// Copyright 2014 PDFium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com #include #include "core/fxcrt/include/fx_coordinates.h" #include "core/fxcrt/include/fx_ext.h" void FX_RECT::Normalize() { if (left > right) { int temp = left; left = right; right = temp; } if (top > bottom) { int temp = top; top = bottom; bottom = temp; } } void FX_RECT::Intersect(const FX_RECT& src) { FX_RECT src_n = src; src_n.Normalize(); Normalize(); left = left > src_n.left ? left : src_n.left; top = top > src_n.top ? top : src_n.top; right = right < src_n.right ? right : src_n.right; bottom = bottom < src_n.bottom ? bottom : src_n.bottom; if (left > right || top > bottom) { left = top = right = bottom = 0; } } void FX_RECT::Union(const FX_RECT& other_rect) { Normalize(); FX_RECT other = other_rect; other.Normalize(); left = left < other.left ? left : other.left; right = right > other.right ? right : other.right; bottom = bottom > other.bottom ? bottom : other.bottom; top = top < other.top ? top : other.top; } FX_BOOL GetIntersection(FX_FLOAT low1, FX_FLOAT high1, FX_FLOAT low2, FX_FLOAT high2, FX_FLOAT& interlow, FX_FLOAT& interhigh) { if (low1 >= high2 || low2 >= high1) { return FALSE; } interlow = low1 > low2 ? low1 : low2; interhigh = high1 > high2 ? high2 : high1; return TRUE; } extern "C" int FXSYS_round(FX_FLOAT d) { if (d < (FX_FLOAT)INT_MIN) { return INT_MIN; } if (d > (FX_FLOAT)INT_MAX) { return INT_MAX; } return (int)round(d); } CFX_FloatRect::CFX_FloatRect(const FX_RECT& rect) { left = (FX_FLOAT)(rect.left); right = (FX_FLOAT)(rect.right); bottom = (FX_FLOAT)(rect.top); top = (FX_FLOAT)(rect.bottom); } void CFX_FloatRect::Normalize() { FX_FLOAT temp; if (left > right) { temp = left; left = right; right = temp; } if (bottom > top) { temp = top; top = bottom; bottom = temp; } } void CFX_FloatRect::Intersect(const CFX_FloatRect& other_rect) { Normalize(); CFX_FloatRect other = other_rect; other.Normalize(); left = left > other.left ? left : other.left; right = right < other.right ? right : other.right; bottom = bottom > other.bottom ? bottom : other.bottom; top = top < other.top ? top : other.top; if (left > right || bottom > top) { left = right = bottom = top = 0; } } void CFX_FloatRect::Union(const CFX_FloatRect& other_rect) { Normalize(); CFX_FloatRect other = other_rect; other.Normalize(); left = left < other.left ? left : other.left; right = right > other.right ? right : other.right; bottom = bottom < other.bottom ? bottom : other.bottom; top = top > other.top ? top : other.top; } void CFX_FloatRect::Transform(const CFX_Matrix* pMatrix) { pMatrix->TransformRect(left, right, top, bottom); } int CFX_FloatRect::Substract4(CFX_FloatRect& s, CFX_FloatRect* pRects) { Normalize(); s.Normalize(); int nRects = 0; CFX_FloatRect rects[4]; if (left < s.left) { rects[nRects].left = left; rects[nRects].right = s.left; rects[nRects].bottom = bottom; rects[nRects].top = top; nRects++; } if (s.left < right && s.top < top) { rects[nRects].left = s.left; rects[nRects].right = right; rects[nRects].bottom = s.top; rects[nRects].top = top; nRects++; } if (s.top > bottom && s.right < right) { rects[nRects].left = s.right; rects[nRects].right = right; rects[nRects].bottom = bottom; rects[nRects].top = s.top; nRects++; } if (s.bottom > bottom) { rects[nRects].left = s.left; rects[nRects].right = s.right; rects[nRects].bottom = bottom; rects[nRects].top = s.bottom; nRects++; } if (nRects == 0) { return 0; } for (int i = 0; i < nRects; i++) { pRects[i] = rects[i]; pRects[i].Intersect(*this); } return nRects; } FX_RECT CFX_FloatRect::GetOuterRect() const { CFX_FloatRect rect1 = *this; FX_RECT rect; rect.left = (int)FXSYS_floor(rect1.left); rect.right = (int)FXSYS_ceil(rect1.right); rect.top = (int)FXSYS_floor(rect1.bottom); rect.bottom = (int)FXSYS_ceil(rect1.top); rect.Normalize(); return rect; } FX_RECT CFX_FloatRect::GetInnerRect() const { CFX_FloatRect rect1 = *this; FX_RECT rect; rect.left = (int)FXSYS_ceil(rect1.left); rect.right = (int)FXSYS_floor(rect1.right); rect.top = (int)FXSYS_ceil(rect1.bottom); rect.bottom = (int)FXSYS_floor(rect1.top); rect.Normalize(); return rect; } static void _MatchFloatRange(FX_FLOAT f1, FX_FLOAT f2, int& i1, int& i2) { int length = (int)FXSYS_ceil(f2 - f1); int i1_1 = (int)FXSYS_floor(f1); int i1_2 = (int)FXSYS_ceil(f1); FX_FLOAT error1 = f1 - i1_1 + (FX_FLOAT)FXSYS_fabs(f2 - i1_1 - length); FX_FLOAT error2 = i1_2 - f1 + (FX_FLOAT)FXSYS_fabs(f2 - i1_2 - length); i1 = (error1 > error2) ? i1_2 : i1_1; i2 = i1 + length; } FX_RECT CFX_FloatRect::GetClosestRect() const { CFX_FloatRect rect1 = *this; FX_RECT rect; _MatchFloatRange(rect1.left, rect1.right, rect.left, rect.right); _MatchFloatRange(rect1.bottom, rect1.top, rect.top, rect.bottom); rect.Normalize(); return rect; } bool CFX_FloatRect::Contains(const CFX_FloatRect& other_rect) const { CFX_FloatRect n1(*this); CFX_FloatRect n2(other_rect); n1.Normalize(); n2.Normalize(); return n2.left >= n1.left && n2.right <= n1.right && n2.bottom >= n1.bottom && n2.top <= n1.top; } bool CFX_FloatRect::Contains(FX_FLOAT x, FX_FLOAT y) const { CFX_FloatRect n1(*this); n1.Normalize(); return x <= n1.right && x >= n1.left && y <= n1.top && y >= n1.bottom; } void CFX_FloatRect::UpdateRect(FX_FLOAT x, FX_FLOAT y) { if (left > x) { left = x; } if (right < x) { right = x; } if (bottom > y) { bottom = y; } if (top < y) { top = y; } } CFX_FloatRect CFX_FloatRect::GetBBox(const CFX_PointF* pPoints, int nPoints) { if (nPoints == 0) { return CFX_FloatRect(); } FX_FLOAT min_x = pPoints->x, max_x = pPoints->x, min_y = pPoints->y, max_y = pPoints->y; for (int i = 1; i < nPoints; i++) { if (min_x > pPoints[i].x) { min_x = pPoints[i].x; } if (max_x < pPoints[i].x) { max_x = pPoints[i].x; } if (min_y > pPoints[i].y) { min_y = pPoints[i].y; } if (max_y < pPoints[i].y) { max_y = pPoints[i].y; } } return CFX_FloatRect(min_x, min_y, max_x, max_y); } void CFX_Matrix::Set(FX_FLOAT other_a, FX_FLOAT other_b, FX_FLOAT other_c, FX_FLOAT other_d, FX_FLOAT other_e, FX_FLOAT other_f) { a = other_a; b = other_b; c = other_c; d = other_d; e = other_e; f = other_f; } void CFX_Matrix::Set(const FX_FLOAT n[6]) { a = n[0]; b = n[1]; c = n[2]; d = n[3]; e = n[4]; f = n[5]; } void CFX_Matrix::SetReverse(const CFX_Matrix& m) { FX_FLOAT i = m.a * m.d - m.b * m.c; if (FXSYS_fabs(i) == 0) { return; } FX_FLOAT j = -i; a = m.d / i; b = m.b / j; c = m.c / j; d = m.a / i; e = (m.c * m.f - m.d * m.e) / i; f = (m.a * m.f - m.b * m.e) / j; } static void FXCRT_Matrix_Concat(CFX_Matrix& m, const CFX_Matrix& m1, const CFX_Matrix& m2) { FX_FLOAT aa = m1.a * m2.a + m1.b * m2.c; FX_FLOAT bb = m1.a * m2.b + m1.b * m2.d; FX_FLOAT cc = m1.c * m2.a + m1.d * m2.c; FX_FLOAT dd = m1.c * m2.b + m1.d * m2.d; FX_FLOAT ee = m1.e * m2.a + m1.f * m2.c + m2.e; FX_FLOAT ff = m1.e * m2.b + m1.f * m2.d + m2.f; m.a = aa, m.b = bb, m.c = cc, m.d = dd, m.e = ee, m.f = ff; } void CFX_Matrix::Concat(FX_FLOAT a_in, FX_FLOAT b_in, FX_FLOAT c_in, FX_FLOAT d_in, FX_FLOAT e_in, FX_FLOAT f_in, FX_BOOL bPrepended) { CFX_Matrix m; m.Set(a_in, b_in, c_in, d_in, e_in, f_in); Concat(m, bPrepended); } void CFX_Matrix::Concat(const CFX_Matrix& m, FX_BOOL bPrepended) { if (bPrepended) { FXCRT_Matrix_Concat(*this, m, *this); } else { FXCRT_Matrix_Concat(*this, *this, m); } } void CFX_Matrix::ConcatInverse(const CFX_Matrix& src, FX_BOOL bPrepended) { CFX_Matrix m; m.SetReverse(src); Concat(m, bPrepended); } FX_BOOL CFX_Matrix::IsInvertible() const { return FXSYS_fabs(a * d - b * c) >= 0.0001f; } FX_BOOL CFX_Matrix::Is90Rotated() const { return FXSYS_fabs(a * 1000) < FXSYS_fabs(b) && FXSYS_fabs(d * 1000) < FXSYS_fabs(c); } FX_BOOL CFX_Matrix::IsScaled() const { return FXSYS_fabs(b * 1000) < FXSYS_fabs(a) && FXSYS_fabs(c * 1000) < FXSYS_fabs(d); } void CFX_Matrix::Translate(FX_FLOAT x, FX_FLOAT y, FX_BOOL bPrepended) { if (bPrepended) { e += x * a + y * c; f += y * d + x * b; } else { e += x, f += y; } } void CFX_Matrix::Scale(FX_FLOAT sx, FX_FLOAT sy, FX_BOOL bPrepended) { a *= sx, d *= sy; if (bPrepended) { b *= sx; c *= sy; } else { b *= sy; c *= sx; e *= sx; f *= sy; } } void CFX_Matrix::Rotate(FX_FLOAT fRadian, FX_BOOL bPrepended) { FX_FLOAT cosValue = FXSYS_cos(fRadian); FX_FLOAT sinValue = FXSYS_sin(fRadian); CFX_Matrix m; m.Set(cosValue, sinValue, -sinValue, cosValue, 0, 0); if (bPrepended) { FXCRT_Matrix_Concat(*this, m, *this); } else { FXCRT_Matrix_Concat(*this, *this, m); } } void CFX_Matrix::RotateAt(FX_FLOAT fRadian, FX_FLOAT dx, FX_FLOAT dy, FX_BOOL bPrepended) { Translate(dx, dy, bPrepended); Rotate(fRadian, bPrepended); Translate(-dx, -dy, bPrepended); } void CFX_Matrix::Shear(FX_FLOAT fAlphaRadian, FX_FLOAT fBetaRadian, FX_BOOL bPrepended) { CFX_Matrix m; m.Set(1, FXSYS_tan(fAlphaRadian), FXSYS_tan(fBetaRadian), 1, 0, 0); if (bPrepended) { FXCRT_Matrix_Concat(*this, m, *this); } else { FXCRT_Matrix_Concat(*this, *this, m); } } void CFX_Matrix::MatchRect(const CFX_FloatRect& dest, const CFX_FloatRect& src) { FX_FLOAT fDiff = src.left - src.right; a = FXSYS_fabs(fDiff) < 0.001f ? 1 : (dest.left - dest.right) / fDiff; fDiff = src.bottom - src.top; d = FXSYS_fabs(fDiff) < 0.001f ? 1 : (dest.bottom - dest.top) / fDiff; e = dest.left - src.left * a; f = dest.bottom - src.bottom * d; b = 0; c = 0; } FX_FLOAT CFX_Matrix::GetXUnit() const { if (b == 0) { return (a > 0 ? a : -a); } if (a == 0) { return (b > 0 ? b : -b); } return FXSYS_sqrt(a * a + b * b); } FX_FLOAT CFX_Matrix::GetYUnit() const { if (c == 0) { return (d > 0 ? d : -d); } if (d == 0) { return (c > 0 ? c : -c); } return FXSYS_sqrt(c * c + d * d); } void CFX_Matrix::GetUnitRect(CFX_RectF& rect) const { rect.left = rect.top = 0; rect.width = rect.height = 1; TransformRect(rect); } CFX_FloatRect