/*
 * The copyright in this software is being made available under the 2-clauses 
 * BSD License, included below. This software may be subject to other third 
 * party and contributor rights, including patent rights, and no such rights
 * are granted under this license.
 *
 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
 * Copyright (c) 2002-2014, Professor Benoit Macq
 * Copyright (c) 2001-2003, David Janssens
 * Copyright (c) 2002-2003, Yannick Verschueren
 * Copyright (c) 2003-2007, Francois-Olivier Devaux 
 * Copyright (c) 2003-2014, Antonin Descampe
 * Copyright (c) 2005, Herve Drolon, FreeImage Team
 * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net>
 * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#ifdef __SSE__
#include <xmmintrin.h>
#endif

#include "opj_includes.h"

/** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
/*@{*/

/** @name Local data structures */
/*@{*/

typedef struct dwt_local {
	OPJ_INT32* mem;
	OPJ_SIZE_T mem_count;
	OPJ_INT32 dn;
	OPJ_INT32 sn;
	OPJ_INT32 cas;
} opj_dwt_t;

typedef union {
	OPJ_FLOAT32	f[4];
} opj_v4_t;

typedef struct v4dwt_local {
	opj_v4_t*	wavelet ;
	OPJ_INT32		dn ;
	OPJ_INT32		sn ;
	OPJ_INT32		cas ;
} opj_v4dwt_t ;

static const OPJ_FLOAT32 opj_dwt_alpha =  1.586134342f; /*  12994 */
static const OPJ_FLOAT32 opj_dwt_beta  =  0.052980118f; /*    434 */
static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /*  -7233 */
static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /*  -3633 */

static const OPJ_FLOAT32 opj_K      = 1.230174105f; /*  10078 */
static const OPJ_FLOAT32 opj_c13318 = 1.625732422f;

/*@}*/

/**
Virtual function type for wavelet transform in 1-D 
*/
typedef void (*DWT1DFN)(opj_dwt_t* v);

/** @name Local static functions */
/*@{*/

/**
Forward lazy transform (horizontal)
*/
static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
/**
Forward lazy transform (vertical)
*/
static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas);
/**
Inverse lazy transform (horizontal)
*/
static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a);
/**
Inverse lazy transform (vertical)
*/
static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x);
/**
Forward 5-3 wavelet transform in 1-D
*/
static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
/**
Inverse 5-3 wavelet transform in 1-D
*/
static void opj_dwt_decode_1(opj_dwt_t *v);
static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
/**
Forward 9-7 wavelet transform in 1-D
*/
static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
/**
Explicit calculation of the Quantization Stepsizes 
*/
static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize);
/**
Inverse wavelet transform in 2-D.
*/
static OPJ_BOOL opj_dwt_decode_tile(const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i, DWT1DFN fn);

static OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec,
										    void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32));

static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i);

/* <summary>                             */
/* Inverse 9-7 wavelet transform in 1-D. */
/* </summary>                            */
static void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt);

static void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size);

static void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read);

#ifdef __SSE__
static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c);

static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c);

#else
static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c);

static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c);

#endif

/*@}*/

/*@}*/

#define IDX_S(i) (i)*2
#define IDX_D(i) 1 + (i)* 2
#define UNDERFLOW_SN(i) ((i) >= sn&&sn>0)
#define UNDERFLOW_DN(i) ((i) >= dn&&dn>0)
#define OVERFLOW_S(i) (IDX_S(i) >= a_count)
#define OVERFLOW_D(i) (IDX_D(i) >= a_count)

#define OPJ_S(i) a[IDX_S(i)]
#define OPJ_D(i) a[IDX_D(i)]
#define OPJ_S_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_SN(i) ? OPJ_S(sn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
#define OPJ_D_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_DN(i) ? OPJ_D(dn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))
/* new */
#define OPJ_SS_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_DN(i) ? OPJ_S(dn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
#define OPJ_DD_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_SN(i) ? OPJ_D(sn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))

