// Copyright 2014 PDFium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com #include "core/fdrm/crypto/include/fx_crypt.h" #ifdef __cplusplus extern "C" { #endif typedef struct { unsigned int h[5]; unsigned char block[64]; int blkused; unsigned int lenhi, lenlo; } SHA_State; #define rol(x, y) (((x) << (y)) | (((unsigned int)x) >> (32 - y))) static void SHA_Core_Init(unsigned int h[5]) { h[0] = 0x67452301; h[1] = 0xefcdab89; h[2] = 0x98badcfe; h[3] = 0x10325476; h[4] = 0xc3d2e1f0; } static void SHATransform(unsigned int* digest, unsigned int* block) { unsigned int w[80]; unsigned int a, b, c, d, e; int t; for (t = 0; t < 16; t++) { w[t] = block[t]; } for (t = 16; t < 80; t++) { unsigned int tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16]; w[t] = rol(tmp, 1); } a = digest[0]; b = digest[1]; c = digest[2]; d = digest[3]; e = digest[4]; for (t = 0; t < 20; t++) { unsigned int tmp = rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999; e = d; d = c; c = rol(b, 30); b = a; a = tmp; } for (t = 20; t < 40; t++) { unsigned int tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1; e = d; d = c; c = rol(b, 30); b = a; a = tmp; } for (t = 40; t < 60; t++) { unsigned int tmp = rol(a, 5) + ((b & c) | (b & d) | (c & d)) + e + w[t] + 0x8f1bbcdc; e = d; d = c; c = rol(b, 30); b = a; a = tmp; } for (t = 60; t < 80; t++) { unsigned int tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6; e = d; d = c; c = rol(b, 30); b = a; a = tmp; } digest[0] += a; digest[1] += b; digest[2] += c; digest[3] += d; digest[4] += e; } void CRYPT_SHA1Start(void* context) { SHA_State* s = (SHA_State*)context; SHA_Core_Init(s->h); s->blkused = 0; s->lenhi = s->lenlo = 0; } void CRYPT_SHA1Update(void* context, const uint8_t* data, FX_DWORD size) { SHA_State* s = (SHA_State*)context; unsigned char* q = (unsigned char*)data; unsigned int wordblock[16]; int len = size; unsigned int lenw = len; int i; s->lenlo += lenw; s->lenhi += (s->lenlo < lenw); if (s->blkused && s->blkused + len < 64) { FXSYS_memcpy(s->block + s->blkused, q, len); s->blkused += len; } else { while (s->blkused + len >= 64) { FXSYS_memcpy(s->block + s->blkused, q, 64 - s->blkused); q += 64 - s->blkused; len -= 64 - s->blkused; for (i = 0; i < 16; i++) { wordblock[i] = (((unsigned int)s->block[i * 4 + 0]) << 24) | (((unsigned int)s->block[i * 4 + 1]) << 16) | (((unsigned int)s->block[i * 4 + 2]) << 8) | (((unsigned int)s->block[i * 4 + 3]) << 0); } SHATransform(s->h, wordblock); s->blkused = 0; } FXSYS_memcpy(s->block, q, len); s->blkused = len; } } void CRYPT_SHA1Finish(void* context, uint8_t digest[20]) { SHA_State* s = (SHA_State*)context; int i; int pad; unsigned char c[64]; unsigned int lenhi, lenlo; if (s->blkused >= 56) { pad = 56 + 64 - s->blkused; } else { pad = 56 - s->blkused; } lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3)); lenlo = (s->lenlo << 3); FXSYS_memset(c, 