// Copyright 2014 PDFium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com #include "core/fdrm/fx_crypt.h" #define rol(x, y) (((x) << (y)) | (((unsigned int)x) >> (32 - y))) #define SHA_GET_UINT32(n, b, i) \ { \ (n) = ((uint32_t)(b)[(i)] << 24) | ((uint32_t)(b)[(i) + 1] << 16) | \ ((uint32_t)(b)[(i) + 2] << 8) | ((uint32_t)(b)[(i) + 3]); \ } #define SHA_PUT_UINT32(n, b, i) \ { \ (b)[(i)] = (uint8_t)((n) >> 24); \ (b)[(i) + 1] = (uint8_t)((n) >> 16); \ (b)[(i) + 2] = (uint8_t)((n) >> 8); \ (b)[(i) + 3] = (uint8_t)((n)); \ } #define SHA384_F0(x, y, z) ((x & y) | (z & (x | y))) #define SHA384_F1(x, y, z) (z ^ (x & (y ^ z))) #define SHA384_SHR(x, n) (x >> n) #define SHA384_ROTR(x, n) (SHA384_SHR(x, n) | x << (64 - n)) #define SHA384_S0(x) (SHA384_ROTR(x, 1) ^ SHA384_ROTR(x, 8) ^ SHA384_SHR(x, 7)) #define SHA384_S1(x) \ (SHA384_ROTR(x, 19) ^ SHA384_ROTR(x, 61) ^ SHA384_SHR(x, 6)) #define SHA384_S2(x) \ (SHA384_ROTR(x, 28) ^ SHA384_ROTR(x, 34) ^ SHA384_ROTR(x, 39)) #define SHA384_S3(x) \ (SHA384_ROTR(x, 14) ^ SHA384_ROTR(x, 18) ^ SHA384_ROTR(x, 41)) #define SHA384_P(a, b, c, d, e, f, g, h, x, K) \ { \ temp1 = h + SHA384_S3(e) + SHA384_F1(e, f, g) + K + x; \ temp2 = SHA384_S2(a) + SHA384_F0(a, b, c); \ d += temp1; \ h = temp1 + temp2; \ } #define SHA384_R(t) \ (W[t] = SHA384_S1(W[t - 2]) + W[t - 7] + SHA384_S0(W[t - 15]) + W[t - 16]) #define GET_FX_64WORD(n, b, i) \ { \ (n) = ((uint64_t)(b)[(i)] << 56) | ((uint64_t)(b)[(i) + 1] << 48) | \ ((uint64_t)(b)[(i) + 2] << 40) | ((uint64_t)(b)[(i) + 3] << 32) | \ ((uint64_t)(b)[(i) + 4] << 24) | ((uint64_t)(b)[(i) + 5] << 16) | \ ((uint64_t)(b)[(i) + 6] << 8) | ((uint64_t)(b)[(i) + 7]); \ } #define PUT_UINT64(n, b, i) \ { \ (b)[(i)] = (uint8_t)((n) >> 56); \ (b)[(i) + 1] = (uint8_t)((n) >> 48); \ (b)[(i) + 2] = (uint8_t)((n) >> 40); \ (b)[(i) + 3] = (uint8_t)((n) >> 32); \ (b)[(i) + 4] = (uint8_t)((n) >> 24); \ (b)[(i) + 5] = (uint8_t)((n) >> 16); \ (b)[(i) + 6] = (uint8_t)((n) >> 8); \ (b)[(i) + 7] = (uint8_t)((n)); \ } #define SHR(x, n) ((x & 0xFFFFFFFF) >> n) #define ROTR(x, n) (SHR(x, n) | (x << (32 - n))) #define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) #define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) #define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define F0(x, y, z) ((x & y) | (z & (x | y))) #define F1(x, y, z) (z ^ (x & (y ^ z))) #define R(t) (W[t] = S1(W[t - 2]) + W[t - 7] + S0(W[t - 15]) + W[t - 16]) #define PS(a, b, c, d, e, f, g, h, x, K) \ { \ temp1 = h + S3(e) + F1(e, f, g) + K + x; \ temp2 = S2(a) + F0(a, b, c); \ d += temp1; \ h = temp1 + temp2; \ } namespace { void SHA_Core_Init(unsigned int h[5]) { h[0] = 0x67452301; h[1] = 0xefcdab89; h[2] = 0x98badcfe; h[3] = 0x10325476; h[4] = 0xc3d2e1f0; } void SHATransform(unsigned int* digest, unsigned int* block) { unsigned int w[80]; unsigned int a, b, c, d, e; int t; for (t = 0; t < 16; t++) { w[t] = block[t]; } for (t = 16; t < 80; t++) { unsigned int tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16]; w[t] = rol(tmp, 1); } a = digest[0]; b = digest[1]; c = digest[2]; d = digest[3]; e = digest[4]; for (t = 0; t < 20; t++) { unsigned int tmp = rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999; e = d; d = c; c = rol(b, 30); b = a; a = tmp; } for (t = 20; t < 40; t++) { unsigned int tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1; e = d; d = c; c = rol(b, 30); b = a; a = tmp; } for (t = 40; t < 60; t++) { unsigned int tmp = rol(a, 5) + ((b & c) | (b & d) | (c & d)) + e + w[t] + 0x8f1bbcdc; e = d; d = c; c = rol(b, 30); b = a; a = tmp; } for (t = 60; t < 80; t++) { unsigned int tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6; e = d; d = c; c = rol(b, 30); b = a; a = tmp; } digest[0] += a; digest[1] += b; digest[2] += c; digest[3] += d; digest[4] += e; } void sha256_process(CRYPT_sha2_context* ctx, const uint8_t data[64]) { uint32_t W[64]; SHA_GET_UINT32(W[0], data, 0); SHA_GET_UINT32(W[1], data, 4); SHA_GET_UINT32(W[2], data, 8); SHA_GET_UINT32(W[3], data, 12); SHA_GET_UINT32(W[4], data, 16); SHA_GET_UINT32(W[5], data, 20); SHA_GET_UINT32(W[6], data, 24); SHA_GET_UINT32(W[7], data, 28); SHA_GET_UINT32(W[8], data, 32); SHA_GET_UINT32(W[9], data, 36); SHA_GET_UINT32(W[10], data, 40); SHA_GET_UINT32(W[11], data, 44); SHA_GET_UINT32(W[12], data, 48); SHA_GET_UINT32(W[13], data, 52); SHA_GET_UINT32(W[14], data, 56); SHA_GET_UINT32(W[15], data, 60); uint32_t temp1; uint32_t temp2; uint32_t A = ctx->state[0]; uint32_t B = ctx->state[1]; uint32_t C = ctx->state[2]; uint32_t D = ctx->state[3]; uint32_t E = ctx->state[4]; uint32_t F = ctx->state[5]; uint32_t G = ctx->state[6]; uint32_t H = ctx->state[7]; PS(A, B, C, D, E, F, G, H, W[0], 0x428A2F98); PS(H, A, B, C, D, E, F, G, W[1], 0x71374491); PS(G, H, A, B, C, D, E, F, W[2], 0xB5C0FBCF); PS(F, G, H, A, B, C, D, E, W[3], 0xE9B5DBA5); PS(E, F, G, H, A, B, C, D, W[4], 0x3956C25B); PS(D, E, F, G, H, A, B, C, W[5], 0x59F111F1); PS(C, D, E, F, G, H, A, B, W[6], 0x923F82A4); PS(B, C, D, E, F, G, H, A, W[7], 0xAB1C5ED5); PS(A, B, C, D, E, F, G, H, W[8], 0xD807AA98); PS(H, A, B, C, D, E, F, G, W[9], 0x12835B01); PS(G, H, A, B, C, D, E, F, W[10], 0x243185BE); PS(F, G, H, A, B, C, D, E, W[11], 0x550C7DC3); PS(E, F, G, H, A, B, C, D, W[12], 0x72BE5D74); PS(D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE); PS(C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7); PS(B, C, D, E, F, G, H, A, W[15], 0xC19BF174); PS(A, B, C, D, E, F, G, H, R(16), 0xE49B69C1); PS(H, A, B, C, D, E, F, G, R(17), 0xEFBE4786); PS(G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6); PS(F, G, H, A, B, C, D, E, R(19), 0x240CA1CC); PS(E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F); PS(D, E, F, G, H, A, B, C, R(21), 