/* <summary>                                                              */
/* This table contains the norms of the 5-3 wavelets for different bands. */
/* </summary>                                                             */
static const OPJ_FLOAT64 opj_dwt_norms[4][10] = {
	{1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
	{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
	{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
	{.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
};

/* <summary>                                                              */
/* This table contains the norms of the 9-7 wavelets for different bands. */
/* </summary>                                                             */
static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = {
	{1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9},
	{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
	{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
	{2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2}
};

/* 
==========================================================
   local functions
==========================================================
*/

/* <summary>			                 */
/* Forward lazy transform (horizontal).  */
/* </summary>                            */ 
static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
	OPJ_INT32 i;
	OPJ_INT32 * l_dest = b;
	OPJ_INT32 * l_src = a+cas;

    for (i=0; i<sn; ++i) {
		*l_dest++ = *l_src;
		l_src += 2;
	}
	
    l_dest = b + sn;
	l_src = a + 1 - cas;

    for	(i=0; i<dn; ++i)  {
		*l_dest++=*l_src;
		l_src += 2;
	}
}

/* <summary>                             */  
/* Forward lazy transform (vertical).    */
/* </summary>                            */ 
static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas) {
    OPJ_INT32 i = sn;
	OPJ_INT32 * l_dest = b;
	OPJ_INT32 * l_src = a+cas;

    while (i--) {
		*l_dest = *l_src;
		l_dest += x;
		l_src += 2;
		} /* b[i*x]=a[2*i+cas]; */

	l_dest = b + sn * x;
	l_src = a + 1 - cas;
	
	i = dn;
    while (i--) {
		*l_dest = *l_src;
		l_dest += x;
		l_src += 2;
        } /*b[(sn+i)*x]=a[(2*i+1-cas)];*/
}

/* <summary>                             */
/* Inverse lazy transform (horizontal).  */
/* </summary>                            */
static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a) {
    OPJ_INT32 *ai = a;
    OPJ_INT32 *bi = h->mem + h->cas;
    OPJ_INT32  i	= h->sn;
    while( i-- ) {
      *bi = *(ai++);
	  bi += 2;
    }
    ai	= a + h->sn;
    bi	= h->mem + 1 - h->cas;
    i	= h->dn ;
    while( i-- ) {
      *bi = *(ai++);
	  bi += 2;
    }
}

/* <summary>                             */  
/* Inverse lazy transform (vertical).    */
/* </summary>                            */ 
static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) {
    OPJ_INT32 *ai = a;
    OPJ_INT32 *bi = v->mem + v->cas;
    OPJ_INT32  i = v->sn;
    while( i-- ) {
      *bi = *ai;
	  bi += 2;
	  ai += x;
    }
    ai = a + (v->sn * x);
    bi = v->mem + 1 - v->cas;
    i = v->dn ;
    while( i-- ) {
      *bi = *ai;
	  bi += 2;  
	  ai += x;
    }
}


/* <summary>                            */
/* Forward 5-3 wavelet transform in 1-D. */
/* </summary>                           */
static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
	OPJ_INT32 i;
	
	if (!cas) {
		if ((dn > 0) || (sn > 1)) {	/* NEW :  CASE ONE ELEMENT */
			for (i = 0; i < dn; i++) OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
			for (i = 0; i < sn; i++) OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
		}
	} else {
		if (!sn && dn == 1)		    /* NEW :  CASE ONE ELEMENT */
			OPJ_S(0) *= 2;
		else {
			for (i = 0; i < dn; i++) OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
			for (i = 0; i < sn; i++) OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
		}
	}
}

/* <summary>                            */
/* Inverse 5-3 wavelet transform in 1-D. */
/* </summary>                           */ 
static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
	OPJ_INT32 i;
	
	if (!cas) {
		if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
			for (i = 0; i < sn; i++) OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
			for (i = 0; i < dn; i++) OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
		}
	} else {
		if (!sn  && dn == 1)          /* NEW :  CASE ONE ELEMENT */
			OPJ_S(0) /= 2;
		else {
			for (i = 0; i < sn; i++) OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
			for (i = 0; i < dn; i++) OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
		}
	}
}

