//---------------------------------------------------------------------------- // Anti-Grain Geometry - Version 2.3 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com) // // Permission to copy, use, modify, sell and distribute this software // is granted provided this copyright notice appears in all copies. // This software is provided "as is" without express or implied // warranty, and with no claim as to its suitability for any purpose. // //---------------------------------------------------------------------------- // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://www.antigrain.com //---------------------------------------------------------------------------- #ifndef AGG_BASICS_INCLUDED #define AGG_BASICS_INCLUDED #ifndef AGG_INT8 #define AGG_INT8 signed char #endif #ifndef AGG_INT8U #define AGG_INT8U unsigned char #endif #ifndef AGG_INT16 #define AGG_INT16 short #endif #ifndef AGG_INT16U #define AGG_INT16U unsigned short #endif #ifndef AGG_INT32 #define AGG_INT32 int #endif #ifndef AGG_INT32U #define AGG_INT32U unsigned #endif #ifndef AGG_INT64 #define AGG_INT64 signed long long #endif #ifndef AGG_INT64U #define AGG_INT64U unsigned long long #endif #define AGG_INLINE inline #include "core/fxcrt/fx_system.h" // For FX_FLOAT namespace agg { typedef AGG_INT8 int8; typedef AGG_INT8U int8u; typedef AGG_INT16 int16; typedef AGG_INT16U int16u; typedef AGG_INT32 int32; typedef AGG_INT32U int32u; typedef AGG_INT64 int64; typedef AGG_INT64U int64u; typedef unsigned char cover_type; enum cover_scale_e { cover_shift = 8, cover_size = 1 << cover_shift, cover_mask = cover_size - 1, cover_none = 0, cover_full = cover_mask }; template<class T> struct rect_base { typedef rect_base<T> self_type; T x1; T y1; T x2; T y2; rect_base() {} rect_base(T x1_, T y1_, T x2_, T y2_) : x1(x1_), y1(y1_), x2(x2_), y2(y2_) {} const self_type& normalize() { T t; if(x1 > x2) { t = x1; x1 = x2; x2 = t; } if(y1 > y2) { t = y1; y1 = y2; y2 = t; } return *this; } bool clip(const self_type& r) { if(x2 > r.x2) { x2 = r.x2; } if(y2 > r.y2) { y2 = r.y2; } if(x1 < r.x1) { x1 = r.x1; } if(y1 < r.y1) { y1 = r.y1; } return x1 <= x2 && y1 <= y2; } bool is_valid() const { return x1 <= x2 && y1 <= y2; } }; template<class Rect> inline Rect intersect_rectangles(const Rect& r1, const Rect& r2) { Rect r = r1; if(r.x2 > r2.x2) { r.x2 = r2.x2; } if(r.y2 > r2.y2) { r.y2 = r2.y2; } if(r.x1 < r2.x1) { r.x1 = r2.x1; } if(r.y1 < r2.y1) { r.y1 = r2.y1; } return r; } template<class Rect> inline Rect unite_rectangles(const Rect& r1, const Rect& r2) { Rect r = r1; if(r.x2 < r2.x2) { r.x2 = r2.x2; } if(r.y2 < r2.y2) { r.y2 = r2.y2; } if(r.x1 > r2.x1) { r.x1 = r2.x1; } if(r.y1 > r2.y1) { r.y1 = r2.y1; } return r; } typedef rect_base<int> rect; typedef rect_base<FX_FLOAT> rect_d; enum path_commands_e { path_cmd_stop = 0, path_cmd_move_to = 1, path_cmd_line_to = 2, path_cmd_curve3 = 3, path_cmd_curve4 = 4, path_cmd_curveN = 5, path_cmd_catrom = 6, path_cmd_ubspline = 7, path_cmd_end_poly = 0x0F, path_cmd_mask = 0x0F }; enum path_flags_e { path_flags_none = 0, path_flags_ccw = 0x10, path_flags_cw = 0x20, path_flags_close = 0x40, path_flags_jr = 0x80, path_flags_mask = 0xF0 }; inline bool is_vertex(unsigned c) { c &= ~path_flags_jr; return c >= path_cmd_move_to && c < path_cmd_end_poly; } inline bool is_drawing(unsigned c) { c &= ~path_flags_jr; return c >= path_cmd_line_to && c < path_cmd_end_poly; } inline bool is_stop(unsigned c) { c &= ~path_flags_jr; return c == path_cmd_stop; } inline bool is_move_to(unsigned c) { c &= ~path_flags_jr; return c == path_cmd_move_to; } inline bool is_line_to(unsigned c) { c &= ~path_flags_jr; return c == path_cmd_line_to; } inline bool is_curve(unsigned c) { c &= ~path_flags_jr; return c == path_cmd_curve3 || c == path_cmd_curve4; } inline bool is_curve3(unsigned c) { c &= ~path_flags_jr; return c == path_cmd_curve3; } inline bool is_curve4(unsigned c) { c &= ~path_flags_jr; return c == path_cmd_curve4; } inline bool is_end_poly(unsigned c) { c &= ~path_flags_jr; return (c & path_cmd_mask) == path_cmd_end_poly; } inline bool is_close(unsigned c) { c &= ~path_flags_jr; return (c & ~(path_flags_cw | path_flags_ccw)) == (path_cmd_end_poly | path_flags_close); } inline bool is_next_poly(unsigned c) { c &= ~path_flags_jr; return is_stop(c) || is_move_to(c) || is_end_poly(c); } inline bool is_cw(unsigned c) { c &= ~path_flags_jr; return (c & path_flags_cw) != 0; } inline bool is_ccw(unsigned c) { c &= ~path_flags_jr; return (c & path_flags_ccw) != 0; } inline bool is_oriented(unsigned c) { c &= ~path_flags_jr; return (c & (path_flags_cw | path_flags_ccw)) != 0; } inline bool is_closed(unsigned c) { c &= ~path_flags_jr; return (c & path_flags_close) != 0; } inline unsigned get_close_flag(unsigned c) { c &= ~path_flags_jr; return c & path_flags_close; } inline unsigned clear_orientation(unsigned c) { c &= ~path_flags_jr; return c & ~(path_flags_cw | path_flags_ccw); } inline unsigned get_orientation(unsigned c) { c &= ~path_flags_jr; return c & (path_flags_cw | path_flags_ccw); } inline unsigned set_orientation(unsigned c, unsigned o) { c &= ~path_flags_jr; return clear_orientation(c) | o; } struct point_type { FX_FLOAT x, y; unsigned flag; point_type() {} point_type(FX_FLOAT x_, FX_FLOAT y_, unsigned flag_ = 0) : x(x_), y(y_), flag(flag_) {} }; struct point_type_flag : public point_type { unsigned flag; point_type_flag() { flag = 0; } point_type_flag(FX_FLOAT x_, FX_FLOAT y_, unsigned flag_ = 0) : point_type(x_, y_), flag(flag_) {} }; struct vertex_type { FX_FLOAT x, y; unsigned cmd; vertex_type() {} vertex_type(FX_FLOAT x_, FX_FLOAT y_, unsigned cmd_) : x(x_), y(y_), cmd(cmd_) {} }; } #endif