// Copyright 2013 Google Inc. All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This is a copy of breakpad's standalone scoped_ptr, which has been // renamed to nonstd::unique_ptr, and from which more complicated classes // have been removed. The reset() method has also been tweaked to more // closely match c++11, and an implicit conversion to bool has been added. // Scopers help you manage ownership of a pointer, helping you easily manage the // a pointer within a scope, and automatically destroying the pointer at the // end of a scope. // // A unique_ptr<T> is like a T*, except that the destructor of unique_ptr<T> // automatically deletes the pointer it holds (if any). // That is, unique_ptr<T> owns the T object that it points to. // Like a T*, a unique_ptr<T> may hold either NULL or a pointer to a T object. // Also like T*, unique_ptr<T> is thread-compatible, and once you // dereference it, you get the thread safety guarantees of T. // // Example usage (unique_ptr): // { // unique_ptr<Foo> foo(new Foo("wee")); // } // foo goes out of scope, releasing the pointer with it. // // { // unique_ptr<Foo> foo; // No pointer managed. // foo.reset(new Foo("wee")); // Now a pointer is managed. // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed. // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed. // foo->Method(); // Foo::Method() called. // foo.get()->Method(); // Foo::Method() called. // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer // // manages a pointer. // foo.reset(new Foo("wee4")); // foo manages a pointer again. // foo.reset(); // Foo("wee4") destroyed, foo no longer // // manages a pointer. // } // foo wasn't managing a pointer, so nothing was destroyed. // // The size of a unique_ptr is small: sizeof(unique_ptr<C>) == sizeof(C*) #ifndef NONSTD_UNIQUE_PTR_H_ #define NONSTD_UNIQUE_PTR_H_ // This is an implementation designed to match the anticipated future TR2 // implementation of the unique_ptr class. #include <assert.h> #include <stddef.h> #include <stdlib.h> namespace nonstd { // Common implementation for both pointers to elements and pointers to // arrays. These are differentiated below based on the need to invoke // delete vs. delete[] as appropriate. template <class C> class unique_ptr_base { public: // The element type typedef C element_type; explicit unique_ptr_base(C* p) : ptr_(p) { } // Accessors to get the owned object. // operator* and operator-> will assert() if there is no current object. C& operator*() const { assert(ptr_ != NULL); return *ptr_; } C* operator->() const { assert(ptr_ != NULL); return ptr_; } C* get() const { return ptr_; } // Comparison operators. // These return whether two unique_ptr refer to the same object, not just to // two different but equal objects. bool operator==(C* p) const { return ptr_ == p; } bool operator!=(C* p) const { return ptr_ != p; } // Swap two scoped pointers. void swap(unique_ptr_base& p2) { C* tmp = ptr_; ptr_ = p2.ptr_; p2.ptr_ = tmp; } // Release a pointer. // The return value is the current pointer held by this object. // If this object holds a NULL pointer, the return value is NULL. // After this operation, this object will hold a NULL pointer, // and will not own the object any more. C* release() { C* retVal = ptr_; ptr_ = NULL; return retVal; } // Allow promotion to bool for conditional statements. operator bool() const { return ptr_ != NULL; } protected: C* ptr_; }; // Implementation for ordinary pointers using delete. template <class C> class unique_ptr : public unique_ptr_base<C> { public: using unique_ptr_base<C>::ptr_; // Constructor. Defaults to initializing with NULL. There is no way // to create an uninitialized unique_ptr. The input parameter must be // allocated with new (not new[] - see below). explicit unique_ptr(C* p = NULL) : unique_ptr_base<C>(p) { } // Destructor. If there is a C object, delete it. // We don't need to test ptr_ == NULL because C++ does that for us. ~unique_ptr() { enum { type_must_be_complete = sizeof(C) }; delete ptr_; } // Reset. Deletes the current owned object, if any. // Then takes ownership of a new object, if given. // this->reset(this->get()) works. void reset(C* p = NULL) { if (p != ptr_) { enum { type_must_be_complete = sizeof(C) }; C* old_ptr = ptr_; ptr_ = p; delete old_ptr; } } private: // Forbid comparison of unique_ptr types. If C2 != C, it totally doesn't // make sense, and if C2 == C, it still doesn't make sense because you should // never have the same object owned by two different unique_ptrs. template <class C2> bool operator==(unique_ptr<C2> const& p2) const; template <class C2> bool operator!=(unique_ptr<C2> const& p2) const; // Disallow evil constructors unique_ptr(const unique_ptr&); void operator=(const unique_ptr&); }; // Specialization for arrays using delete[]. template <class C> class unique_ptr<C[]> : public unique_ptr_base<C> { public: using unique_ptr_base<C>::ptr_; // Constructor. Defaults to initializing with NULL. There is no way // to create an uninitialized unique_ptr. The input parameter must be // allocated with new[] (not new - see above). explicit unique_ptr(C* p = NULL) : unique_ptr_base<C>(p) { } // Destructor. If there is a C object, delete it. // We don't need to test ptr_ == NULL because C++ does that for us. ~unique_ptr() { enum { type_must_be_complete = sizeof(C) }; delete[] ptr_; } // Reset. Deletes the current owned object, if any. // Then takes ownership of a new object, if given. // this->reset(this->get()) works. void reset(C* p = NULL) { if (p != ptr_) { enum { type_must_be_complete = sizeof(C) }; C* old_ptr = ptr_; ptr_ = p; delete[] old_ptr; } } // Support indexing since it is holding array. C& operator[] (size_t i) { return ptr_[i]; } private: // Forbid comparison of unique_ptr types. If C2 != C, it totally doesn't // make sense, and if C2 == C, it still doesn't make sense because you should // never have the same object owned by two different unique_ptrs. template <class C2> bool operator==(unique_ptr<C2> const& p2) const; template <class C2> bool operator!=(unique_ptr<C2> const& p2) const; // Disallow evil constructors unique_ptr(const unique_ptr&); void operator=(const unique_ptr&); }; // Free functions template <class C> void swap(unique_ptr<C>& p1, unique_ptr<C>& p2) { p1.swap(p2); } template <class C> bool operator==(C* p1, const unique_ptr<C>& p2) { return p1 == p2.get(); } template <class C> bool operator!=(C* p1, const unique_ptr<C>& p2) { return p1 != p2.get(); } } // namespace nonstd #endif // NONSTD_UNIQUE_PTR_H_