0x4A7484AA); PS(C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC); PS(B, C, D, E, F, G, H, A, R(23), 0x76F988DA); PS(A, B, C, D, E, F, G, H, R(24), 0x983E5152); PS(H, A, B, C, D, E, F, G, R(25), 0xA831C66D); PS(G, H, A, B, C, D, E, F, R(26), 0xB00327C8); PS(F, G, H, A, B, C, D, E, R(27), 0xBF597FC7); PS(E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3); PS(D, E, F, G, H, A, B, C, R(29), 0xD5A79147); PS(C, D, E, F, G, H, A, B, R(30), 0x06CA6351); PS(B, C, D, E, F, G, H, A, R(31), 0x14292967); PS(A, B, C, D, E, F, G, H, R(32), 0x27B70A85); PS(H, A, B, C, D, E, F, G, R(33), 0x2E1B2138); PS(G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC); PS(F, G, H, A, B, C, D, E, R(35), 0x53380D13); PS(E, F, G, H, A, B, C, D, R(36), 0x650A7354); PS(D, E, F, G, H, A, B, C, R(37), 0x766A0ABB); PS(C, D, E, F, G, H, A, B, R(38), 0x81C2C92E); PS(B, C, D, E, F, G, H, A, R(39), 0x92722C85); PS(A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1); PS(H, A, B, C, D, E, F, G, R(41), 0xA81A664B); PS(G, H, A, B, C, D, E, F, R(42), 0xC24B8B70); PS(F, G, H, A, B, C, D, E, R(43), 0xC76C51A3); PS(E, F, G, H, A, B, C, D, R(44), 0xD192E819); PS(D, E, F, G, H, A, B, C, R(45), 0xD6990624); PS(C, D, E, F, G, H, A, B, R(46), 0xF40E3585); PS(B, C, D, E, F, G, H, A, R(47), 0x106AA070); PS(A, B, C, D, E, F, G, H, R(48), 0x19A4C116); PS(H, A, B, C, D, E, F, G, R(49), 0x1E376C08); PS(G, H, A, B, C, D, E, F, R(50), 0x2748774C); PS(F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5); PS(E, F, G, H, A, B, C, D, R(52), 0x391C0CB3); PS(D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A); PS(C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F); PS(B, C, D, E, F, G, H, A, R(55), 0x682E6FF3); PS(A, B, C, D, E, F, G, H, R(56), 0x748F82EE); PS(H, A, B, C, D, E, F, G, R(57), 0x78A5636F); PS(G, H, A, B, C, D, E, F, R(58), 0x84C87814); PS(F, G, H, A, B, C, D, E, R(59), 0x8CC70208); PS(E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA); PS(D, E, F, G, H, A, B, C, R(61), 0xA4506CEB); PS(C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7); PS(B, C, D, E, F, G, H, A, R(63), 0xC67178F2); ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; ctx->state[5] += F; ctx->state[6] += G; ctx->state[7] += H; } const uint8_t sha256_padding[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; const uint8_t sha384_padding[128] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; uint64_t const constants[] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL, }; void sha384_process(CRYPT_sha2_context* ctx, const uint8_t data[128]) { uint64_t temp1, temp2; uint64_t A, B, C, D, E, F, G, H; uint64_t W[80]; GET_FX_64WORD(W[0], data, 0); GET_FX_64WORD(W[1], data, 8); GET_FX_64WORD(W[2], data, 16); GET_FX_64WORD(W[3], data, 24); GET_FX_64WORD(W[4], data, 32); GET_FX_64WORD(W[5], data, 40); GET_FX_64WORD(W[6], data, 48); GET_FX_64WORD(W[7], data, 