0, pad); c[0] = 0x80; CRYPT_SHA1Update(s, c, pad); c[0] = (lenhi >> 24) & 0xFF; c[1] = (lenhi >> 16) & 0xFF; c[2] = (lenhi >> 8) & 0xFF; c[3] = (lenhi >> 0) & 0xFF; c[4] = (lenlo >> 24) & 0xFF; c[5] = (lenlo >> 16) & 0xFF; c[6] = (lenlo >> 8) & 0xFF; c[7] = (lenlo >> 0) & 0xFF; CRYPT_SHA1Update(s, c, 8); for (i = 0; i < 5; i++) { digest[i * 4] = (s->h[i] >> 24) & 0xFF; digest[i * 4 + 1] = (s->h[i] >> 16) & 0xFF; digest[i * 4 + 2] = (s->h[i] >> 8) & 0xFF; digest[i * 4 + 3] = (s->h[i]) & 0xFF; } } void CRYPT_SHA1Generate(const uint8_t* data, FX_DWORD size, uint8_t digest[20]) { SHA_State s; CRYPT_SHA1Start(&s); CRYPT_SHA1Update(&s, data, size); CRYPT_SHA1Finish(&s, digest); } typedef struct { FX_DWORD total[2]; FX_DWORD state[8]; uint8_t buffer[64]; } sha256_context; #define GET_FX_DWORD(n, b, i) \ { \ (n) = ((FX_DWORD)(b)[(i)] << 24) | ((FX_DWORD)(b)[(i) + 1] << 16) | \ ((FX_DWORD)(b)[(i) + 2] << 8) | ((FX_DWORD)(b)[(i) + 3]); \ } #define PUT_FX_DWORD(n, b, i) \ { \ (b)[(i)] = (uint8_t)((n) >> 24); \ (b)[(i) + 1] = (uint8_t)((n) >> 16); \ (b)[(i) + 2] = (uint8_t)((n) >> 8); \ (b)[(i) + 3] = (uint8_t)((n)); \ } void CRYPT_SHA256Start(void* context) { sha256_context* ctx = (sha256_context*)context; ctx->total[0] = 0; ctx->total[1] = 0; ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; } static void sha256_process(sha256_context* ctx, const uint8_t data[64]) { FX_DWORD temp1, temp2, W[64]; FX_DWORD A, B, C, D, E, F, G, H; GET_FX_DWORD(W[0], data, 0); GET_FX_DWORD(W[1], data, 4); GET_FX_DWORD(W[2], data, 8); GET_FX_DWORD(W[3], data, 12); GET_FX_DWORD(W[4], data, 16); GET_FX_DWORD(W[5], data, 20); GET_FX_DWORD(W[6], data, 24); GET_FX_DWORD(W[7], data, 28); GET_FX_DWORD(W[8], data, 32); GET_FX_DWORD(W[9], data, 36); GET_FX_DWORD(W[10], data, 40); GET_FX_DWORD(W[11], data, 44); GET_FX_DWORD(W[12], data, 48); GET_FX_DWORD(W[13], data, 52); GET_FX_DWORD(W[14], data, 56); GET_FX_DWORD(W[15], data, 60); #define SHR(x, n) ((x & 0xFFFFFFFF) >> n) #define ROTR(x, n) (SHR(x, n) | (x << (32 - n))) #define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) #define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) #define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define F0(x, y, z) ((x & y) | (z & (x | y))) #define F1(x, y, z) (z ^ (x & (y ^ z))) #define R(t) (W[t] = S1(W[t - 2]) + W[t - 7] + S0(W[t - 15]) + W[t - 16]) #define P(a, b, c, d, e, f, g, h, x, K) \ { \ temp1 = h + S3(e) + F1(e, f, g) + K + x; \ temp2 = S2(a) + F0(a, b, c); \ d += temp1; \ h = temp1 + temp2; \ } A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; F = ctx->state[5]; G = ctx->state[6]; H = ctx->state[7]; P(A, B, C, D, E, F, G, H, W[0], 0x428A2F98); P(H, A, B, C, D, E, F, G, W[1], 0x71374491); P(G, H, A, B, C, D, E, F, W[2], 0xB5C0FBCF); P(F, G, H, A, B, C, D, E, W[3], 0xE9B5DBA5); P(E, F, G, H, A, B, C, D, W[4], 0x3956C25B); P(D, E, F, G, H, A, B, C, W[5], 