// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This is a duplicate of chromium's src/tools/imagediff/image_diff_png.cc // that has been modified to build in a pdfium environment, which itself // was duplicated as follows: // This is a duplicate of ui/gfx/codec/png_codec.cc, after removing code related // to Skia, that we can use when running layout tests with minimal dependencies. #include "image_diff_png.h" #include <stdlib.h> #include <string.h> #include <string> #include "fx_lpng/include/fx_png.h" #include "third_party/base/logging.h" #include "third_party/zlib_v128/zlib.h" namespace image_diff_png { namespace { enum ColorFormat { // 3 bytes per pixel (packed), in RGB order regardless of endianness. // This is the native JPEG format. FORMAT_RGB, // 4 bytes per pixel, in RGBA order in memory regardless of endianness. FORMAT_RGBA, // 4 bytes per pixel, in BGRA order in memory regardless of endianness. // This is the default Windows DIB order. FORMAT_BGRA, }; // Represents a comment in the tEXt ancillary chunk of the png. struct Comment { std::string key; std::string text; }; // Converts BGRA->RGBA and RGBA->BGRA. void ConvertBetweenBGRAandRGBA(const unsigned char* input, int pixel_width, unsigned char* output, bool* is_opaque) { for (int x = 0; x < pixel_width; x++) { const unsigned char* pixel_in = &input[x * 4]; unsigned char* pixel_out = &output[x * 4]; pixel_out[0] = pixel_in[2]; pixel_out[1] = pixel_in[1]; pixel_out[2] = pixel_in[0]; pixel_out[3] = pixel_in[3]; } } void ConvertRGBAtoRGB(const unsigned char* rgba, int pixel_width, unsigned char* rgb, bool* is_opaque) { for (int x = 0; x < pixel_width; x++) { const unsigned char* pixel_in = &rgba[x * 4]; unsigned char* pixel_out = &rgb[x * 3]; pixel_out[0] = pixel_in[0]; pixel_out[1] = pixel_in[1]; pixel_out[2] = pixel_in[2]; } } } // namespace // Decoder -------------------------------------------------------------------- // // This code is based on WebKit libpng interface (PNGImageDecoder), which is // in turn based on the Mozilla png decoder. namespace { // Gamma constants: We assume we're on Windows which uses a gamma of 2.2. const double kMaxGamma = 21474.83; // Maximum gamma accepted by png library. const double kDefaultGamma = 2.2; const double kInverseGamma = 1.0 / kDefaultGamma; class PngDecoderState { public: // Output is a vector<unsigned char>. PngDecoderState(ColorFormat ofmt, std::vector<unsigned char>* o) : output_format(ofmt), output_channels(0), is_opaque(true), output(o), row_converter(NULL), width(0), height(0), done(false) { } ColorFormat output_format; int output_channels; // Used during the reading of an SkBitmap. Defaults to true until we see a // pixel with anything other than an alpha of 255. bool is_opaque; // An intermediary buffer for decode output. std::vector<unsigned char>* output; // Called to convert a row from the library to the correct output format. // When NULL, no conversion is necessary. void (*row_converter)(const unsigned char* in, int w, unsigned char* out, bool* is_opaque); // Size of the image, set in the info callback. int width; int height; // Set to true when we've found the end of the data. bool done; }; void ConvertRGBtoRGBA(const unsigned char* rgb, int pixel_width, unsigned char* rgba, bool* is_opaque) { for (int x = 0; x < pixel_width; x++) { const unsigned char* pixel_in = &rgb[x * 3]; unsigned char* pixel_out = &rgba[x * 4]; pixel_out[0] = pixel_in[0]; pixel_out[1] = pixel_in[1]; pixel_out[2] = pixel_in[2]; pixel_out[3] = 0xff; } } void ConvertRGBtoBGRA(const unsigned char* rgb, int pixel_width, unsigned char* bgra, bool* is_opaque) { for (int x = 0; x < pixel_width; x++) { const unsigned char* pixel_in = &rgb[x * 3]; unsigned char* pixel_out = &bgra[x * 4]; pixel_out[0] = pixel_in[2]; pixel_out[1] = pixel_in[1]; pixel_out[2] = pixel_in[0]; pixel_out[3] = 0xff; } } // Called when the png header has been read. This code is based on the WebKit // PNGImageDecoder void DecodeInfoCallback(png_struct* png_ptr, png_info* info_ptr) { PngDecoderState* state = static_cast<PngDecoderState*>( png_get_progressive_ptr(png_ptr)); int bit_depth, color_type, interlace_type, compression_type; int filter_type, channels; png_uint_32 w, h; png_get_IHDR(png_ptr, info_ptr, &w, &h, &bit_depth, &color_type, &interlace_type, &compression_type, &filter_type); // Bounds check. When the image is