// Copyright 2014 PDFium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com #include "core/fpdfapi/parser/cpdf_crypto_handler.h" #include #include #include #include #include "core/fdrm/crypto/fx_crypt.h" #include "core/fpdfapi/edit/cpdf_encryptor.h" #include "core/fpdfapi/edit/cpdf_flateencoder.h" #include "core/fpdfapi/parser/cpdf_dictionary.h" #include "core/fpdfapi/parser/cpdf_number.h" #include "core/fpdfapi/parser/cpdf_object_walker.h" #include "core/fpdfapi/parser/cpdf_parser.h" #include "core/fpdfapi/parser/cpdf_security_handler.h" #include "core/fpdfapi/parser/cpdf_simple_parser.h" #include "core/fpdfapi/parser/cpdf_stream.h" #include "core/fpdfapi/parser/cpdf_stream_acc.h" #include "core/fpdfapi/parser/cpdf_string.h" namespace { constexpr char kContentsKey[] = "Contents"; constexpr char kTypeKey[] = "Type"; constexpr char kFTKey[] = "FT"; constexpr char kSignTypeValue[] = "Sig"; } // namespace // static bool CPDF_CryptoHandler::IsSignatureDictionary( const CPDF_Dictionary* dictionary) { if (!dictionary) return false; const CPDF_Object* type_obj = dictionary->GetDirectObjectFor(kTypeKey); if (!type_obj) type_obj = dictionary->GetDirectObjectFor(kFTKey); return type_obj && type_obj->GetString() == kSignTypeValue; } void CPDF_CryptoHandler::CryptBlock(bool bEncrypt, uint32_t objnum, uint32_t gennum, pdfium::span source, uint8_t* dest_buf, uint32_t& dest_size) { if (m_Cipher == FXCIPHER_NONE) { memcpy(dest_buf, source.data(), source.size()); return; } uint8_t realkey[16]; int realkeylen = 16; if (m_Cipher != FXCIPHER_AES || m_KeyLen != 32) { uint8_t key1[32]; PopulateKey(objnum, gennum, key1); if (m_Cipher == FXCIPHER_AES) { memcpy(key1 + m_KeyLen + 5, "sAlT", 4); } CRYPT_MD5Generate( key1, m_Cipher == FXCIPHER_AES ? m_KeyLen + 9 : m_KeyLen + 5, realkey); realkeylen = m_KeyLen + 5; if (realkeylen > 16) { realkeylen = 16; } } if (m_Cipher == FXCIPHER_AES) { CRYPT_AESSetKey(m_pAESContext.get(), 16, m_KeyLen == 32 ? m_EncryptKey : realkey, m_KeyLen, bEncrypt); if (bEncrypt) { uint8_t iv[16]; for (int i = 0; i < 16; i++) { iv[i] = (uint8_t)rand(); } CRYPT_AESSetIV(m_pAESContext.get(), iv); memcpy(dest_buf, iv, 16); int nblocks = source.size() / 16; CRYPT_AESEncrypt(m_pAESContext.get(), dest_buf + 16, source.data(), nblocks * 16); uint8_t padding[16]; memcpy(padding, source.data() + nblocks * 16, source.size() % 16); memset(padding + source.size() % 16, 16 - source.size() % 16, 16 - source.size() % 16); CRYPT_AESEncrypt(m_pAESContext.get(), dest_buf + nblocks * 16 + 16, padding, 16); dest_size = 32 + nblocks * 16; } else { CRYPT_AESSetIV(m_pAESContext.get(), source.data()); CRYPT_AESDecrypt(m_pAESContext.get(), dest_buf, source.data() + 16, source.size() - 16); dest_size = source.size() - 16; dest_size -= dest_buf[dest_size - 1]; } } else { ASSERT(dest_size == source.size()); if (dest_buf != source.data()) { memcpy(dest_buf, source.data(), source.size()); } CRYPT_ArcFourCryptBlock(dest_buf, dest_size, realkey, realkeylen); } } struct AESCryptContext { bool m_bIV; uint32_t m_BlockOffset; CRYPT_aes_context m_Context; uint8_t m_Block[16]; }; void* CPDF_CryptoHandler::CryptStart(uint32_t objnum, uint32_t gennum, bool bEncrypt) { if (m_Cipher == FXCIPHER_NONE) { return this; } if (m_Cipher == FXCIPHER_AES && m_KeyLen == 32) { AESCryptContext* pContext = FX_Alloc(AESCryptContext, 1); pContext->m_bIV = true; pContext->m_BlockOffset = 0; CRYPT_AESSetKey(&pContext->m_Context, 16, m_EncryptKey, 32, bEncrypt); if (bEncrypt) { for (int i = 0; i < 16; i++) { pContext->m_Block[i] = (uint8_t)rand(); } CRYPT_AESSetIV(&pContext->m_Context, pContext->m_Block); } return pContext; } uint8_t key1[48]; PopulateKey(objnum, gennum, key1); if (m_Cipher == FXCIPHER_AES) { memcpy(key1 + m_KeyLen + 5, "sAlT", 4); } uint8_t realkey[16]; CRYPT_MD5Generate( key1, m_Cipher == FXCIPHER_AES ? m_KeyLen + 9 : m_KeyLen + 5, realkey); int realkeylen = m_KeyLen + 5; if (realkeylen > 16) { realkeylen = 16; } if (m_Cipher == FXCIPHER_AES) { AESCryptContext* pContext = FX_Alloc(AESCryptContext, 1); pContext->m_bIV = true; pContext->m_BlockOffset = 0; CRYPT_AESSetKey(&pContext->m_Context, 16, realkey, 16, bEncrypt); if (bEncrypt) { for (int i = 0; i < 16; i++) { pContext->m_Block[i] = (uint8_t)rand(); } CRYPT_AESSetIV(&pContext->m_Context, pContext->m_Block); } return pContext; } CRYPT_rc4_context* pContext = FX_Alloc(CRYPT_rc4_context, 1); CRYPT_ArcFourSetup(pContext, realkey, realkeylen); return pContext; } bool CPDF_CryptoHandler::CryptStream(void* context, pdfium::span source, CFX_BinaryBuf& dest_buf, bool bEncrypt) { if (!context) return false; if (m_Cipher == FXCIPHER_NONE) { dest_buf.AppendBlock(source.data(), source.size()); return true; } if (m_Cipher == FXCIPHER_RC4) { int old_size = dest_buf.GetSize(); dest_buf.AppendBlock(source.data(), source.size()); CRYPT_ArcFourCrypt(static_cast(context), dest_buf.GetBuffer() + old_size, source.size()); return true; } AESCryptContext* pContext = static_cast(context); if (pContext->m_bIV && bEncrypt) { dest_buf.AppendBlock(pContext->m_Block, 16); pContext->m_bIV = false; } uint32_t src_off = 0; uint32_t src_left = source.size(); while (1) { uint32_t copy_size = 16 - pContext->m_BlockOffset; if (copy_size > src_left) { copy_size = src_left; } memcpy(pContext->m_Block + pContext->m_BlockOffset, source.data() + src_off, copy_size); src_off += copy_size; src_left -= copy_size; pContext->m_BlockOffset += copy_size; if (pContext->m_BlockOffset == 16) { if (!bEncrypt && pContext->m_bIV) { CRYPT_AESSetIV(&pContext->m_Context, pContext->m_Block); pContext->m_bIV = false; pContext->m_BlockOffset = 0; } else if (src_off < source.size()) { uint8_t block_buf[16]; if (bEncrypt) { CRYPT_AESEncrypt(&pContext->m_Context, block_buf, pContext->m_Block, 16); } else { CRYPT_AESDecrypt(&pContext->m_Context, block_buf, pContext->m_Block, 16); } dest_buf.AppendBlock(block_buf, 16); pContext->m_BlockOffset = 0; } } if (!src_left) { break; } } return true; } bool CPDF_CryptoHandler::CryptFinish(void* context, CFX_BinaryBuf& dest_buf, bool bEncrypt) { if (!context) { return false; } if (m_Cipher == FXCIPHER_NONE) { return true; } if (m_Cipher == FXCIPHER_RC4) { FX_Free(context); return true; } auto* pContext = static_cast(context); if (bEncrypt) { uint8_t block_buf[16]; if (pContext->m_BlockOffset == 16) { CRYPT_AESEncrypt(&pContext->m_Context, block_buf, pContext->m_Block, 16); dest_buf.AppendBlock(block_buf, 16); pContext->m_BlockOffset = 0; } memset(pContext->m_Block + pContext->m_BlockOffset, (uint8_t)(16 - pContext->m_BlockOffset), 16 - pContext->m_BlockOffset); CRYPT_AESEncrypt(&pContext->m_Context, block_buf, pContext->m_Block, 16); dest_buf.AppendBlock(block_buf, 16); } else if (pContext->m_BlockOffset == 16) { uint8_t block_buf[16]; CRYPT_AESDecrypt(&pContext->m_Context, block_buf, pContext->m_Block, 16); if (block_buf[15] <= 16) { dest_buf.AppendBlock(block_buf, 16 - block_buf[15]); } } FX_Free(pContext); return true; } ByteString CPDF_CryptoHandler::Decrypt(uint32_t objnum, uint32_t gennum, const ByteString& str) { CFX_BinaryBuf dest_buf; void* context = DecryptStart(objnum, gennum); DecryptStream(context, str.AsRawSpan(), dest_buf); DecryptFinish(context, dest_buf); return ByteString(dest_buf.GetBuffer(), dest_buf.GetSize()); } void* CPDF_CryptoHandler::DecryptStart(uint32_t objnum, uint32_t gennum) { return CryptStart(objnum, gennum, false); } uint32_t CPDF_CryptoHandler::DecryptGetSize(uint32_t src_size) { return m_Cipher == FXCIPHER_AES ? src_size - 16 : src_size; } bool CPDF_CryptoHandler::IsCipherAES() const { return m_Cipher == FXCIPHER_AES; } std::unique_ptr CPDF_CryptoHandler::DecryptObjectTree( std::unique_ptr object) { if (!object) return nullptr; struct MayBeSignature { const CPDF_Dictionary* parent; CPDF_Object* contents; }; std::stack may_be_sign_dictionaries; const uint32_t