CFX_Matrix::GetUnitRect() const { CFX_FloatRect rect(0, 0, 1, 1); rect.Transform((const CFX_Matrix*)this); return rect; } FX_FLOAT CFX_Matrix::GetUnitArea() const { FX_FLOAT A = FXSYS_sqrt(a * a + b * b); FX_FLOAT B = FXSYS_sqrt(c * c + d * d); FX_FLOAT ac = a + c, bd = b + d; FX_FLOAT C = FXSYS_sqrt(ac * ac + bd * bd); FX_FLOAT P = (A + B + C) / 2; return FXSYS_sqrt(P * (P - A) * (P - B) * (P - C)) * 2; } FX_FLOAT CFX_Matrix::TransformXDistance(FX_FLOAT dx) const { FX_FLOAT fx = a * dx, fy = b * dx; return FXSYS_sqrt(fx * fx + fy * fy); } int32_t CFX_Matrix::TransformXDistance(int32_t dx) const { FX_FLOAT fx = a * dx, fy = b * dx; return FXSYS_round(FXSYS_sqrt(fx * fx + fy * fy)); } FX_FLOAT CFX_Matrix::TransformYDistance(FX_FLOAT dy) const { FX_FLOAT fx = c * dy, fy = d * dy; return FXSYS_sqrt(fx * fx + fy * fy); } int32_t CFX_Matrix::TransformYDistance(int32_t dy) const { FX_FLOAT fx = c * dy, fy = d * dy; return FXSYS_round(FXSYS_sqrt(fx * fx + fy * fy)); } FX_FLOAT CFX_Matrix::TransformDistance(FX_FLOAT dx, FX_FLOAT dy) const { FX_FLOAT fx = a * dx + c * dy, fy = b * dx + d * dy; return FXSYS_sqrt(fx * fx + fy * fy); } int32_t CFX_Matrix::TransformDistance(int32_t dx, int32_t dy) const { FX_FLOAT fx = a * dx + c * dy, fy = b * dx + d * dy; return FXSYS_round(FXSYS_sqrt(fx * fx + fy * fy)); } FX_FLOAT CFX_Matrix::TransformDistance(FX_FLOAT distance) const { return distance * (GetXUnit() + GetYUnit()) / 2; } void CFX_Matrix::TransformVector(CFX_VectorF& v) const { FX_FLOAT fx = a * v.x + c * v.y; FX_FLOAT fy = b * v.x + d * v.y; v.x = fx, v.y = fy; } void CFX_Matrix::TransformVector(CFX_Vector& v) const { FX_FLOAT fx = a * v.x + c * v.y; FX_FLOAT fy = b * v.x + d * v.y; v.x = FXSYS_round(fx); v.y = FXSYS_round(fy); } void CFX_Matrix::TransformPoint(FX_FLOAT& x, FX_FLOAT& y) const { FX_FLOAT fx = a * x + c * y + e; FX_FLOAT fy = b * x + d * y + f; x = fx, y = fy; } void CFX_Matrix::TransformPoint(int32_t& x, int32_t& y) const { FX_FLOAT fx = a * x + c * y + e; FX_FLOAT fy = b * x + d * y + f; x = FXSYS_round(fx); y = FXSYS_round(fy); } void CFX_Matrix::TransformRect(CFX_RectF& rect) const { FX_FLOAT right = rect.right(), bottom = rect.bottom(); TransformRect(rect.left, right, bottom, rect.top); rect.width = right - rect.left; rect.height = bottom - rect.top; } void CFX_Matrix::TransformRect(CFX_Rect& rect) const { FX_FLOAT left = (FX_FLOAT)rect.left; FX_FLOAT top = (FX_FLOAT)rect.bottom(); FX_FLOAT right = (FX_FLOAT)rect.right(); FX_FLOAT bottom = (FX_FLOAT)rect.top; TransformRect(left, right, top, bottom); rect.left = FXSYS_round(left); rect.top = FXSYS_round(bottom); rect.width = FXSYS_round(right - left); rect.height = FXSYS_round(top - bottom); } void CFX_Matrix::TransformRect(FX_FLOAT& left, FX_FLOAT& right, FX_FLOAT& top, FX_FLOAT& bottom) const { FX_FLOAT x[4], y[4]; x[0] = left; y[0] = top; x[1] = left; y[1] = bottom; x[2] = right; y[2] = top; x[3] = right; y[3] = bottom; int i; for (i = 0; i < 4; i++) { Transform(x[i], y[i], x[i], y[i]); } right = left = x[0]; top = bottom = y[0]; for (i = 1; i < 4; i++) { if (right < x[i]) { right = x[i]; } if (left > x[i]) { left = x[i]; } if (top < y[i]) { top = y[i]; } if (bottom > y[i]) { bottom = y[i]; } } }