_input[i]), + m_EncodeInfo[i].sizes - 1); + pos += index[i] * blocksize[i]; + } + FX_SAFE_INT32 bits_to_output = m_nOutputs; + bits_to_output *= m_nBitsPerSample; + if (!bits_to_output.IsValid()) + return FALSE; + + FX_SAFE_INT32 bitpos = pos; + bitpos *= bits_to_output.ValueOrDie(); + if (!bitpos.IsValid()) + return FALSE; + + FX_SAFE_INT32 range_check = bitpos; + range_check += bits_to_output.ValueOrDie(); + if (!range_check.IsValid()) + return FALSE; + + const uint8_t* pSampleData = m_pSampleStream->GetData(); + if (!pSampleData) + return FALSE; + + for (uint32_t j = 0; j < m_nOutputs; j++) { + uint32_t sample = + GetBits32(pSampleData, bitpos.ValueOrDie() + j * m_nBitsPerSample, + m_nBitsPerSample); + FX_FLOAT encoded = (FX_FLOAT)sample; + for (uint32_t i = 0; i < m_nInputs; i++) { + if (index[i] == m_EncodeInfo[i].sizes - 1) { + if (index[i] == 0) + encoded = encoded_input[i] * (FX_FLOAT)sample; + } else { + FX_SAFE_INT32 bitpos2 = blocksize[i]; + bitpos2 += pos; + bitpos2 *= m_nOutputs; + bitpos2 += j; + bitpos2 *= m_nBitsPerSample; + if (!bitpos2.IsValid()) + return FALSE; + uint32_t sample1 = + GetBits32(pSampleData, bitpos2.ValueOrDie(), m_nBitsPerSample); + encoded += (encoded_input[i] - index[i]) * + ((FX_FLOAT)sample1 - (FX_FLOAT)sample); + } + } + results[j] = + PDF_Interpolate(encoded, 0, (FX_FLOAT)m_SampleMax, + m_DecodeInfo[j].decode_min, m_DecodeInfo[j].decode_max); + } + return TRUE; +} + +CPDF_ExpIntFunc::CPDF_ExpIntFunc() + : CPDF_Function(Type::kType2ExpotentialInterpolation), + m_pBeginValues(nullptr), + m_pEndValues(nullptr) {} + +CPDF_ExpIntFunc::~CPDF_ExpIntFunc() { + FX_Free(m_pBeginValues); + FX_Free(m_pEndValues); +} +FX_BOOL CPDF_ExpIntFunc::v_Init(CPDF_Object* pObj) { + CPDF_Dictionary* pDict = pObj->GetDict(); + if (!pDict) { + return FALSE; + } + CPDF_Array* pArray0 = pDict->GetArrayFor("C0"); + if (m_nOutputs == 0) { + m_nOutputs = 1; + if (pArray0) { + m_nOutputs = pArray0->GetCount(); + } + } + CPDF_Array* pArray1 = pDict->GetArrayFor("C1"); + m_pBeginValues = FX_Alloc2D(FX_FLOAT, m_nOutputs, 2); + m_pEndValues = FX_Alloc2D(FX_FLOAT, m_nOutputs, 2); + for (uint32_t i = 0; i < m_nOutputs; i++) { + m_pBeginValues[i] = pArray0 ? pArray0->GetFloatAt(i) : 0.0f; + m_pEndValues[i] = pArray1 ? pArray1->GetFloatAt(i) : 1.0f; + } + m_Exponent = pDict->GetFloatFor("N"); + m_nOrigOutputs = m_nOutputs; + if (m_nOutputs && m_nInputs > INT_MAX / m_nOutputs) { + return FALSE; + } + m_nOutputs *= m_nInputs; + return TRUE; +} +FX_BOOL CPDF_ExpIntFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const { + for (uint32_t i = 0; i < m_nInputs; i++) + for (uint32_t j = 0; j < m_nOrigOutputs; j++) { + results[i * m_nOrigOutputs + j] = + m_pBeginValues[j] + + (FX_FLOAT)FXSYS_pow(inputs[i], m_Exponent) * + (m_pEndValues[j] - m_pBeginValues[j]); + } + return