unreasonably big, we'll error out and // end up back at the setjmp call when we set up decoding. "Unreasonably big" // means "big enough that w * h * 32bpp might overflow an int"; we choose this // threshold to match WebKit and because a number of places in code assume // that an image's size (in bytes) fits in a (signed) int. unsigned long long total_size = static_cast<unsigned long long>(w) * static_cast<unsigned long long>(h); if (total_size > ((1 << 29) - 1)) longjmp(png_jmpbuf(png_ptr), 1); state->width = static_cast<int>(w); state->height = static_cast<int>(h); // Expand to ensure we use 24-bit for RGB and 32-bit for RGBA. if (color_type == PNG_COLOR_TYPE_PALETTE || (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8)) png_set_expand(png_ptr); // Transparency for paletted images. if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS)) png_set_expand(png_ptr); // Convert 16-bit to 8-bit. if (bit_depth == 16) png_set_strip_16(png_ptr); // Expand grayscale to RGB. if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA) png_set_gray_to_rgb(png_ptr); // Deal with gamma and keep it under our control. double gamma; if (png_get_gAMA(png_ptr, info_ptr, &gamma)) { if (gamma <= 0.0 || gamma > kMaxGamma) { gamma = kInverseGamma; png_set_gAMA(png_ptr, info_ptr, gamma); } png_set_gamma(png_ptr, kDefaultGamma, gamma); } else { png_set_gamma(png_ptr, kDefaultGamma, kInverseGamma); } // Tell libpng to send us rows for interlaced pngs. if (interlace_type == PNG_INTERLACE_ADAM7) png_set_interlace_handling(png_ptr); // Update our info now png_read_update_info(png_ptr, info_ptr); channels = png_get_channels(png_ptr, info_ptr); // Pick our row format converter necessary for this data. if (channels == 3) { switch (state->output_format) { case FORMAT_RGB: state->row_converter = NULL; // no conversion necessary state->output_channels = 3; break; case FORMAT_RGBA: state->row_converter = &ConvertRGBtoRGBA; state->output_channels = 4; break; case FORMAT_BGRA: state->row_converter = &ConvertRGBtoBGRA; state->output_channels = 4; break; default: NOTREACHED(); break; } } else if (channels == 4) { switch (state->output_format) { case FORMAT_RGB: state->row_converter = &ConvertRGBAtoRGB; state->output_channels = 3; break; case FORMAT_RGBA: state->row_converter = NULL; // no conversion necessary state->output_channels = 4; break; case FORMAT_BGRA: state->row_converter = &ConvertBetweenBGRAandRGBA; state->output_channels = 4; break; default: NOTREACHED(); break; } } else { NOTREACHED(); longjmp(png_jmpbuf(png_ptr), 1); } state->output->resize( state->width * state->output_channels * state->height); } void DecodeRowCallback(png_struct* png_ptr, png_byte* new_row, png_uint_32 row_num, int pass) { PngDecoderState* state = static_cast<PngDecoderState*>( png_get_progressive_ptr(png_ptr)); if (static_cast<int>(row_num) > state->height) { NOTREACHED(); return; } unsigned char* base = NULL; base = &state->output->front(); unsigned char* dest = &base[state->width * state->output_channels * row_num]; if (state->row_converter) state->row_converter(new_row, state->width, dest, &state->is_opaque); else memcpy(dest, new_row, state->width * state->output_channels); } void DecodeEndCallback(png_struct* png_ptr, png_info* info) { PngDecoderState* state = static_cast<PngDecoderState*>( png_get_progressive_ptr(png_ptr)); // Mark the image as complete, this will tell the Decode function that we // have successfully found the end of the data. state->done = true; } // Automatically destroys the given read structs on destruction to make // cleanup and error handling code cleaner. class PngReadStructDestroyer { public: PngReadStructDestroyer(png_struct** ps, png_info** pi) : ps_(ps), pi_(pi) { } ~PngReadStructDestroyer() { png_destroy_read_struct(ps_, pi_, NULL); } private: png_struct** ps_; png_info** pi_; }; bool BuildPNGStruct(const unsigned char* input, size_t input_size, png_struct** png_ptr, png_info** info_ptr) { if (input_size < 8) return false; // Input data too small to be a png // Have libpng check the signature, it likes the first 8 bytes. if (png_sig_cmp(const_cast<unsigned char*>(input), 0, 8) != 0) return false; *png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); if (!*png_ptr) return false; *info_ptr = png_create_info_struct(*png_ptr); if (!