/* <summary>                            */
/* Inverse 5-3 wavelet transform in 1-D. */
/* </summary>                           */ 
static void opj_dwt_decode_1(opj_dwt_t *v) {
	opj_dwt_decode_1_(v->mem, v->mem_count, v->dn, v->sn, v->cas);
}

/* <summary>                             */
/* Forward 9-7 wavelet transform in 1-D. */
/* </summary>                            */
static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
	OPJ_INT32 i;
	if (!cas) {
		if ((dn > 0) || (sn > 1)) {	/* NEW :  CASE ONE ELEMENT */
			for (i = 0; i < dn; i++)
				OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993);
			for (i = 0; i < sn; i++)
				OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434);
			for (i = 0; i < dn; i++)
				OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233);
			for (i = 0; i < sn; i++)
				OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633);
			for (i = 0; i < dn; i++)
				OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038);	/*5038 */
			for (i = 0; i < sn; i++)
				OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659);	/*6660 */
		}
	} else {
		if ((sn > 0) || (dn > 1)) {	/* NEW :  CASE ONE ELEMENT */
			for (i = 0; i < dn; i++)
				OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993);
			for (i = 0; i < sn; i++)
				OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434);
			for (i = 0; i < dn; i++)
				OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233);
			for (i = 0; i < sn; i++)
				OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633);
			for (i = 0; i < dn; i++)
				OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038);	/*5038 */
			for (i = 0; i < sn; i++)
				OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659);	/*6660 */
		}
	}
}

static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize) {
	OPJ_INT32 p, n;
	p = opj_int_floorlog2(stepsize) - 13;
	n = 11 - opj_int_floorlog2(stepsize);
	bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
	bandno_stepsize->expn = numbps - p;
}

/* 
==========================================================
   DWT interface
==========================================================
*/


/* <summary>                            */
/* Forward 5-3 wavelet transform in 2-D. */
/* </summary>                           */
static INLINE OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec, void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32))
{
	OPJ_INT32 i, j, k;
	OPJ_INT32 *a = 00;
	OPJ_INT32 *aj = 00;
	OPJ_INT32 *bj = 00;
	OPJ_INT32 w, l;

	OPJ_INT32 rw;			/* width of the resolution level computed   */
	OPJ_INT32 rh;			/* height of the resolution level computed  */
	OPJ_SIZE_T l_data_count;
	OPJ_SIZE_T l_data_size;

	opj_tcd_resolution_t * l_cur_res = 0;
	opj_tcd_resolution_t * l_last_res = 0;

	w = tilec->x1-tilec->x0;
	l = (OPJ_INT32)tilec->numresolutions-1;
	a = tilec->data;

	l_cur_res = tilec->resolutions + l;
	l_last_res = l_cur_res - 1;

	l_data_count = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions) * (OPJ_UINT32)sizeof(OPJ_INT32);
	l_data_size = l_data_count * (OPJ_UINT32)sizeof(OPJ_INT32);
	bj = (OPJ_INT32*)opj_malloc(l_data_size);
	if (! bj) {
		return OPJ_FALSE;
	}
	i = l;

	while (i--) {
		OPJ_INT32 rw1;		/* width of the resolution level once lower than computed one                                       */
		OPJ_INT32 rh1;		/* height of the resolution level once lower than computed one                                      */
		OPJ_INT32 cas_col;	/* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
		OPJ_INT32 cas_row;	/* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering   */
		OPJ_INT32 dn, sn;

		rw  = l_cur_res->x1 - l_cur_res->x0;
		rh  = l_cur_res->y1 - l_cur_res->y0;
		rw1 = l_last_res->x1 - l_last_res->x0;
		rh1 = l_last_res->y1 - l_last_res->y0;

		cas_row = l_cur_res->x0 & 1;
		cas_col = l_cur_res->y0 & 1;

		sn = rh1;
		dn = rh - rh1;
		for (j = 0; j < rw; ++j) {
			aj = a + j;
			for (k = 0; k < rh; ++k) {
				bj[k] = aj[k*w];
			}