0x59F111F1); P(C, D, E, F, G, H, A, B, W[6], 0x923F82A4); P(B, C, D, E, F, G, H, A, W[7], 0xAB1C5ED5); P(A, B, C, D, E, F, G, H, W[8], 0xD807AA98); P(H, A, B, C, D, E, F, G, W[9], 0x12835B01); P(G, H, A, B, C, D, E, F, W[10], 0x243185BE); P(F, G, H, A, B, C, D, E, W[11], 0x550C7DC3); P(E, F, G, H, A, B, C, D, W[12], 0x72BE5D74); P(D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE); P(C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7); P(B, C, D, E, F, G, H, A, W[15], 0xC19BF174); P(A, B, C, D, E, F, G, H, R(16), 0xE49B69C1); P(H, A, B, C, D, E, F, G, R(17), 0xEFBE4786); P(G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6); P(F, G, H, A, B, C, D, E, R(19), 0x240CA1CC); P(E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F); P(D, E, F, G, H, A, B, C, R(21), 0x4A7484AA); P(C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC); P(B, C, D, E, F, G, H, A, R(23), 0x76F988DA); P(A, B, C, D, E, F, G, H, R(24), 0x983E5152); P(H, A, B, C, D, E, F, G, R(25), 0xA831C66D); P(G, H, A, B, C, D, E, F, R(26), 0xB00327C8); P(F, G, H, A, B, C, D, E, R(27), 0xBF597FC7); P(E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3); P(D, E, F, G, H, A, B, C, R(29), 0xD5A79147); P(C, D, E, F, G, H, A, B, R(30), 0x06CA6351); P(B, C, D, E, F, G, H, A, R(31), 0x14292967); P(A, B, C, D, E, F, G, H, R(32), 0x27B70A85); P(H, A, B, C, D, E, F, G, R(33), 0x2E1B2138); P(G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC); P(F, G, H, A, B, C, D, E, R(35), 0x53380D13); P(E, F, G, H, A, B, C, D, R(36), 0x650A7354); P(D, E, F, G, H, A, B, C, R(37), 0x766A0ABB); P(C, D, E, F, G, H, A, B, R(38), 0x81C2C92E); P(B, C, D, E, F, G, H, A, R(39), 0x92722C85); P(A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1); P(H, A, B, C, D, E, F, G, R(41), 0xA81A664B); P(G, H, A, B, C, D, E, F, R(42), 0xC24B8B70); P(F, G, H, A, B, C, D, E, R(43), 0xC76C51A3); P(E, F, G, H, A, B, C, D, R(44), 0xD192E819); P(D, E, F, G, H, A, B, C, R(45), 0xD6990624); P(C, D, E, F, G, H, A, B, R(46), 0xF40E3585); P(B, C, D, E, F, G, H, A, R(47), 0x106AA070); P(A, B, C, D, E, F, G, H, R(48), 0x19A4C116); P(H, A, B, C, D, E, F, G, R(49), 0x1E376C08); P(G, H, A, B, C, D, E, F, R(50), 0x2748774C); P(F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5); P(E, F, G, H, A, B, C, D, R(52), 0x391C0CB3); P(D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A); P(C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F); P(B, C, D, E, F, G, H, A, R(55), 0x682E6FF3); P(A, B, C, D, E, F, G, H, R(56), 0x748F82EE); P(H, A, B, C, D, E, F, G, R(57), 0x78A5636F); P(G, H, A, B, C, D, E, F, R(58), 0x84C87814); P(F, G, H, A, B, C, D, E, R(59), 0x8CC70208); P(E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA); P(D, E, F, G, H, A, B, C, R(61), 0xA4506CEB); P(C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7); P(B, C, D, E, F, G, H, A, R(63), 0xC67178F2); ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; ctx->state[5] += F; ctx->state[6] += G; ctx->state[7] += H; } void CRYPT_SHA256Update(void* context, const uint8_t* input, FX_DWORD length) { sha256_context* ctx = (sha256_context*)context; FX_DWORD left, fill; if (!length) { return; } left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += length; ctx->total[0] &= 0xFFFFFFFF; if (ctx->total[0] < length) { ctx->total[1]++; } if (left && length >= fill) { FXSYS_memcpy((void*)(ctx->buffer + left), (void*)input, fill); sha256_process(ctx, ctx->buffer); length -= fill; input += fill; left = 0; } while (length >= 64) { sha256_process(ctx, input); length -= 64; input += 64; } if (length) { FXSYS_memcpy((void*)(ctx->buffer + left), (void*)input, length); } } static const uint8_t sha256_padding[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; void CRYPT_SHA256Finish(void* context, uint8_t digest[32]) { sha256_context* ctx = (sha256_context*)context; FX_DWORD last, padn; FX_DWORD high, low; uint8_t msglen[8]; high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); low = (ctx->total[0] << 3); PUT_FX_DWORD(high, msglen, 0); PUT_FX_DWORD(low, msglen, 4); last = ctx->total[0] & 0x3F; padn = (last < 56) ? (56 - last) : (120 - last); CRYPT_SHA256Update(ctx, sha256_padding, padn); CRYPT_SHA256Update(ctx, msglen, 8); PUT_FX_DWORD(ctx->state[0], digest, 0); PUT_FX_DWORD(ctx->state[1], digest, 4); PUT_FX_DWORD(ctx->state[2], digest, 8); PUT_FX_DWORD(ctx->state[3], digest, 12); PUT_FX_DWORD(ctx->state[4], digest, 16); PUT_FX_DWORD(ctx->state[5], digest, 20); PUT_FX_DWORD(ctx->state[6], digest, 24); PUT_FX_DWORD(ctx->state[7], digest, 28); } void CRYPT_SHA256Generate(const uint8_t* data, FX_DWORD size, uint8_t digest[32]) { sha256_context ctx; CRYPT_SHA256Start(&ctx); CRYPT_SHA256Update(&ctx, data, size); CRYPT_SHA256Finish(&ctx, digest); } typedef struct { uint64_t total[2]; uint64_t state[8]; uint8_t buffer[128]; } sha384_context; uint64_t FX_ato64i(const FX_CHAR* str) { FXSYS_assert(str); uint64_t ret = 0; int len = (int)FXSYS_strlen(str); len = len > 16 ? 16 : len; for (int i = 0; i < len; ++i) { if (i) { ret <<= 4; } if (str[i] >= '0' && str[i] <= '9') { ret |= (str[i] - '0') & 0xFF; } else if (str[i] >= 'a' && str[i] <= 'f') { ret |= (str[i] - 'a' + 10) & 0xFF; } else if (str[i] >= 'A' && str[i] <= 'F') { ret |= (str[i] - 'A' + 10) & 0xFF; } else { FXSYS_assert(FALSE); } } return ret; } void CRYPT_SHA384Start(void* context) { if (!context) { return; } sha384_context* ctx = (sha384_context*)context; FXSYS_memset(ctx, 0, sizeof(sha384_context)); ctx->state[0] = FX_ato64i("cbbb9d5dc1059ed8"); ctx->state[1] = FX_ato64i("629a292a367cd507"); ctx->state[2] = FX_ato64i("9159015a3070dd17"); ctx->state[3] = FX_ato64i("152fecd8f70e5939"); ctx->state[4] = FX_ato64i("67332667ffc00b31"); ctx->state[5] = FX_ato64i("8eb44a8768581511"); ctx->state[6] = FX_ato64i("db0c2e0d64f98fa7"); ctx->state[7] = FX_ato64i("47b5481dbefa4fa4"); } #define