// Copyright 2014 PDFium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com #include #include #include #include #include #include "core/fpdfapi/page/cpdf_colorspace.h" #include "core/fxcodec/codec/cjpx_decoder.h" #include "core/fxcodec/codec/codec_int.h" #include "core/fxcodec/fx_codec.h" #include "core/fxcrt/fx_memory.h" #include "core/fxcrt/fx_safe_types.h" #include "third_party/base/ptr_util.h" #include "third_party/libopenjpeg20/openjpeg.h" #include "third_party/libopenjpeg20/opj_malloc.h" #if defined(USE_SYSTEM_LCMS2) #include #else #include "third_party/lcms2-2.6/include/lcms2.h" #endif namespace { void fx_error_callback(const char* msg, void* client_data) { (void)client_data; } void fx_warning_callback(const char* msg, void* client_data) { (void)client_data; } void fx_info_callback(const char* msg, void* client_data) { (void)client_data; } opj_stream_t* fx_opj_stream_create_memory_stream(DecodeData* data, OPJ_SIZE_T p_size, OPJ_BOOL p_is_read_stream) { if (!data || !data->src_data || data->src_size <= 0) return nullptr; opj_stream_t* stream = opj_stream_create(p_size, p_is_read_stream); if (!stream) return nullptr; opj_stream_set_user_data(stream, data, nullptr); opj_stream_set_user_data_length(stream, data->src_size); opj_stream_set_read_function(stream, opj_read_from_memory); opj_stream_set_skip_function(stream, opj_skip_from_memory); opj_stream_set_seek_function(stream, opj_seek_from_memory); return stream; } void sycc_to_rgb(int offset, int upb, int y, int cb, int cr, int* out_r, int* out_g, int* out_b) { int r, g, b; cb -= offset; cr -= offset; r = y + (int)(1.402 * (float)cr); if (r < 0) { r = 0; } else if (r > upb) { r = upb; } *out_r = r; g = y - (int)(0.344 * (float)cb + 0.714 * (float)cr); if (g < 0) { g = 0; } else if (g > upb) { g = upb; } *out_g = g; b = y + (int)(1.772 * (float)cb); if (b < 0) { b = 0; } else if (b > upb) { b = upb; } *out_b = b; } void sycc444_to_rgb(opj_image_t* img) { int prec = img->comps[0].prec; // If we shift 31 we're going to go negative, then things go bad. if (prec > 30) return; int offset = 1 << (prec - 1); int upb = (1 << prec) - 1; OPJ_UINT32 maxw = std::min({img->comps[0].w, img->comps[1].w, img->comps[2].w}); OPJ_UINT32 maxh = std::min({img->comps[0].h, img->comps[1].h, img->comps[2].h}); FX_SAFE_SIZE_T max_size = maxw; max_size *= maxh; if (!max_size.IsValid()) return; const int* y = img->comps[0].data; const int* cb = img->comps[1].data; const int* cr = img->comps[2].data; if (!y || !cb || !cr) return; int* r = static_cast(opj_calloc(max_size.ValueOrDie(), sizeof(int))); int* g = static_cast(opj_calloc(max_size.ValueOrDie(), sizeof(int))); int* b = static_cast(opj_calloc(max_size.ValueOrDie(), sizeof(int))); int* d0 = r; int* d1 = g; int* d2 = b; for (size_t i = 0; i < max_size.ValueOrDie(); ++i) { sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b); ++y; ++cb; ++cr; ++r; ++g; ++b; } opj_free(img->comps[0].data); opj_free(img->comps[1].data); opj_free(img->comps[2].data); img->comps[0].data = d0; img->comps[1].data = d1; img->comps[2].data = d2; } bool sycc420_422_size_is_valid(opj_image_t* img) { return (img && img->comps[0].w != std::numeric_limits::max() && (img->comps[0].w + 1) / 2 == img->comps[1].w && img->comps[1].w == img->comps[2].w && img->comps[1].h == img->comps[2].h); } bool sycc420_size_is_valid(opj_image_t* img) { return (sycc420_422_size_is_valid(img) && img->comps[0].h != std::numeric_limits::max() && (img->comps[0].h + 1) / 2 == img->comps[1].h); } bool sycc422_size_is_valid(opj_image_t* img) { return (sycc420_422_size_is_valid(img) && img->comps[0].h == img->comps[1].h); } void sycc422_to_rgb(opj_image_t* img) { if (!sycc422_size_is_valid(img)) return; int prec = img->comps[0].prec; if (prec <= 0 || prec >= 32) return; int offset = 1 << (prec - 1); int upb = (1 << prec) - 1; OPJ_UINT32 maxw = img->comps[0].w; OPJ_UINT32 maxh = img->comps[0].h; FX_SAFE_SIZE_T max_size = maxw; max_size *= maxh; if (!max_size.IsValid()) return; const int* y = img->comps[0].data; const int* cb = img->comps[1].data; const int* cr = img->comps[2].data; if (!y || !cb || !cr) return; int* r = static_cast(opj_calloc(max_size.ValueOrDie(), sizeof(int))); int* g = static_cast(opj_calloc(max_size.ValueOrDie(), sizeof(int))); int* b = static_cast(opj_calloc(max_size.ValueOrDie(), sizeof(int))); int* d0 = r; int* d1 = g; int* d2 = b; for (uint32_t i = 0; i < maxh; ++i) { OPJ_UINT32 j; for (j = 0; j < (maxw & ~static_cast(1)); j += 2) { sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b); ++y; ++r; ++g; ++b; sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b); ++y; ++r; ++g; ++b; ++cb; ++cr; } if (j < maxw) { sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b); ++y; ++r; ++g; ++b; ++cb; ++cr; } } opj_free(img->comps[0].data); opj_free(img->comps[1].data); opj_free(img->comps[2].data); img->comps[0].data = d0; img->comps[1].data = d1; img->comps[2].data = d2; img->comps[1].w = maxw; img->comps[1].h = maxh; img->comps[2].w = maxw; img->comps[2].h = maxh; img->comps[1].dx = img->comps[0].dx; img->comps[2].dx = img->comps[0].dx; img->comps[1].dy = img->comps[0].dy; img->comps[2].dy = img->comps[0].dy; } bool sycc420_must_extend_cbcr(OPJ_UINT32 y, OPJ_UINT32 cbcr) { return (y & 1) && (cbcr == y / 2); } void color_sycc_to_rgb(opj_image_t* img) { if (img->numcomps < 3) { img->color_space = OPJ_CLRSPC_GRAY; return; } if ((img->comps[0].dx == 1) && (img->comps[1].dx == 2) && (img->comps[2].dx == 2) && (img->comps[0].dy == 1) && (img->comps[1].dy == 2) && (img->comps[2].dy == 2)) { sycc420_to_rgb(img); } else if ((img->comps[0].dx == 1) && (img->comps[1].dx == 2) && (img->comps[2].dx == 2) && (img->comps[0].dy == 1) && (img->comps[1].dy == 1) && (img->comps[2].dy == 1)) { sycc422_to_rgb(img); } else if ((img->comps[0].dx == 1) && (img->comps[1].dx == 1) && (img->comps[2].dx == 1) && (img->comps[0].dy == 1) && (img->comps[1].dy == 1) && (img->comps[2].dy == 1)) { sycc444_to_rgb(img); } else { return; } img->color_space = OPJ_CLRSPC_SRGB; } } // namespace OPJ_SIZE_T opj_read_from_memory(void* p_buffer, OPJ_SIZE_T nb_bytes, void* p_user_data) { DecodeData* srcData = static_cast(p_user_data); if (!srcData || !srcData->src_data || srcData->src_size == 0) return static_cast(-1); // Reads at EOF return an error code. if (srcData->offset >= srcData->src_size) return static_cast(-1); OPJ_SIZE_T bufferLength = srcData->src_size - srcData->offset; OPJ_SIZE_T readlength = nb_bytes < bufferLength ? nb_bytes : bufferLength; memcpy(p_buffer, &srcData->src_data[srcData->offset], readlength); srcData->offset += readlength; return readlength; } OPJ_OFF_T opj_skip_from_memory(OPJ_OFF_T nb_bytes, void* p_user_data) { DecodeData* srcData = static_cast(p_user_data); if (!srcData || !srcData->src_data || srcData->src_size == 0) return static_cast(-1); // Offsets are signed and may indicate a negative skip. Do not support this // because of