*info_ptr) { png_destroy_read_struct(png_ptr, NULL, NULL); return false; } return true; } } // namespace // static bool Decode(const unsigned char* input, size_t input_size, ColorFormat format, std::vector<unsigned char>* output, int* w, int* h) { png_struct* png_ptr = NULL; png_info* info_ptr = NULL; if (!BuildPNGStruct(input, input_size, &png_ptr, &info_ptr)) return false; PngReadStructDestroyer destroyer(&png_ptr, &info_ptr); if (setjmp(png_jmpbuf(png_ptr))) { // The destroyer will ensure that the structures are cleaned up in this // case, even though we may get here as a jump from random parts of the // PNG library called below. return false; } PngDecoderState state(format, output); png_set_progressive_read_fn(png_ptr, &state, &DecodeInfoCallback, &DecodeRowCallback, &DecodeEndCallback); png_process_data(png_ptr, info_ptr, const_cast<unsigned char*>(input), input_size); if (!state.done) { // Fed it all the data but the library didn't think we got all the data, so // this file must be truncated. output->clear(); return false; } *w = state.width; *h = state.height; return true; } // Encoder -------------------------------------------------------------------- // // This section of the code is based on nsPNGEncoder.cpp in Mozilla // (Copyright 2005 Google Inc.) namespace { // Passed around as the io_ptr in the png structs so our callbacks know where // to write data. struct PngEncoderState { explicit PngEncoderState(std::vector<unsigned char>* o) : out(o) {} std::vector<unsigned char>* out; }; // Called by libpng to flush its internal buffer to ours. void EncoderWriteCallback(png_structp png, png_bytep data, png_size_t size) { PngEncoderState* state = static_cast<PngEncoderState*>(png_get_io_ptr(png)); size_t old_size = state->out->size(); state->out->resize(old_size + size); memcpy(&(*state->out)[old_size], data, size); } void FakeFlushCallback(png_structp png) { // We don't need to perform any flushing since we aren't doing real IO, but // we're required to provide this function by libpng. } void ConvertBGRAtoRGB(const unsigned char* bgra, int pixel_width, unsigned char* rgb, bool* is_opaque) { for (int x = 0; x < pixel_width; x++) { const unsigned char* pixel_in = &bgra[x * 4]; unsigned char* pixel_out = &rgb[x * 3]; pixel_out[0] = pixel_in[2]; pixel_out[1] = pixel_in[1]; pixel_out[2] = pixel_in[0]; } } #ifdef PNG_TEXT_SUPPORTED inline char* strdup(const char* str) { #if defined(OS_WIN) return _strdup(str); #else return ::strdup(str); #endif } class CommentWriter { public: explicit CommentWriter(const std::vector<Comment>& comments) : comments_(comments), png_text_(new png_text[comments.size()]) { for (size_t i = 0; i < comments.size(); ++i) AddComment(i, comments[i]); } ~CommentWriter() { for (size_t i = 0; i < comments_.size(); ++i) { free(png_text_[i].key); free(png_text_[i].text); } delete [] png_text_; } bool HasComments() { return !comments_.empty(); } png_text* get_png_text() { return png_text_; } int size() { return static_cast<int>(comments_.size()); } private: void AddComment(size_t pos, const Comment& comment) { png_text_[pos].compression = PNG_TEXT_COMPRESSION_NONE; // A PNG comment's key can only be 79 characters long. if (comment.key.length() > 79) return; png_text_[pos].key = strdup(comment.key.substr(0, 78).c_str()); png_text_[pos].text = strdup(comment.text.c_str()); png_text_[pos].text_length = comment.text.length(); #ifdef PNG_iTXt_SUPPORTED png_text_[pos].itxt_length = 0; png_text_[pos].lang = 0; png_text_[pos].lang_key = 0; #endif } const std::vector<Comment> comments_; png_text* png_text_; }; #endif // PNG_TEXT_SUPPORTED // The type of functions usable for converting between pixel formats. typedef void (*FormatConverter)(const unsigned char* in, int w, unsigned char* out, bool* is_opaque); // libpng uses a wacky setjmp-based API, which makes the compiler nervous. // We constrain all of the calls we make to libpng where the setjmp() is in // place to this function. // Returns true on success. bool DoLibpngWrite(png_struct* png_ptr, png_info* info_ptr, PngEncoderState* state, int width, int height, int row_byte_width, const unsigned char* input, int compression_level, int png_output_color_type, int output_color_components, FormatConverter converter, const std::vector<Comment>& comments) { #ifdef PNG_TEXT_SUPPORTED CommentWriter comment_writer(comments); #endif unsigned char* row_buffer = NULL; // Make sure to not declare any locals