//---------------------------------------------------------------------------- // XYQ: 2006-01-22 Copied from AGG project. // TODO: This file uses intensive floating point operations, so it's NOT suitable // for platforms like Symbian OS. We need to change to FIX format. //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- // Anti-Grain Geometry - Version 2.3 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com) // // Permission to copy, use, modify, sell and distribute this software // is granted provided this copyright notice appears in all copies. // This software is provided "as is" without express or implied // warranty, and with no claim as to its suitability for any purpose. // //---------------------------------------------------------------------------- // Contact: mcseem@antigrain.com // mcseemagg@yahoo.com // http://www.antigrain.com //---------------------------------------------------------------------------- // // Stroke generator // //---------------------------------------------------------------------------- #include "../../core/include/fxcrt/fx_basic.h" #include "agg_vcgen_stroke.h" namespace agg { vcgen_stroke::vcgen_stroke() : m_src_vertices(), m_out_vertices(), m_width(0.5f), m_miter_limit(4 * 1.0f), m_inner_miter_limit(1.0f + 1.0f / 100), m_approx_scale(1.0f), m_line_cap(butt_cap), m_line_join(miter_join), m_inner_join(inner_miter), m_closed(0), m_status(initial), m_src_vertex(0), m_out_vertex(0) { } void vcgen_stroke::remove_all() { m_src_vertices.remove_all(); m_closed = 0; m_status = initial; } void vcgen_stroke::add_vertex(FX_FLOAT x, FX_FLOAT y, unsigned cmd) { m_status = initial; if(is_move_to(cmd)) { m_src_vertices.modify_last(vertex_dist_cmd(x, y, cmd)); } else { if(is_vertex(cmd)) { m_src_vertices.add(vertex_dist_cmd(x, y, cmd)); } else { m_closed = get_close_flag(cmd); } } } static inline void calc_butt_cap(FX_FLOAT* cap, const vertex_dist& v0, const vertex_dist& v1, FX_FLOAT len, FX_FLOAT width) { FX_FLOAT dx = FXSYS_MulDiv(v1.y - v0.y, width, len); FX_FLOAT dy = FXSYS_MulDiv(v1.x - v0.x, width, len); cap[0] = v0.x - dx; cap[1] = v0.y + dy; cap[2] = v0.x + dx; cap[3] = v0.y - dy; } void vcgen_stroke::rewind(unsigned) { if(m_status == initial) { m_src_vertices.close(m_closed != 0); if(m_src_vertices.size() < 3) { m_closed = 0; } } m_status = ready; m_src_vertex = 0; m_out_vertex = 0; } unsigned vcgen_stroke::vertex(FX_FLOAT* x, FX_FLOAT* y) { unsigned cmd = path_cmd_line_to; line_join_e curj; while(!is_stop(cmd)) { switch(m_status) { case initial: rewind(0); case ready: if(m_src_vertices.size() < 2 + unsigned(m_closed != 0)) { cmd = path_cmd_stop; break; } m_status = m_closed ? outline1 : cap1; cmd = path_cmd_move_to; m_src_vertex = 0; m_out_vertex = 0; break; case cap1: stroke_calc_cap(m_out_vertices, m_src_vertices[0], m_src_vertices[1], m_src_vertices[0].dist, m_line_cap, m_width, m_approx_scale); m_src_vertex = 1; m_prev_status = outline1; m_status = out_vertices; m_out_vertex = 0; break; case cap2: stroke_calc_cap(m_out_vertices, m_src_vertices[m_src_vertices.size() - 1], m_src_vertices[m_src_vertices.size() - 2], m_src_vertices[m_src_vertices.size() - 2].dist, m_line_cap, m_width, m_approx_scale); m_prev_status = outline2; m_status = out_vertices; m_out_vertex = 0; break; case outline1: if(m_closed) { if(m_src_vertex >= m_src_vertices.size()) { m_prev_status = close_first; m_status = end_poly1; break; } } else { if(m_src_vertex >= m_src_vertices.size() - 1) { m_status = cap2; break; } } curj = m_src_vertices[m_src_vertex].cmd & path_flags_jr ? miter_join_round : m_line_join; stroke_calc_join(m_out_vertices, m_src_vertices.prev(m_src_vertex), m_src_vertices.curr(m_src_vertex), m_src_vertices.next(m_src_vertex), m_src_vertices.prev(m_src_vertex).dist, m_src_vertices.curr(m_src_vertex).dist, m_width, curj, m_inner_join, m_miter_limit, m_inner_miter_limit, m_approx_scale); ++m_src_vertex; m_prev_status = m_status; m_status = out_vertices; m_out_vertex = 0; break; case close_first: m_status = outline2; cmd = path_cmd_move_to; case outline2: if(m_src_vertex <= unsigned(m_closed == 0)) { m_status = end_poly2; m_prev_status = stop; break; } --m_src_vertex; curj = m_src_vertices[m_src_vertex].cmd & path_flags_jr ? miter_join_round : m_line_join; stroke_calc_join(m_out_vertices, m_src_vertices.next(m_src_vertex), m_src_vertices.curr(m_src_vertex), m_src_vertices.prev(m_src_vertex), m_src_vertices.curr(m_src_vertex).dist, m_src_vertices.prev(m_src_vertex).dist, m_width, curj, m_inner_join, m_miter_limit, m_inner_miter_limit, m_approx_scale); m_prev_status = m_status; m_status = out_vertices; m_out_vertex = 0; break; case out_vertices: if(m_out_vertex >= m_out_vertices.size()) { m_status = m_prev_status; } else { const point_type& c = m_out_vertices[m_out_vertex++]; *x = c.x; *y = c.y; return cmd; } break; case end_poly1: m_status = m_prev_status; return path_cmd_end_poly | path_flags_close | path_flags_ccw; case end_poly2: m_status = m_prev_status; return path_cmd_end_poly | path_flags_close | path_flags_cw; case stop: cmd = path_cmd_stop; break; } } return cmd; } }