			(*p_function) (bj, l_data_count, dn, sn, cas_col);

			opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
		}

		sn = rw1;
		dn = rw - rw1;

		for (j = 0; j < rh; j++) {
			aj = a + j * w;
			for (k = 0; k < rw; k++)  bj[k] = aj[k];
			(*p_function) (bj, l_data_count, dn, sn, cas_row);
			opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
		}

		l_cur_res = l_last_res;

		--l_last_res;
	}

	opj_free(bj);
	return OPJ_TRUE;
}

/* Forward 5-3 wavelet transform in 2-D. */
/* </summary>                           */
OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec)
{
	return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1);
}

/* <summary>                            */
/* Inverse 5-3 wavelet transform in 2-D. */
/* </summary>                           */
OPJ_BOOL opj_dwt_decode(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) {
	return opj_dwt_decode_tile(tilec, numres, &opj_dwt_decode_1);
}


/* <summary>                          */
/* Get gain of 5-3 wavelet transform. */
/* </summary>                         */
OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient) {
	if (orient == 0)
		return 0;
	if (orient == 1 || orient == 2)
		return 1;
	return 2;
}

/* <summary>                */
/* Get norm of 5-3 wavelet. */
/* </summary>               */
OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) {
	return opj_dwt_norms[orient][level];
}

/* <summary>                             */
/* Forward 9-7 wavelet transform in 2-D. */
/* </summary>                            */
OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)
{
	return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1_real);
}

/* <summary>                          */
/* Get gain of 9-7 wavelet transform. */
/* </summary>                         */
OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient) {
	(void)orient;
	return 0;
}

/* <summary>                */
/* Get norm of 9-7 wavelet. */
/* </summary>               */
OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) {
	return opj_dwt_norms_real[orient][level];
}

void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) {
	OPJ_UINT32 numbands, bandno;
	numbands = 3 * tccp->numresolutions - 2;
	for (bandno = 0; bandno < numbands; bandno++) {
		OPJ_FLOAT64 stepsize;
		OPJ_UINT32 resno, level, orient, gain;

		resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1);
		orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1);
		level = tccp->numresolutions - 1 - resno;
		gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || (orient == 2)) ? 1 : 2));
		if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) {
			stepsize = 1.0;
		} else {
			OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level];
			stepsize = (1 << (gain)) / norm;
		}
		opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]);
	}
}

/* <summary>                             */
/* Determine maximum computed resolution level for inverse wavelet transform */
/* </summary>                            */
static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i) {
	OPJ_UINT32 mr	= 0;
	OPJ_UINT32 w;
	while( --i ) {
		++r;
		if( mr < ( w = (OPJ_UINT32)(r->x1 - r->x0) ) )
			mr = w ;
		if( mr < ( w = (OPJ_UINT32)(r->y1 - r->y0) ) )
			mr = w ;
	}
	return mr ;
}

/* <summary>                            */
/* Inverse wavelet transform in 2-D.     */
/* </summary>                           */
static OPJ_BOOL opj_dwt_decode_tile(const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres, DWT1DFN dwt_1D) {
	opj_dwt_t h;
	opj_dwt_t v;

	opj_tcd_resolution_t* tr = tilec->resolutions;

	OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - tr->x0);	/* width of the resolution level computed */
	OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - tr->y0);	/* height of the resolution level computed */

	OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);

	h.mem_count = opj_dwt_max_resolution(tr, numres);
	h.mem = (OPJ_INT32*)opj_aligned_malloc(h.mem_count * sizeof(OPJ_INT32));
	if (! h.mem){
		/* FIXME event manager error callback */
		return OPJ_FALSE;
	}

	v.mem_count = h.mem_count;
	v.mem = h.mem;

	while( --numres) {
		OPJ_INT32 * restrict tiledp = tilec->data;
		OPJ_UINT32 j;