56); GET_FX_64WORD(W[8], data, 64); GET_FX_64WORD(W[9], data, 72); GET_FX_64WORD(W[10], data, 80); GET_FX_64WORD(W[11], data, 88); GET_FX_64WORD(W[12], data, 96); GET_FX_64WORD(W[13], data, 104); GET_FX_64WORD(W[14], data, 112); GET_FX_64WORD(W[15], data, 120); A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; F = ctx->state[5]; G = ctx->state[6]; H = ctx->state[7]; for (int i = 0; i < 10; ++i) { uint64_t temp[8]; if (i < 2) { temp[0] = W[i * 8]; temp[1] = W[i * 8 + 1]; temp[2] = W[i * 8 + 2]; temp[3] = W[i * 8 + 3]; temp[4] = W[i * 8 + 4]; temp[5] = W[i * 8 + 5]; temp[6] = W[i * 8 + 6]; temp[7] = W[i * 8 + 7]; } else { temp[0] = SHA384_R(i * 8); temp[1] = SHA384_R(i * 8 + 1); temp[2] = SHA384_R(i * 8 + 2); temp[3] = SHA384_R(i * 8 + 3); temp[4] = SHA384_R(i * 8 + 4); temp[5] = SHA384_R(i * 8 + 5); temp[6] = SHA384_R(i * 8 + 6); temp[7] = SHA384_R(i * 8 + 7); } SHA384_P(A, B, C, D, E, F, G, H, temp[0], constants[i * 8]); SHA384_P(H, A, B, C, D, E, F, G, temp[1], constants[i * 8 + 1]); SHA384_P(G, H, A, B, C, D, E, F, temp[2], constants[i * 8 + 2]); SHA384_P(F, G, H, A, B, C, D, E, temp[3], constants[i * 8 + 3]); SHA384_P(E, F, G, H, A, B, C, D, temp[4], constants[i * 8 + 4]); SHA384_P(D, E, F, G, H, A, B, C, temp[5], constants[i * 8 + 5]); SHA384_P(C, D, E, F, G, H, A, B, temp[6], constants[i * 8 + 6]); SHA384_P(B, C, D, E, F, G, H, A, temp[7], constants[i * 8 + 7]); } ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; ctx->state[5] += F; ctx->state[6] += G; ctx->state[7] += H; } } // namespace void CRYPT_SHA1Start(CRYPT_sha1_context* s) { SHA_Core_Init(s->h); s->blkused = 0; s->lenhi = s->lenlo = 0; } void CRYPT_SHA1Update(CRYPT_sha1_context* s, const uint8_t* data, uint32_t size) { unsigned char* q = (unsigned char*)data; unsigned int wordblock[16]; int len = size; unsigned int lenw = len; int i; s->lenlo += lenw; s->lenhi += (s->lenlo < lenw); if (s->blkused && s->blkused + len < 64) { memcpy(s->block + s->blkused, q, len); s->blkused += len; } else { while (s->blkused + len >= 64) { memcpy(s->block + s->blkused, q, 64 - s->blkused); q += 64 - s->blkused; len -= 64 - s->blkused; for (i = 0; i < 16; i++) { wordblock[i] = (((unsigned int)s->block[i * 4 + 0]) << 24) | (((unsigned int)s->block[i * 4 + 1]) << 16) | (((unsigned int)s->block[i * 4 + 2]) << 8) | (((unsigned int)s->block[i * 4 + 3]) << 0); } SHATransform(s->h, wordblock); s->blkused = 0; } memcpy(s->block, q, len); s->blkused = len; } } void CRYPT_SHA1Finish(CRYPT_sha1_context* s, uint8_t digest[20]) { int i; int pad; unsigned char c[64]; unsigned int lenhi, lenlo; if (s->blkused >= 56) { pad = 56 + 64 - s->blkused; } else { pad = 56 - s->blkused; } lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3)); lenlo = (s->lenlo << 3); memset(c, 0, pad); c[0] = 0x80; CRYPT_SHA1Update(s, c, pad); c[0] = (lenhi >> 24) & 0xFF; c[1] = (lenhi >> 16) & 0xFF; c[2] = (lenhi >> 8) & 0xFF; c[3] = (lenhi >> 0) & 0xFF; c[4] = (lenlo >> 24) & 0xFF; c[5] = (lenlo >> 16) & 0xFF; c[6] = (lenlo >> 8) & 0xFF; c[7] = (lenlo >> 0) & 0xFF; CRYPT_SHA1Update(s, c, 8); for (i = 0; i < 5; i++) { digest[i * 4] = (s->h[i] >> 24) & 0xFF; digest[i * 4 + 1] = (s->h[i] >> 16) & 0xFF; digest[i * 4 + 2] = (s->h[i] >> 8) & 0xFF; digest[i * 4 + 3] = (s->h[i]) & 0xFF; } } void CRYPT_SHA1Generate(const uint8_t* data, uint32_t size, uint8_t digest[20]) { CRYPT_sha1_context s; CRYPT_SHA1Start(&s); CRYPT_SHA1Update(&s, data, size); CRYPT_SHA1Finish(&s, digest); } void CRYPT_SHA256Start(CRYPT_sha2_context* ctx) { ctx->total[0] = 0; ctx->total[1] = 0; ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; } void CRYPT_SHA256Update(CRYPT_sha2_context* ctx, const uint8_t* input, uint32_t length) { if (!length) return; uint32_t left = ctx->total[0] & 0x3F; uint32_t fill = 64 - left; ctx->total[0] += length; ctx->total[0] &= 0xFFFFFFFF; if (ctx->total[0] < length) ctx->total[1]++; if (left && length >= fill) { memcpy(ctx->buffer + left, input, fill); sha256_process(ctx, ctx->buffer); length -= fill; input += fill; left = 0; } while (length >= 64) { sha256_process(ctx, input); length -= 64; input += 64; } if (length) memcpy(ctx->buffer + left, input, length); } void CRYPT_SHA256Finish(CRYPT_sha2_context* ctx, uint8_t digest[32]) { uint8_t msglen[8]; uint32_t high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); uint32_t low = (ctx->total[0] << 3); SHA_PUT_UINT32(high, msglen, 0); SHA_PUT_UINT32(low, msglen, 4); uint32_t last = ctx->total[0] & 0x3F; uint32_t padn = (last < 56) ? (56 - last) : (120 - last); CRYPT_SHA256Update(ctx, sha256_padding, padn); CRYPT_SHA256Update(ctx, msglen, 8); SHA_PUT_UINT32(ctx->state[0], digest, 0); SHA_PUT_UINT32(ctx->state[1], digest, 4); SHA_PUT_UINT32(ctx->state[2], digest, 8); SHA_PUT_UINT32(ctx->state[3], digest, 12); SHA_PUT_UINT32(ctx->state[4], digest, 16); SHA_PUT_UINT32(ctx->state[5], digest, 20); SHA_PUT_UINT32(ctx->state[6], digest, 24); SHA_PUT_UINT32(ctx->state[7], digest, 28); } void CRYPT_SHA256Generate(const uint8_t* data, uint32_t size, uint8_t digest[32]) { CRYPT_sha2_context ctx; CRYPT_SHA256Start(&ctx); CRYPT_SHA256Update(&ctx, data, size); CRYPT_SHA256Finish(&ctx, digest); } void CRYPT_SHA384Start(CRYPT_sha2_context* ctx) { memset(ctx, 0, sizeof(CRYPT_sha2_context)); ctx->state[0] = 0xcbbb9d5dc1059ed8ULL; ctx->state[1] = 0x629a292a367cd507ULL; ctx->state[2] = 0x9159015a3070dd17ULL; ctx->state[3] = 0x152fecd8f70e5939ULL; ctx->state[4] = 0x67332667ffc00b31ULL; ctx->state[5] = 0x8eb44a8768581511ULL; ctx->state[6] = 0xdb0c2e0d64f98fa7ULL; ctx->state[7] = 0x47b5481dbefa4fa4ULL; } void CRYPT_SHA384Update(CRYPT_sha2_context* ctx, const uint8_t* input, uint32_t length) { if (!length) return; uint32_t left = static_cast(ctx->total[0]) & 