TRUE; +} + +CPDF_StitchFunc::CPDF_StitchFunc() + : CPDF_Function(Type::kType3Stitching), + m_pBounds(nullptr), + m_pEncode(nullptr) {} + +CPDF_StitchFunc::~CPDF_StitchFunc() { + FX_Free(m_pBounds); + FX_Free(m_pEncode); +} + +FX_BOOL CPDF_StitchFunc::v_Init(CPDF_Object* pObj) { + CPDF_Dictionary* pDict = pObj->GetDict(); + if (!pDict) { + return FALSE; + } + if (m_nInputs != kRequiredNumInputs) { + return FALSE; + } + CPDF_Array* pArray = pDict->GetArrayFor("Functions"); + if (!pArray) { + return FALSE; + } + uint32_t nSubs = pArray->GetCount(); + if (nSubs == 0) + return FALSE; + m_nOutputs = 0; + for (uint32_t i = 0; i < nSubs; i++) { + CPDF_Object* pSub = pArray->GetDirectObjectAt(i); + if (pSub == pObj) + return FALSE; + std::unique_ptr pFunc(CPDF_Function::Load(pSub)); + if (!pFunc) + return FALSE; + // Check that the input dimensionality is 1, and that all output + // dimensionalities are the same. + if (pFunc->CountInputs() != kRequiredNumInputs) + return FALSE; + if (pFunc->CountOutputs() != m_nOutputs) { + if (m_nOutputs) + return FALSE; + + m_nOutputs = pFunc->CountOutputs(); + } + + m_pSubFunctions.push_back(std::move(pFunc)); + } + m_pBounds = FX_Alloc(FX_FLOAT, nSubs + 1); + m_pBounds[0] = m_pDomains[0]; + pArray = pDict->GetArrayFor("Bounds"); + if (!pArray) + return FALSE; + for (uint32_t i = 0; i < nSubs - 1; i++) + m_pBounds[i + 1] = pArray->GetFloatAt(i); + m_pBounds[nSubs] = m_pDomains[1]; + m_pEncode = FX_Alloc2D(FX_FLOAT, nSubs, 2); + pArray = pDict->GetArrayFor("Encode"); + if (!pArray) + return FALSE; + + for (uint32_t i = 0; i < nSubs * 2; i++) + m_pEncode[i] = pArray->GetFloatAt(i); + return TRUE; +} + +FX_BOOL CPDF_StitchFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* outputs) const { + FX_FLOAT input = inputs[0]; + size_t i; + for (i = 0; i < m_pSubFunctions.size() - 1; i++) { + if (input < m_pBounds[i + 1]) + break; + } + input = PDF_Interpolate(input, m_pBounds[i], m_pBounds[i + 1], + m_pEncode[i * 2], m_pEncode[i * 2 + 1]); + int nresults; + m_pSubFunctions[i]->Call(&input, kRequiredNumInputs, outputs, nresults); + return TRUE; +} + +// static +std::unique_ptr CPDF_Function::Load(CPDF_Object* pFuncObj) { + std::unique_ptr pFunc; + if (!pFuncObj) + return pFunc; + + int iType = -1; + if (CPDF_Stream* pStream = pFuncObj->AsStream()) + iType = pStream->GetDict()->GetIntegerFor("FunctionType"); + else if (CPDF_Dictionary* pDict = pFuncObj->AsDictionary()) + iType = pDict->GetIntegerFor("FunctionType"); + + Type type = IntegerToFunctionType(iType); + if (type == Type::kType0Sampled) + pFunc.reset(new CPDF_SampledFunc()); + else if (type == Type::kType2ExpotentialInterpolation) + pFunc.reset(new CPDF_ExpIntFunc()); + else if (type == Type::kType3Stitching) + pFunc.reset(new CPDF_StitchFunc()); + else