the strange return convention where either bytes skipped or // -1 is returned. Following that convention, a successful relative seek of // -1 bytes would be required to to give the same result as the error case. if (nb_bytes < 0) return static_cast(-1); // FIXME: use std::make_unsigned::type once c++11 lib is OK'd. uint64_t unsignedNbBytes = static_cast(nb_bytes); // Additionally, the offset may take us beyond the range of a size_t (e.g. // 32-bit platforms). If so, just clamp at EOF. if (unsignedNbBytes > std::numeric_limits::max() - srcData->offset) { srcData->offset = srcData->src_size; } else { OPJ_SIZE_T checkedNbBytes = static_cast(unsignedNbBytes); // Otherwise, mimic fseek() semantics to always succeed, even past EOF, // clamping at EOF. We can get away with this since we don't actually // provide negative relative skips from beyond EOF back to inside the // data, which would be the only reason to need to know exactly how far // beyond EOF we are. srcData->offset = std::min(srcData->offset + checkedNbBytes, srcData->src_size); } return nb_bytes; } OPJ_BOOL opj_seek_from_memory(OPJ_OFF_T nb_bytes, void* p_user_data) { DecodeData* srcData = static_cast(p_user_data); if (!srcData || !srcData->src_data || srcData->src_size == 0) return OPJ_FALSE; // Offsets are signed and may indicate a negative position, which would // be before the start of the file. Do not support this. if (nb_bytes < 0) return OPJ_FALSE; // FIXME: use std::make_unsigned::type once c++11 lib is OK'd. uint64_t unsignedNbBytes = static_cast(nb_bytes); // Additionally, the offset may take us beyond the range of a size_t (e.g. // 32-bit platforms). If so, just clamp at EOF. if (unsignedNbBytes > std::numeric_limits::max()) { srcData->offset = srcData->src_size; } else { OPJ_SIZE_T checkedNbBytes = static_cast(nb_bytes); // Otherwise, mimic fseek() semantics to always succeed, even past EOF, // again clamping at EOF. srcData->offset = std::min(checkedNbBytes, srcData->src_size); } return OPJ_TRUE; } void sycc420_to_rgb(opj_image_t* img) { if (!sycc420_size_is_valid(img)) return; OPJ_UINT32 prec = img->comps[0].prec; if (!prec) return; OPJ_UINT32 offset = 1 << (prec - 1); OPJ_UINT32 upb = (1 << prec) - 1; OPJ_UINT32 yw = img->comps[0].w; OPJ_UINT32 yh = img->comps[0].h; OPJ_UINT32 cbw = img->comps[1].w; OPJ_UINT32 cbh = img->comps[1].h; OPJ_UINT32 crw = img->comps[2].w; bool extw = sycc420_must_extend_cbcr(yw, cbw); bool exth = sycc420_must_extend_cbcr(yh, cbh); FX_SAFE_UINT32 safeSize = yw; safeSize *= yh; if (!safeSize.IsValid()) return; int* r = static_cast(opj_calloc(safeSize.ValueOrDie(), sizeof(int))); int* g = static_cast(opj_calloc(safeSize.ValueOrDie(), sizeof(int))); int* b = static_cast(opj_calloc(safeSize.ValueOrDie(), sizeof(int))); int* d0 = r; int* d1 = g; int* d2 = b; const int* y = img->comps[0].data; const int* cb = img->comps[1].data; const int* cr = img->comps[2].data; if (!y || !cb || !cr) return; const int* ny = nullptr; int* nr = nullptr; int* ng = nullptr; int* nb = nullptr; OPJ_UINT32 i = 0; OPJ_UINT32 j = 0; for (i = 0; i < (yh & ~(OPJ_UINT32)1); i += 2) { ny = y + yw; nr = r + yw; ng = g + yw; nb = b + yw; for (j = 0; j < (yw & ~(OPJ_UINT32)1); j += 2) { sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b); ++y; ++r; ++g; ++b; sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b); ++y; ++r; ++g; ++b; sycc_to_rgb(offset, upb, *ny, *cb, *cr, nr, ng, nb); ++ny; ++nr; ++ng; ++nb; sycc_to_rgb(offset, upb, *ny, *cb, *cr, nr, ng, nb); ++ny; ++nr; ++ng; ++nb; ++cb; ++cr; } if (j < yw) { if (extw) { --cb; --cr; } sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b); ++y; ++r; ++g; ++b; sycc_to_rgb(offset, upb, *ny, *cb, *cr, nr, ng, nb); ++ny; ++nr; ++ng; ++nb; ++cb; ++cr; } y += yw; r += yw; g += yw; b += yw; } if (i < yh) { if (exth) { cb -= cbw; cr -= crw; } for (j = 0; j < (yw & ~(OPJ_UINT32)1); j += 2) { sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b); ++y; ++r; ++g; ++b; sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b); ++y; ++r; ++g; ++b; ++cb; ++cr; } if (j < yw) { if (extw) { --cb; --cr; } sycc_to_rgb(offset, upb, *y, *cb, *cr, r, g, b); } } opj_free(img->comps[0].data); opj_free(img->comps[1].data); opj_free(img->comps[2].data); img->comps[0].data = d0; img->comps[1].data = d1; img->comps[2].data = d2; img->comps[1].w = yw; img->comps[1].h = yh; img->comps[2].w = yw; img->comps[2].h = yh; img->comps[1].w = yw; img->comps[1].h = yh; img->comps[2].w = yw; img->comps[2].h = yh; img->comps[1].dx = img->comps[0].dx; img->comps[2].dx = img->comps[0].dx; img->comps[1].dy = img->comps[0].dy; img->comps[2].dy = img->comps[0].dy; } CJPX_Decoder::CJPX_Decoder(CPDF_ColorSpace* cs) : image(nullptr), l_codec(nullptr), l_stream(nullptr), m_ColorSpace(cs) {} CJPX_Decoder::~CJPX_Decoder() { if (l_codec) opj_destroy_codec(l_codec); if (l_stream) opj_stream_destroy(l_stream); if (image) opj_image_destroy(image); } bool CJPX_Decoder::Init(const unsigned char* src_data, uint32_t src_size) { static const unsigned char szJP2Header[] = { 0x00, 0x00, 0x00, 0x0c, 0x6a, 0x50, 0x20, 0x20, 0x0d, 0x0a, 0x87, 0x0a}; if (!src_data || src_size < sizeof(szJP2Header)) return false; image = nullptr; m_SrcData = src_data; m_SrcSize = src_size; DecodeData srcData(const_cast(src_data), src_size); l_stream = fx_opj_stream_create_memory_stream(&srcData, OPJ_J2K_STREAM_CHUNK_SIZE, 1); if (!l_stream) { return false; } opj_dparameters_t parameters; opj_set_default_decoder_parameters(¶meters); parameters.decod_format = 0; parameters.cod_format = 3; if (memcmp(m_SrcData, szJP2Header, sizeof(szJP2Header)) == 0) { l_codec = opj_create_decompress(OPJ_CODEC_JP2); parameters.decod_format = 1; } else { l_codec = opj_create_decompress(OPJ_CODEC_J2K); } if (!l_codec) { return false; } if (m_ColorSpace && m_ColorSpace->GetFamily() == PDFCS_INDEXED) parameters.flags |= OPJ_DPARAMETERS_IGNORE_PCLR_CMAP_CDEF_FLAG; opj_set_info_handler(l_codec, fx_info_callback, 00); opj_set_warning_handler(l_codec, fx_warning_callback, 00); opj_set_error_handler(l_codec, fx_error_callback, 00); if (!opj_setup_decoder(l_codec, ¶meters)) { return false; } if (!opj_read_header(l_stream, l_codec, &image)) { image = nullptr; return false; } image->pdfium_use_colorspace = !!m_ColorSpace; if (!parameters.nb_tile_to_decode) { if (!opj_set_decode_area(l_codec, image, parameters.DA_x0, parameters.DA_y0, parameters.DA_x1, parameters.DA_y1)) { opj_image_destroy(image); image = nullptr; return false; } if (!