obj_num = object->GetObjNum(); const uint32_t gen_num = object->GetGenNum(); CPDF_Object* object_to_decrypt = object.get(); while (object_to_decrypt) { CPDF_NonConstObjectWalker walker(object_to_decrypt); object_to_decrypt = nullptr; while (CPDF_Object* child = walker.GetNext()) { const CPDF_Dictionary* parent_dict = walker.GetParent() ? walker.GetParent()->GetDict() : nullptr; if (walker.dictionary_key() == kContentsKey && (parent_dict->KeyExist(kTypeKey) || parent_dict->KeyExist(kFTKey))) { // This object may be contents of signature dictionary. // But now values of 'Type' and 'FT' of dictionary keys are encrypted, // and we can not check this. // Temporary skip it, to prevent signature corruption. // It will be decrypted on next interations, if this is not contents of // signature dictionary. may_be_sign_dictionaries.push(MayBeSignature({parent_dict, child})); walker.SkipWalkIntoCurrentObject(); continue; } // Strings decryption. if (child->IsString()) { // TODO(art-snake): Move decryption into the CPDF_String class. CPDF_String* str = child->AsString(); str->SetString(Decrypt(obj_num, gen_num, str->GetString())); } // Stream decryption. if (child->IsStream()) { // TODO(art-snake): Move decryption into the CPDF_Stream class. CPDF_Stream* stream = child->AsStream(); auto stream_access = pdfium::MakeRetain(stream); stream_access->LoadAllDataRaw(); if (IsCipherAES() && stream_access->GetSize() < 16) { stream->SetData(nullptr, 0); continue; } CFX_BinaryBuf decrypted_buf; decrypted_buf.EstimateSize(DecryptGetSize(stream_access->GetSize())); void* context = DecryptStart(obj_num, gen_num); bool decrypt_result = DecryptStream(context, pdfium::make_span(stream_access->GetData(), stream_access->GetSize()), decrypted_buf); decrypt_result &= DecryptFinish(context, decrypted_buf); if (decrypt_result) { const uint32_t decrypted_size = decrypted_buf.GetSize(); stream->SetData(decrypted_buf.DetachBuffer(), decrypted_size); } else { // Decryption failed, set the stream to empty stream->SetData(nullptr, 0); } } } // Signature dictionaries check. while (!may_be_sign_dictionaries.empty()) { auto dict_and_contents = std::move(may_be_sign_dictionaries.top()); may_be_sign_dictionaries.pop(); if (!IsSignatureDictionary(dict_and_contents.parent)) { // This is not signature dictionary. Do decrypt its contents. object_to_decrypt = dict_and_contents.contents; break; } } } return object; } bool CPDF_CryptoHandler::DecryptStream(void* context, pdfium::span source, CFX_BinaryBuf& dest_buf) { return CryptStream(context, source, dest_buf, false); } bool CPDF_CryptoHandler::DecryptFinish(void* context, CFX_BinaryBuf& dest_buf) { return CryptFinish(context, dest_buf, false); } size_t CPDF_CryptoHandler::EncryptGetSize( pdfium::span source) const { return m_Cipher == FXCIPHER_AES ? source.size() + 32 : source.size(); } bool CPDF_CryptoHandler::EncryptContent(uint32_t objnum, uint32_t gennum, pdfium::span source, uint8_t* dest_buf, uint32_t& dest_size) { CryptBlock(true, objnum, gennum, source, dest_buf, dest_size); return true; } CPDF_CryptoHandler::CPDF_CryptoHandler(int cipher, const uint8_t* key, int keylen) : m_KeyLen(std::min(keylen, 32)), m_Cipher(cipher) { ASSERT(cipher != FXCIPHER_AES || keylen == 16 || keylen == 24 || keylen == 32); ASSERT(cipher != FXCIPHER_AES2 || keylen == 32); ASSERT(cipher != FXCIPHER_RC4 || (keylen >= 5 && keylen <= 16)); if (m_Cipher != FXCIPHER_NONE) memcpy(m_EncryptKey, key, m_KeyLen); if (m_Cipher == FXCIPHER_AES) m_pAESContext.reset(FX_Alloc(CRYPT_aes_context, 1)); } CPDF_CryptoHandler::~CPDF_CryptoHandler() {} void CPDF_CryptoHandler::PopulateKey(uint32_t objnum, uint32_t gennum, uint8_t* key) { memcpy(key, m_EncryptKey, m_KeyLen); key[m_KeyLen + 0] = (uint8_t)objnum; key[m_KeyLen + 1] = (uint8_t)(objnum >> 8); key[m_KeyLen + 2] = (uint8_t)(objnum >> 16); key[m_KeyLen + 3] = (uint8_t)gennum; key[m_KeyLen + 4] = (uint8_t)(gennum >> 8); }