if (type == Type::kType4PostScript) + pFunc.reset(new CPDF_PSFunc()); + + if (!pFunc || !pFunc->Init(pFuncObj)) + return std::unique_ptr(); + return pFunc; +} + +// static +CPDF_Function::Type CPDF_Function::IntegerToFunctionType(int iType) { + switch (iType) { + case 0: + case 2: + case 3: + case 4: + return static_cast(iType); + default: + return Type::kTypeInvalid; + } +} + +CPDF_Function::CPDF_Function(Type type) + : m_pDomains(nullptr), m_pRanges(nullptr), m_Type(type) {} + +CPDF_Function::~CPDF_Function() { + FX_Free(m_pDomains); + FX_Free(m_pRanges); +} + +FX_BOOL CPDF_Function::Init(CPDF_Object* pObj) { + CPDF_Stream* pStream = pObj->AsStream(); + CPDF_Dictionary* pDict = pStream ? pStream->GetDict() : pObj->AsDictionary(); + + CPDF_Array* pDomains = pDict->GetArrayFor("Domain"); + if (!pDomains) + return FALSE; + + m_nInputs = pDomains->GetCount() / 2; + if (m_nInputs == 0) + return FALSE; + + m_pDomains = FX_Alloc2D(FX_FLOAT, m_nInputs, 2); + for (uint32_t i = 0; i < m_nInputs * 2; i++) { + m_pDomains[i] = pDomains->GetFloatAt(i); + } + CPDF_Array* pRanges = pDict->GetArrayFor("Range"); + m_nOutputs = 0; + if (pRanges) { + m_nOutputs = pRanges->GetCount() / 2; + m_pRanges = FX_Alloc2D(FX_FLOAT, m_nOutputs, 2); + for (uint32_t i = 0; i < m_nOutputs * 2; i++) + m_pRanges[i] = pRanges->GetFloatAt(i); + } + uint32_t old_outputs = m_nOutputs; + if (!v_Init(pObj)) + return FALSE; + if (m_pRanges && m_nOutputs > old_outputs) { + m_pRanges = FX_Realloc(FX_FLOAT, m_pRanges, m_nOutputs * 2); + if (m_pRanges) { + FXSYS_memset(m_pRanges + (old_outputs * 2), 0, + sizeof(FX_FLOAT) * (m_nOutputs - old_outputs) * 2); + } + } + return TRUE; +} + +FX_BOOL CPDF_Function::Call(FX_FLOAT* inputs, + uint32_t ninputs, + FX_FLOAT* results, + int& nresults) const { + if (m_nInputs != ninputs) { + return FALSE; + } + nresults = m_nOutputs; + for (uint32_t i = 0; i < m_nInputs; i++) { + if (inputs[i] < m_pDomains[i * 2]) + inputs[i] = m_pDomains[i * 2]; + else if (inputs[i] > m_pDomains[i * 2 + 1]) + inputs[i] = m_pDomains[i * 2] + 1; + } + v_Call(inputs, results); + if (m_pRanges) { + for (uint32_t i = 0; i < m_nOutputs; i++) { + if (results[i] < m_pRanges[i * 2]) + results[i] = m_pRanges[i * 2]; + else if (results[i] > m_pRanges[i * 2 + 1]) + results[i] = m_pRanges[i * 2 + 1]; + } + } + return TRUE; +} + +const CPDF_SampledFunc* CPDF_Function::ToSampledFunc() const { + return m_Type == Type::kType0Sampled + ? static_cast(this) + : nullptr; +} + +const CPDF_ExpIntFunc* CPDF_Function::ToExpIntFunc() const { + return m_Type == Type::kType2ExpotentialInterpolation + ? static_cast(this) + : nullptr; +} + +const CPDF_StitchFunc* CPDF_Function::ToStitchFunc() const { + return m_Type == Type::kType3Stitching + ? static_cast(this) + : nullptr; +} -- cgit v1.2.3