SHA384_F0(x, y, z) ((x & y) | (z & (x | y))) #define SHA384_F1(x, y, z) (z ^ (x & (y ^ z))) #define SHA384_SHR(x, n) (x >> n) #define SHA384_ROTR(x, n) (SHA384_SHR(x, n) | x << (64 - n)) #define SHA384_S0(x) (SHA384_ROTR(x, 1) ^ SHA384_ROTR(x, 8) ^ SHA384_SHR(x, 7)) #define SHA384_S1(x) \ (SHA384_ROTR(x, 19) ^ SHA384_ROTR(x, 61) ^ SHA384_SHR(x, 6)) #define SHA384_S2(x) \ (SHA384_ROTR(x, 28) ^ SHA384_ROTR(x, 34) ^ SHA384_ROTR(x, 39)) #define SHA384_S3(x) \ (SHA384_ROTR(x, 14) ^ SHA384_ROTR(x, 18) ^ SHA384_ROTR(x, 41)) #define SHA384_P(a, b, c, d, e, f, g, h, x, K) \ { \ temp1 = h + SHA384_S3(e) + SHA384_F1(e, f, g) + K + x; \ temp2 = SHA384_S2(a) + SHA384_F0(a, b, c); \ d += temp1; \ h = temp1 + temp2; \ } static const uint8_t sha384_padding[128] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; #define SHA384_R(t) \ (W[t] = SHA384_S1(W[t - 2]) + W[t - 7] + SHA384_S0(W[t - 15]) + W[t - 16]) static const FX_CHAR* constants[] = { "428a2f98d728ae22", "7137449123ef65cd", "b5c0fbcfec4d3b2f", "e9b5dba58189dbbc", "3956c25bf348b538", "59f111f1b605d019", "923f82a4af194f9b", "ab1c5ed5da6d8118", "d807aa98a3030242", "12835b0145706fbe", "243185be4ee4b28c", "550c7dc3d5ffb4e2", "72be5d74f27b896f", "80deb1fe3b1696b1", "9bdc06a725c71235", "c19bf174cf692694", "e49b69c19ef14ad2", "efbe4786384f25e3", "0fc19dc68b8cd5b5", "240ca1cc77ac9c65", "2de92c6f592b0275", "4a7484aa6ea6e483", "5cb0a9dcbd41fbd4", "76f988da831153b5", "983e5152ee66dfab", "a831c66d2db43210", "b00327c898fb213f", "bf597fc7beef0ee4", "c6e00bf33da88fc2", "d5a79147930aa725", "06ca6351e003826f", "142929670a0e6e70", "27b70a8546d22ffc", "2e1b21385c26c926", "4d2c6dfc5ac42aed", "53380d139d95b3df", "650a73548baf63de", "766a0abb3c77b2a8", "81c2c92e47edaee6", "92722c851482353b", "a2bfe8a14cf10364", "a81a664bbc423001", "c24b8b70d0f89791", "c76c51a30654be30", "d192e819d6ef5218", "d69906245565a910", "f40e35855771202a", "106aa07032bbd1b8", "19a4c116b8d2d0c8", "1e376c085141ab53", "2748774cdf8eeb99", "34b0bcb5e19b48a8", "391c0cb3c5c95a63", "4ed8aa4ae3418acb", "5b9cca4f7763e373", "682e6ff3d6b2b8a3", "748f82ee5defb2fc", "78a5636f43172f60", "84c87814a1f0ab72", "8cc702081a6439ec", "90befffa23631e28", "a4506cebde82bde9", "bef9a3f7b2c67915", "c67178f2e372532b", "ca273eceea26619c", "d186b8c721c0c207", "eada7dd6cde0eb1e", "f57d4f7fee6ed178", "06f067aa72176fba", "0a637dc5a2c898a6", "113f9804bef90dae", "1b710b35131c471b", "28db77f523047d84", "32caab7b40c72493", "3c9ebe0a15c9bebc", "431d67c49c100d4c", "4cc5d4becb3e42b6", "597f299cfc657e2a", "5fcb6fab3ad6faec", "6c44198c4a475817", }; #define GET_FX_64WORD(n, b, i) \ { \ (n) = ((uint64_t)(b)[(i)] << 56) | ((uint64_t)(b)[(i) + 1] << 48) | \ ((uint64_t)(b)[(i) + 2] << 40) | ((uint64_t)(b)[(i) + 3] << 32) | \ ((uint64_t)(b)[(i) + 4] << 24) | ((uint64_t)(b)[(i) + 5] << 16) | \ ((uint64_t)(b)[(i) + 6] << 