		++tr;
		h.sn = (OPJ_INT32)rw;
		v.sn = (OPJ_INT32)rh;

		rw = (OPJ_UINT32)(tr->x1 - tr->x0);
		rh = (OPJ_UINT32)(tr->y1 - tr->y0);

		h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
		h.cas = tr->x0 % 2;

		for(j = 0; j < rh; ++j) {
			opj_dwt_interleave_h(&h, &tiledp[j*w]);
			(dwt_1D)(&h);
			memcpy(&tiledp[j*w], h.mem, rw * sizeof(OPJ_INT32));
		}

		v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
		v.cas = tr->y0 % 2;

		for(j = 0; j < rw; ++j){
			OPJ_UINT32 k;
			opj_dwt_interleave_v(&v, &tiledp[j], (OPJ_INT32)w);
			(dwt_1D)(&v);
			for(k = 0; k < rh; ++k) {
				tiledp[k * w + j] = v.mem[k];
			}
		}
	}
	opj_aligned_free(h.mem);
	return OPJ_TRUE;
}

static void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size){
	OPJ_FLOAT32* restrict bi = (OPJ_FLOAT32*) (w->wavelet + w->cas);
	OPJ_INT32 count = w->sn;
	OPJ_INT32 i, k;

	for(k = 0; k < 2; ++k){
		if ( count + 3 * x < size && ((size_t) a & 0x0f) == 0 && ((size_t) bi & 0x0f) == 0 && (x & 0x0f) == 0 ) {
			/* Fast code path */
			for(i = 0; i < count; ++i){
				OPJ_INT32 j = i;
				bi[i*8    ] = a[j];
				j += x;
				bi[i*8 + 1] = a[j];
				j += x;
				bi[i*8 + 2] = a[j];
				j += x;
				bi[i*8 + 3] = a[j];
			}
		}
		else {
			/* Slow code path */
			for(i = 0; i < count; ++i){
				OPJ_INT32 j = i;
				bi[i*8    ] = a[j];
				j += x;
				if(j >= size) continue;
				bi[i*8 + 1] = a[j];
				j += x;
				if(j >= size) continue;
				bi[i*8 + 2] = a[j];
				j += x;
				if(j >= size) continue;
				bi[i*8 + 3] = a[j]; /* This one*/
			}
		}

		bi = (OPJ_FLOAT32*) (w->wavelet + 1 - w->cas);
		a += w->sn;
		size -= w->sn;
		count = w->dn;
	}
}

static void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read){
	opj_v4_t* restrict bi = v->wavelet + v->cas;
	OPJ_INT32 i;

	for(i = 0; i < v->sn; ++i){
		memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32));
	}

	a += v->sn * x;
	bi = v->wavelet + 1 - v->cas;

	for(i = 0; i < v->dn; ++i){
		memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32));
	}
}

#ifdef __SSE__

static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c){
	__m128* restrict vw = (__m128*) w;
	OPJ_INT32 i;
	/* 4x unrolled loop */
	for(i = 0; i < count >> 2; ++i){
		*vw = _mm_mul_ps(*vw, c);
		vw += 2;
		*vw = _mm_mul_ps(*vw, c);
		vw += 2;
		*vw = _mm_mul_ps(*vw, c);
		vw += 2;
		*vw = _mm_mul_ps(*vw, c);
		vw += 2;
	}
	count &= 3;
	for(i = 0; i < count; ++i){
		*vw = _mm_mul_ps(*vw, c);
		vw += 2;
	}
}

void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c){
	__m128* restrict vl = (__m128*) l;
	__m128* restrict vw = (__m128*) w;
	OPJ_INT32 i;
	__m128 tmp1, tmp2, tmp3;
	tmp1 = vl[0];
	for(i = 0; i < m; ++i){
		tmp2 = vw[-1];
		tmp3 = vw[ 0];
		vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
		tmp1 = tmp3;
		vw += 2;
	}
	vl = vw - 2;
	if(m >= k){
		return;
	}
	c = _mm_add_ps(c, c);
	c = _mm_mul_ps(c, vl[0]);
	for(; m < k; ++m){
		__m128 tmp = vw[-1];
		vw[-1] = _mm_add_ps(tmp, c);
		vw += 2;
	}
}

