//---------------------------------------------------------------------------- // Anti-Grain Geometry - Version 2.3 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com) // // Permission to copy, use, modify, sell and distribute this software // is granted provided this copyright notice appears in all copies. // This software is provided "as is" without express or implied // warranty, and with no claim as to its suitability for any purpose. // //---------------------------------------------------------------------------- // // The author gratefully acknowleges the support of David Turner, // Robert Wilhelm, and Werner Lemberg - the authors of the FreeType // libray - in producing this work. See http://www.freetype.org for details. // //---------------------------------------------------------------------------- // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://www.antigrain.com //---------------------------------------------------------------------------- // // Adaptation for 32-bit screen coordinates has been sponsored by // Liberty Technology Systems, Inc., visit http://lib-sys.com // // Liberty Technology Systems, Inc. is the provider of // PostScript and PDF technology for software developers. // //---------------------------------------------------------------------------- #ifndef AGG_RASTERIZER_SCANLINE_AA_INCLUDED #define AGG_RASTERIZER_SCANLINE_AA_INCLUDED #include "agg_array.h" #include "agg_basics.h" #include "agg_clip_liang_barsky.h" #include "agg_math.h" #include "agg_render_scanlines.h" #include "core/fxcrt/fx_coordinates.h" #include "core/fxcrt/fx_memory.h" namespace agg { enum poly_base_scale_e { poly_base_shift = 8, poly_base_size = 1 << poly_base_shift, poly_base_mask = poly_base_size - 1 }; inline int poly_coord(float c) { return int(c * poly_base_size); } struct cell_aa { int x; int y; int cover; int area; void set(int x, int y, int c, int a); void set_coord(int x, int y); void set_cover(int c, int a); void add_cover(int c, int a); }; class outline_aa { enum cell_block_scale_e { cell_block_shift = 12, cell_block_size = 1 << cell_block_shift, cell_block_mask = cell_block_size - 1, cell_block_pool = 256, cell_block_limit = 1024 }; struct sorted_y { unsigned start; unsigned num; }; public: ~outline_aa(); outline_aa(); void reset(); void move_to(int x, int y); void line_to(int x, int y); int min_x() const { return m_min_x; } int min_y() const { return m_min_y; } int max_x() const { return m_max_x; } int max_y() const { return m_max_y; } void sort_cells(); unsigned total_cells() const { return m_num_cells; } unsigned scanline_num_cells(unsigned y) const { return m_sorted_y[y - m_min_y].num; } const cell_aa* const* scanline_cells(unsigned y) const { return m_sorted_cells.data() + m_sorted_y[y - m_min_y].start; } bool sorted() const { return m_sorted; } private: outline_aa(const outline_aa&); const outline_aa& operator = (const outline_aa&); void set_cur_cell(int x, int y); void add_cur_cell(); void render_hline(int ey, int x1, int y1, int x2, int y2); void render_line(int x1, int y1, int x2, int y2); void allocate_block(); private: unsigned m_num_blocks; unsigned m_max_blocks; unsigned m_cur_block; unsigned m_num_cells; cell_aa** m_cells; cell_aa* m_cur_cell_ptr; pod_array<cell_aa*> m_sorted_cells; pod_array<sorted_y> m_sorted_y; cell_aa m_cur_cell; int m_cur_x; int m_cur_y; int m_min_x; int m_min_y; int m_max_x; int m_max_y; bool m_sorted; }; class scanline_hit_test { public: scanline_hit_test(int x) : m_x(x), m_hit(false) {} void reset_spans() {} void finalize(int) {} void add_cell(int x, int) { if(m_x == x) { m_hit = true; } } void add_span(int x, int len, int) { if(m_x >= x && m_x < x + len) { m_hit = true; } } unsigned num_spans() const { return 1; } bool hit() const { return m_hit; } private: int m_x; bool m_hit; }; enum filling_rule_e { fill_non_zero, fill_even_odd }; class rasterizer_scanline_aa { enum status { status_initial, status_line_to, status_closed }; public: enum aa_scale_e { aa_num = 1 << 8, aa_mask = aa_num - 1, aa_2num = aa_num * 2, aa_2mask = aa_2num - 1 }; rasterizer_scanline_aa() : m_filling_rule(fill_non_zero), m_clipped_start_x(0), m_clipped_start_y(0), m_status(status_initial), m_clipping(false) { } ~rasterizer_scanline_aa() {} void filling_rule(filling_rule_e filling_rule) { m_filling_rule = filling_rule; } int min_x() const { return m_outline.min_x(); } int min_y() const { return m_outline.min_y(); } int max_x() const { return m_outline.max_x(); } int max_y() const { return m_outline.max_y(); } void reset() { m_outline.reset(); m_status = status_initial; } void clip_box(float x1, float y1, float x2, float y2) { m_clip_box = rect(poly_coord(x1), poly_coord(y1), poly_coord(x2), poly_coord(y2)); m_clip_box.normalize(); m_clipping = true; } void add_vertex(float x, float y, unsigned cmd) { if(is_close(cmd)) { close_polygon(); } else { if(is_move_to(cmd)) { move_to(poly_coord(x), poly_coord(y)); } else { if(is_vertex(cmd)) { line_to(poly_coord(x), poly_coord(y)); } } } } void move_to(int x, int y) { if(m_clipping) { if(m_outline.sorted()) { reset(); } if(m_status == status_line_to) { close_polygon(); } m_prev_x = m_start_x = x; m_prev_y = m_start_y = y; m_status = status_initial; m_prev_flags = clipping_flags(x, y, m_clip_box); if(m_prev_flags == 0) { move_to_no_clip(x, y); } } else { move_to_no_clip(x, y); } } void line_to(int x, int y) { if(m_clipping) { clip_segment(x, y); } else { line_to_no_clip(x, y); } } void close_polygon() { if (m_status != status_line_to) { return; } if(m_clipping) { clip_segment(m_start_x, m_start_y); } close_polygon_no_clip(); } AGG_INLINE unsigned calculate_alpha(int area, bool no_smooth) const { int cover = area >> (poly_base_shift * 2 + 1 - 8); if(cover < 0) { cover = -cover; } if(m_filling_rule == fill_even_odd) { cover &= aa_2mask; if(cover > aa_num) { cover = aa_2num - cover; } } if (no_smooth) { cover = cover > aa_mask / 2 ? aa_mask : 0; } if(cover > aa_mask) { cover = aa_mask; } return cover; } AGG_INLINE void sort() { m_outline.sort_cells(); } AGG_INLINE bool rewind_scanlines() { close_polygon(); m_outline.sort_cells(); if(m_outline.total_cells() == 0) { return false; } m_cur_y = m_outline.min_y(); return true; } AGG_INLINE bool navigate_scanline(int y) { close_polygon(); m_outline.sort_cells(); if(m_outline.total_cells() == 0 || y < m_outline.min_y() || y > m_outline.max_y()) { return false; } m_cur_y = y; return true; } template<class Scanline> bool sweep_scanline(Scanline& sl, bool no_smooth) { for(;;) { if(m_cur_y > m_outline.max_y()) { return false; } sl.reset_spans(); unsigned num_cells = m_outline.scanline_num_cells(m_cur_y); const cell_aa* const* cells = m_outline.scanline_cells(m_cur_y); int cover = 0; while(num_cells) { const cell_aa* cur_cell = *cells; int x = cur_cell->x; int area = cur_cell->area; unsigned alpha; cover += cur_cell->cover; while(--num_cells) { cur_cell = *++cells; if(cur_cell->x != x) { break; } area += cur_cell->area; cover += cur_cell->cover; } if(area) { alpha = calculate_alpha(calculate_area(cover, poly_base_shift + 1) - area, no_smooth); if(alpha) { sl.add_cell(x, alpha); } x++; } if(num_cells && cur_cell->x > x) { alpha = calculate_alpha(calculate_area(cover, poly_base_shift + 1), no_smooth); if(alpha) { sl.add_span(x, cur_cell->x - x, alpha); } } } if(sl.num_spans()) { break; } ++m_cur_y; } sl.finalize(m_cur_y); ++m_cur_y; return true; } template<class VertexSource> void add_path(VertexSource& vs, unsigned path_id = 0) { float x; float y; unsigned cmd; vs.rewind(path_id); while(!is_stop(cmd = vs.vertex(&x, &y))) { add_vertex(x, y, cmd); } } template<class VertexSource> void add_path_transformed(VertexSource& vs, const CFX_Matrix* pMatrix, unsigned path_id = 0) { float x; float y; unsigned cmd; vs.rewind(path_id); while(!is_stop(cmd = vs.vertex(&x, &y))) { if (pMatrix) { CFX_PointF ret = pMatrix->Transform(CFX_PointF(x, y)); x = ret.x; y = ret.y; } add_vertex(x, y, cmd); } } private: rasterizer_scanline_aa(const rasterizer_scanline_aa&); const rasterizer_scanline_aa& operator = (const rasterizer_scanline_aa&); void move_to_no_clip(int x, int y) { if(m_status == status_line_to) { close_polygon_no_clip(); } m_outline.move_to(x * 1, y); m_clipped_start_x = x; m_clipped_start_y = y; m_status = status_line_to; } void line_to_no_clip(int x, int y) { if(m_status != status_initial) { m_outline.line_to(x * 1, y); m_status = status_line_to; } } void close_polygon_no_clip() { if(m_status == status_line_to) { m_outline.line_to(m_clipped_start_x * 1, m_clipped_start_y); m_status = status_closed; } } void clip_segment(int x, int y) { unsigned flags = clipping_flags(x, y, m_clip_box); if(m_prev_flags == flags) { if(flags == 0) { if(m_status == status_initial) { move_to_no_clip(x, y); } else { line_to_no_clip(x, y); } } } else { int cx[4]; int cy[4]; unsigned n = clip_liang_barsky(m_prev_x, m_prev_y, x, y, m_clip_box, cx, cy); const int* px = cx; const int* py = cy; while(n--) { if(m_status == status_initial) { move_to_no_clip(*px++, *py++); } else { line_to_no_clip(*px++, *py++); } } } m_prev_flags = flags; m_prev_x = x; m_prev_y = y; } static int calculate_area(int cover, int shift) { unsigned int result = cover; result <<= shift; return result; } private: outline_aa m_outline; filling_rule_e m_filling_rule; int m_clipped_start_x; int m_clipped_start_y; int m_start_x; int m_start_y; int m_prev_x; int m_prev_y; unsigned m_prev_flags; unsigned m_status; rect m_clip_box; bool m_clipping; int m_cur_y; }; } #endif