8) | ((uint64_t)(b)[(i) + 7]); \ } #define PUT_FX_64DWORD(n, b, i) \ { \ (b)[(i)] = (uint8_t)((n) >> 56); \ (b)[(i) + 1] = (uint8_t)((n) >> 48); \ (b)[(i) + 2] = (uint8_t)((n) >> 40); \ (b)[(i) + 3] = (uint8_t)((n) >> 32); \ (b)[(i) + 4] = (uint8_t)((n) >> 24); \ (b)[(i) + 5] = (uint8_t)((n) >> 16); \ (b)[(i) + 6] = (uint8_t)((n) >> 8); \ (b)[(i) + 7] = (uint8_t)((n)); \ } static void sha384_process(sha384_context* ctx, const uint8_t data[128]) { uint64_t temp1, temp2; uint64_t A, B, C, D, E, F, G, H; uint64_t W[80]; GET_FX_64WORD(W[0], data, 0); GET_FX_64WORD(W[1], data, 8); GET_FX_64WORD(W[2], data, 16); GET_FX_64WORD(W[3], data, 24); GET_FX_64WORD(W[4], data, 32); GET_FX_64WORD(W[5], data, 40); GET_FX_64WORD(W[6], data, 48); GET_FX_64WORD(W[7], data, 56); GET_FX_64WORD(W[8], data, 64); GET_FX_64WORD(W[9], data, 72); GET_FX_64WORD(W[10], data, 80); GET_FX_64WORD(W[11], data, 88); GET_FX_64WORD(W[12], data, 96); GET_FX_64WORD(W[13], data, 104); GET_FX_64WORD(W[14], data, 112); GET_FX_64WORD(W[15], data, 120); A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; F = ctx->state[5]; G = ctx->state[6]; H = ctx->state[7]; for (int i = 0; i < 10; ++i) { uint64_t temp[8]; if (i < 2) { temp[0] = W[i * 8]; temp[1] = W[i * 8 + 1]; temp[2] = W[i * 8 + 2]; temp[3] = W[i * 8 + 3]; temp[4] = W[i * 8 + 4]; temp[5] = W[i * 8 + 5]; temp[6] = W[i * 8 + 6]; temp[7] = W[i * 8 + 7]; } else { temp[0] = SHA384_R(i * 8); temp[1] = SHA384_R(i * 8 + 1); temp[2] = SHA384_R(i * 8 + 2); temp[3] = SHA384_R(i * 8 + 3); temp[4] = SHA384_R(i * 8 + 4); temp[5] = SHA384_R(i * 8 + 5); temp[6] = SHA384_R(i * 8 + 6); temp[7] = SHA384_R(i * 8 + 7); } SHA384_P(A, B, C, D, E, F, G, H, temp[0], FX_ato64i(constants[i * 8])); SHA384_P(H, A, B, C, D, E, F, G, temp[1], FX_ato64i(constants[i * 8 + 1])); SHA384_P(G, H, A, B, C, D, E, F, temp[2], FX_ato64i(constants[i * 8 + 2])); SHA384_P(F, G, H, A, B, C, D, E, temp[3], FX_ato64i(constants[i * 8 + 3])); SHA384_P(E, F, G, H, A, B, C, D, temp[4], FX_ato64i(constants[i * 8 + 4])); SHA384_P(D, E, F, G, H, A, B, C, temp[5], FX_ato64i(constants[i * 8 + 5])); SHA384_P(C, D, E, F, G, H, A, B, temp[6], FX_ato64i(constants[i * 8 + 6])); SHA384_P(B, C, D, E, F, G, H, A, temp[7], FX_ato64i(constants[i * 8 + 7])); } ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; ctx->state[5] += F; ctx->state[6] += G; ctx->state[7] += H; } void CRYPT_SHA384Update(void* context, const uint8_t* input, FX_DWORD length) { sha384_context* ctx = (sha384_context*)context; FX_DWORD left, fill; if (!length) { return; } left = (FX_DWORD)ctx->total[0] & 0x7F; fill = 128 - left; ctx->total[0] += length; if (ctx->total[0] < length) { ctx->total[1]++; } if (left && length >= fill) { FXSYS_memcpy((void*)(ctx->buffer + left), (void*)input, fill); sha384_process(ctx, ctx->buffer); length -= fill; input += fill; left = 0; } while (length >= 128) { sha384_process(ctx, input); length -= 128; input += 128; } if (length) { FXSYS_memcpy((void*)(ctx->buffer + left), (void*)input, length); } } void CRYPT_SHA384Finish(void* context, uint8_t digest[48]) { sha384_context* ctx = (sha384_context*)context; FX_DWORD last, padn; uint8_t msglen[16]; FXSYS_memset(msglen, 0, 16); uint64_t high, low; high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); low = (ctx->total[0] << 3); PUT_FX_64DWORD(high, msglen, 0); PUT_FX_64DWORD(low, msglen, 8); last = (FX_DWORD)ctx->total[0] & 0x7F; padn = (last < 112) ? (112 - last) : (240 - last); CRYPT_SHA384Update(ctx, sha384_padding, padn); CRYPT_SHA384Update(ctx, msglen, 16); PUT_FX_64DWORD(ctx->state[0], digest, 0); PUT_FX_64DWORD(ctx->state[1], digest, 8); PUT_FX_64DWORD(ctx->state[2], digest, 16); PUT_FX_64DWORD(ctx->state[3], digest, 24); PUT_FX_64DWORD(ctx->state[4], digest, 32); PUT_FX_64DWORD(ctx->state[5], digest, 40); } void CRYPT_SHA384Generate(const uint8_t* data, FX_DWORD size, uint8_t digest[64]) { sha384_context context; CRYPT_SHA384Start(&context); CRYPT_SHA384Update(&context, data, size); CRYPT_SHA384Finish(&context, digest); } void CRYPT_SHA512Start(void* context) { if (!context) { return; } sha384_context* ctx = (sha384_context*)context; FXSYS_memset(ctx, 0, sizeof(sha384_context)); ctx->state[0] = FX_ato64i("6a09e667f3bcc908"); ctx->state[1] = FX_ato64i("bb67ae8584caa73b"); ctx->state[2] = FX_ato64i("3c6ef372fe94f82b"); ctx->state[3] = FX_ato64i("a54ff53a5f1d36f1"); ctx->state[4] = FX_ato64i("510e527fade682d1"); ctx->state[5] = FX_ato64i("9b05688c2b3e6c1f"); ctx->state[6] = FX_ato64i("1f83d9abfb41bd6b"); ctx->state[7] = FX_ato64i("5be0cd19137e2179"); } void CRYPT_SHA512Update(void* context, const uint8_t* data, FX_DWORD size) { CRYPT_SHA384Update(context, data, size); } void CRYPT_SHA512Finish(void* context, uint8_t digest[64]) { sha384_context* ctx = (sha384_context*)context; FX_DWORD last, padn; uint8_t msglen[16]; FXSYS_memset(msglen, 0, 16); uint64_t high, low; high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); low = (ctx->total[0] << 3); PUT_FX_64DWORD(high, msglen, 0); PUT_FX_64DWORD(low, msglen, 8); last = (FX_DWORD)ctx->total[0] & 0x7F; padn = (last < 112) ? (112 - last) : (240 - last); CRYPT_SHA512Update(ctx, sha384_padding, padn); CRYPT_SHA512Update(ctx, msglen, 16); PUT_FX_64DWORD(ctx->state[0], digest, 0); PUT_FX_64DWORD(ctx->state[1], digest, 8); PUT_FX_64DWORD(ctx->state[2], digest, 16); PUT_FX_64DWORD(ctx->state[3], digest, 24); PUT_FX_64DWORD(ctx->state[4], digest, 32); PUT_FX_64DWORD(ctx->state[5], digest, 40); PUT_FX_64DWORD(ctx->state[6], digest, 48); PUT_FX_64DWORD(ctx->state[7], digest, 56); } void CRYPT_SHA512Generate(const uint8_t* data, FX_DWORD size, uint8_t digest[64]) { sha384_context context; CRYPT_SHA512Start(&context); CRYPT_SHA512Update(&context, data, size); CRYPT_SHA512Finish(&context, digest); } #ifdef __cplusplus }; #endif