here -- locals in the presence // of setjmp() in C++ code makes gcc complain. if (setjmp(png_jmpbuf(png_ptr))) { delete[] row_buffer; return false; } png_set_compression_level(png_ptr, compression_level); // Set our callback for libpng to give us the data. png_set_write_fn(png_ptr, state, EncoderWriteCallback, FakeFlushCallback); png_set_IHDR(png_ptr, info_ptr, width, height, 8, png_output_color_type, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); #ifdef PNG_TEXT_SUPPORTED if (comment_writer.HasComments()) { png_set_text(png_ptr, info_ptr, comment_writer.get_png_text(), comment_writer.size()); } #endif png_write_info(png_ptr, info_ptr); if (!converter) { // No conversion needed, give the data directly to libpng. for (int y = 0; y < height; y ++) { png_write_row(png_ptr, const_cast<unsigned char*>(&input[y * row_byte_width])); } } else { // Needs conversion using a separate buffer. row_buffer = new unsigned char[width * output_color_components]; for (int y = 0; y < height; y ++) { converter(&input[y * row_byte_width], width, row_buffer, NULL); png_write_row(png_ptr, row_buffer); } delete[] row_buffer; } png_write_end(png_ptr, info_ptr); return true; } } // namespace // static bool EncodeWithCompressionLevel(const unsigned char* input, ColorFormat format, const int width, const int height, int row_byte_width, bool discard_transparency, const std::vector<Comment>& comments, int compression_level, std::vector<unsigned char>* output) { // Run to convert an input row into the output row format, NULL means no // conversion is necessary. FormatConverter converter = NULL; int input_color_components, output_color_components; int png_output_color_type; switch (format) { case FORMAT_RGB: input_color_components = 3; output_color_components = 3; png_output_color_type = PNG_COLOR_TYPE_RGB; discard_transparency = false; break; case FORMAT_RGBA: input_color_components = 4; if (discard_transparency) { output_color_components = 3; png_output_color_type = PNG_COLOR_TYPE_RGB; converter = ConvertRGBAtoRGB; } else { output_color_components = 4; png_output_color_type = PNG_COLOR_TYPE_RGB_ALPHA; converter = NULL; } break; case FORMAT_BGRA: input_color_components = 4; if (discard_transparency) { output_color_components = 3; png_output_color_type = PNG_COLOR_TYPE_RGB; converter = ConvertBGRAtoRGB; } else { output_color_components = 4; png_output_color_type = PNG_COLOR_TYPE_RGB_ALPHA; converter = ConvertBetweenBGRAandRGBA; } break; default: NOTREACHED(); return false; } // Row stride should be at least as long as the length of the data. if (input_color_components * width < row_byte_width) return false; png_struct* png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); if (!png_ptr) return false; png_info* info_ptr = png_create_info_struct(png_ptr); if (!info_ptr) { png_destroy_write_struct(&png_ptr, NULL); return false; } PngEncoderState state(output); bool success = DoLibpngWrite(png_ptr, info_ptr, &state, width, height, row_byte_width, input, compression_level, png_output_color_type, output_color_components, converter, comments); png_destroy_write_struct(&png_ptr, &info_ptr); return success; } // static bool Encode(const unsigned char* input, ColorFormat format, const int width, const int height, int row_byte_width, bool discard_transparency, const std::vector<Comment>& comments, std::vector<unsigned char>* output) { return EncodeWithCompressionLevel(input, format, width, height, row_byte_width, discard_transparency, comments, Z_DEFAULT_COMPRESSION, output); } // Decode a PNG into an RGBA pixel array. bool DecodePNG(const unsigned char* input, size_t input_size, std::vector<unsigned char>* output, int* width, int* height) { return Decode(input, input_size, FORMAT_RGBA, output, width, height); } // Encode an RGBA pixel array into a PNG. bool EncodeRGBAPNG(const unsigned char* input, int width, int height, int row_byte_width, std::vector<unsigned char>* output) { return Encode(input, FORMAT_RGBA, width, height, row_byte_width, false, std::vector<Comment>(), output); } // Encode an BGRA pixel array into a PNG. bool EncodeBGRAPNG(const unsigned char* input, int width, int height, int row_byte_width, bool discard_transparency, std::vector<unsigned char>* output) { return Encode(input, FORMAT_BGRA, width, height, row_byte_width, discard_transparency, std::vector<Comment>(), output); } } // image_diff_png