//---------------------------------------------------------------------------- // XYQ: 2006-01-22 Copied from AGG project. // TODO: This file uses intensive floating point operations, so it's NOT suitable // for platforms like Symbian OS. We need to change to FIX format. //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- // Anti-Grain Geometry - Version 2.3 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com) // // Permission to copy, use, modify, sell and distribute this software // is granted provided this copyright notice appears in all copies. // This software is provided "as is" without express or implied // warranty, and with no claim as to its suitability for any purpose. // //---------------------------------------------------------------------------- // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://www.antigrain.com //---------------------------------------------------------------------------- #include "agg_curves.h" #include "agg_math.h" namespace agg { const float curve_collinearity_epsilon = 1e-30f; enum curve_recursion_limit_e { curve_recursion_limit = 16 }; void curve4_div::init(float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4) { m_points.remove_all(); m_distance_tolerance_square = 1.0f / 4; m_distance_tolerance_manhattan = 1.0f * 4; bezier(x1, y1, x2, y2, x3, y3, x4, y4); m_count = 0; } void curve4_div::recursive_bezier(float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4, unsigned level) { if(level > curve_recursion_limit) { return; } float x12 = (x1 + x2) / 2; float y12 = (y1 + y2) / 2; float x23 = (x2 + x3) / 2; float y23 = (y2 + y3) / 2; float x34 = (x3 + x4) / 2; float y34 = (y3 + y4) / 2; float x123 = (x12 + x23) / 2; float y123 = (y12 + y23) / 2; float x234 = (x23 + x34) / 2; float y234 = (y23 + y34) / 2; float x1234 = (x123 + x234) / 2; float y1234 = (y123 + y234) / 2; float dx = x4 - x1; float dy = y4 - y1; float d2 = fabs(((x2 - x4) * dy) - ((y2 - y4) * dx)); float d3 = fabs(((x3 - x4) * dy) - ((y3 - y4) * dx)); switch((int(d2 > curve_collinearity_epsilon) << 1) + int(d3 > curve_collinearity_epsilon)) { case 0: if (fabs(x1 + x3 - x2 - x2) + fabs(y1 + y3 - y2 - y2) + fabs(x2 + x4 - x3 - x3) + fabs(y2 + y4 - y3 - y3) <= m_distance_tolerance_manhattan) { m_points.add(point_type(x1234, y1234, path_flags_jr)); return; } break; case 1: if ((d3 * d3) <= (m_distance_tolerance_square * ((dx * dx) + (dy * dy)))) { m_points.add(point_type(x23, y23, path_flags_jr)); return; } break; case 2: if ((d2 * d2) <= (m_distance_tolerance_square * ((dx * dx) + (dy * dy)))) { m_points.add(point_type(x23, y23, path_flags_jr)); return; } break; case 3: if (((d2 + d3) * (d2 + d3)) <= (m_distance_tolerance_square * ((dx * dx) + (dy * dy)))) { m_points.add(point_type(x23, y23, path_flags_jr)); return; } break; } recursive_bezier(x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1); recursive_bezier(x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1); } void curve4_div::bezier(float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4) { m_points.add(point_type(x1, y1)); recursive_bezier(x1, y1, x2, y2, x3, y3, x4, y4, 0); m_points.add(point_type(x4, y4)); } }