(opj_decode(l_codec, l_stream, image) && opj_end_decompress(l_codec, l_stream))) { opj_image_destroy(image); image = nullptr; return false; } } else { if (!opj_get_decoded_tile(l_codec, l_stream, image, parameters.tile_index)) { return false; } } opj_stream_destroy(l_stream); l_stream = nullptr; if (image->color_space != OPJ_CLRSPC_SYCC && image->numcomps == 3 && image->comps[0].dx == image->comps[0].dy && image->comps[1].dx != 1) { image->color_space = OPJ_CLRSPC_SYCC; } else if (image->numcomps <= 2) { image->color_space = OPJ_CLRSPC_GRAY; } if (image->color_space == OPJ_CLRSPC_SYCC) { color_sycc_to_rgb(image); } if (image->icc_profile_buf) { // TODO(palmer): Using |opj_free| here resolves the crash described in // https://crbug.com/737033, but ultimately we need to harmonize the // memory allocation strategy across OpenJPEG and its PDFium callers. opj_free(image->icc_profile_buf); image->icc_profile_buf = nullptr; image->icc_profile_len = 0; } return !!image; } void CJPX_Decoder::GetInfo(uint32_t* width, uint32_t* height, uint32_t* components) { *width = (uint32_t)image->x1; *height = (uint32_t)image->y1; *components = (uint32_t)image->numcomps; } bool CJPX_Decoder::Decode(uint8_t* dest_buf, int pitch, const std::vector& offsets) { if (image->comps[0].w != image->x1 || image->comps[0].h != image->y1) return false; if (pitch<(int)(image->comps[0].w * 8 * image->numcomps + 31)>> 5 << 2) return false; memset(dest_buf, 0xff, image->y1 * pitch); std::vector channel_bufs(image->numcomps); std::vector adjust_comps(image->numcomps); for (uint32_t i = 0; i < image->numcomps; i++) { channel_bufs[i] = dest_buf + offsets[i]; adjust_comps[i] = image->comps[i].prec - 8; if (i > 0) { if (image->comps[i].dx != image->comps[i - 1].dx || image->comps[i].dy != image->comps[i - 1].dy || image->comps[i].prec != image->comps[i - 1].prec) { return false; } } } int width = image->comps[0].w; int height = image->comps[0].h; for (uint32_t channel = 0; channel < image->numcomps; ++channel) { uint8_t* pChannel = channel_bufs[channel]; if (adjust_comps[channel] < 0) { for (int row = 0; row < height; ++row) { uint8_t* pScanline = pChannel + row * pitch; for (int col = 0; col < width; ++col) { uint8_t* pPixel = pScanline + col * image->numcomps; if (!image->comps[channel].data) continue; int src = image->comps[channel].data[row * width + col]; src += image->comps[channel].sgnd ? 1 << (image->comps[channel].prec - 1) : 0; if (adjust_comps[channel] > 0) { *pPixel = 0; } else { *pPixel = (uint8_t)(src << -adjust_comps[channel]); } } } } else { for (int row = 0; row < height; ++row) { uint8_t* pScanline = pChannel + row * pitch; for (int col = 0; col < width; ++col) { uint8_t* pPixel = pScanline + col * image->numcomps; if (!image->comps[channel].data) continue; int src = image->comps[channel].data[row * width + col]; src += image->comps[channel].sgnd ? 1 << (image->comps[channel].prec - 1) : 0; if (adjust_comps[channel] - 1 < 0) { *pPixel = (uint8_t)((src >> adjust_comps[channel])); } else { int tmpPixel = (src >> adjust_comps[channel]) + ((src >> (adjust_comps[channel] - 1)) % 2); if (tmpPixel > 255) { tmpPixel = 255; } else if (tmpPixel < 0) { tmpPixel = 0; } *pPixel = (uint8_t)tmpPixel; } } } } } return true; } CCodec_JpxModule::CCodec_JpxModule() {} CCodec_JpxModule::~CCodec_JpxModule() {} std::unique_ptr CCodec_JpxModule::CreateDecoder( const uint8_t* src_buf, uint32_t src_size, CPDF_ColorSpace* cs) { auto decoder = pdfium::MakeUnique(cs); return decoder->Init(src_buf, src_size) ? std::move(decoder) : nullptr; } void CCodec_JpxModule::GetImageInfo(CJPX_Decoder* pDecoder, uint32_t* width, uint32_t* height, uint32_t* components) { pDecoder->GetInfo(width, height, components); } bool CCodec_JpxModule::Decode(CJPX_Decoder* pDecoder, uint8_t* dest_data, int pitch, const std::vector& offsets) { return pDecoder->Decode(dest_data, pitch, offsets); }