0x7F; uint32_t fill = 128 - left; ctx->total[0] += length; if (ctx->total[0] < length) ctx->total[1]++; if (left && length >= fill) { memcpy(ctx->buffer + left, input, fill); sha384_process(ctx, ctx->buffer); length -= fill; input += fill; left = 0; } while (length >= 128) { sha384_process(ctx, input); length -= 128; input += 128; } if (length) memcpy(ctx->buffer + left, input, length); } void CRYPT_SHA384Finish(CRYPT_sha2_context* ctx, uint8_t digest[48]) { uint32_t last, padn; uint8_t msglen[16]; memset(msglen, 0, 16); uint64_t high, low; high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); low = (ctx->total[0] << 3); PUT_UINT64(high, msglen, 0); PUT_UINT64(low, msglen, 8); last = (uint32_t)ctx->total[0] & 0x7F; padn = (last < 112) ? (112 - last) : (240 - last); CRYPT_SHA384Update(ctx, sha384_padding, padn); CRYPT_SHA384Update(ctx, msglen, 16); PUT_UINT64(ctx->state[0], digest, 0); PUT_UINT64(ctx->state[1], digest, 8); PUT_UINT64(ctx->state[2], digest, 16); PUT_UINT64(ctx->state[3], digest, 24); PUT_UINT64(ctx->state[4], digest, 32); PUT_UINT64(ctx->state[5], digest, 40); } void CRYPT_SHA384Generate(const uint8_t* data, uint32_t size, uint8_t digest[64]) { CRYPT_sha2_context context; CRYPT_SHA384Start(&context); CRYPT_SHA384Update(&context, data, size); CRYPT_SHA384Finish(&context, digest); } void CRYPT_SHA512Start(CRYPT_sha2_context* ctx) { memset(ctx, 0, sizeof(CRYPT_sha2_context)); ctx->state[0] = 0x6a09e667f3bcc908ULL; ctx->state[1] = 0xbb67ae8584caa73bULL; ctx->state[2] = 0x3c6ef372fe94f82bULL; ctx->state[3] = 0xa54ff53a5f1d36f1ULL; ctx->state[4] = 0x510e527fade682d1ULL; ctx->state[5] = 0x9b05688c2b3e6c1fULL; ctx->state[6] = 0x1f83d9abfb41bd6bULL; ctx->state[7] = 0x5be0cd19137e2179ULL; } void CRYPT_SHA512Update(CRYPT_sha2_context* ctx, const uint8_t* data, uint32_t size) { CRYPT_SHA384Update(ctx, data, size); } void CRYPT_SHA512Finish(CRYPT_sha2_context* ctx, uint8_t digest[64]) { uint32_t last, padn; uint8_t msglen[16]; memset(msglen, 0, 16); uint64_t high, low; high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); low = (ctx->total[0] << 3); PUT_UINT64(high, msglen, 0); PUT_UINT64(low, msglen, 8); last = (uint32_t)ctx->total[0] & 0x7F; padn = (last < 112) ? (112 - last) : (240 - last); CRYPT_SHA512Update(ctx, sha384_padding, padn); CRYPT_SHA512Update(ctx, msglen, 16); PUT_UINT64(ctx->state[0], digest, 0); PUT_UINT64(ctx->state[1], digest, 8); PUT_UINT64(ctx->state[2], digest, 16); PUT_UINT64(ctx->state[3], digest, 24); PUT_UINT64(ctx->state[4], digest, 32); PUT_UINT64(ctx->state[5], digest, 40); PUT_UINT64(ctx->state[6], digest, 48); PUT_UINT64(ctx->state[7], digest, 56); } void CRYPT_SHA512Generate(const uint8_t* data, uint32_t size, uint8_t digest[64]) { CRYPT_sha2_context context; CRYPT_SHA512Start(&context); CRYPT_SHA512Update(&context, data, size); CRYPT_SHA512Finish(&context, digest); }