#else

static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c)
{
	OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w;
	OPJ_INT32 i;
	for(i = 0; i < count; ++i){
		OPJ_FLOAT32 tmp1 = fw[i*8    ];
		OPJ_FLOAT32 tmp2 = fw[i*8 + 1];
		OPJ_FLOAT32 tmp3 = fw[i*8 + 2];
		OPJ_FLOAT32 tmp4 = fw[i*8 + 3];
		fw[i*8    ] = tmp1 * c;
		fw[i*8 + 1] = tmp2 * c;
		fw[i*8 + 2] = tmp3 * c;
		fw[i*8 + 3] = tmp4 * c;
	}
}

static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c)
{
	OPJ_FLOAT32* restrict fl = (OPJ_FLOAT32*) l;
	OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w;
	OPJ_INT32 i;
	for(i = 0; i < m; ++i){
		OPJ_FLOAT32 tmp1_1 = fl[0];
		OPJ_FLOAT32 tmp1_2 = fl[1];
		OPJ_FLOAT32 tmp1_3 = fl[2];
		OPJ_FLOAT32 tmp1_4 = fl[3];
		OPJ_FLOAT32 tmp2_1 = fw[-4];
		OPJ_FLOAT32 tmp2_2 = fw[-3];
		OPJ_FLOAT32 tmp2_3 = fw[-2];
		OPJ_FLOAT32 tmp2_4 = fw[-1];
		OPJ_FLOAT32 tmp3_1 = fw[0];
		OPJ_FLOAT32 tmp3_2 = fw[1];
		OPJ_FLOAT32 tmp3_3 = fw[2];
		OPJ_FLOAT32 tmp3_4 = fw[3];
		fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c);
		fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c);
		fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c);
		fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c);
		fl = fw;
		fw += 8;
	}
	if(m < k){
		OPJ_FLOAT32 c1;
		OPJ_FLOAT32 c2;
		OPJ_FLOAT32 c3;
		OPJ_FLOAT32 c4;
		c += c;
		c1 = fl[0] * c;
		c2 = fl[1] * c;
		c3 = fl[2] * c;
		c4 = fl[3] * c;
		for(; m < k; ++m){
			OPJ_FLOAT32 tmp1 = fw[-4];
			OPJ_FLOAT32 tmp2 = fw[-3];
			OPJ_FLOAT32 tmp3 = fw[-2];
			OPJ_FLOAT32 tmp4 = fw[-1];
			fw[-4] = tmp1 + c1;
			fw[-3] = tmp2 + c2;
			fw[-2] = tmp3 + c3;
			fw[-1] = tmp4 + c4;
			fw += 8;
		}
	}
}

#endif

/* <summary>                             */
/* Inverse 9-7 wavelet transform in 1-D. */
/* </summary>                            */
void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt)
{
	OPJ_INT32 a, b;
	if(dwt->cas == 0) {
		if(!((dwt->dn > 0) || (dwt->sn > 1))){
			return;
		}
		a = 0;
		b = 1;
	}else{
		if(!((dwt->sn > 0) || (dwt->dn > 1))) {
			return;
		}
		a = 1;
		b = 0;
	}
#ifdef __SSE__
	opj_v4dwt_decode_step1_sse(dwt->wavelet+a, dwt->sn, _mm_set1_ps(opj_K));
	opj_v4dwt_decode_step1_sse(dwt->wavelet+b, dwt->dn, _mm_set1_ps(opj_c13318));
	opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_delta));
	opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_gamma));
	opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_beta));
	opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_alpha));
#else
	opj_v4dwt_decode_step1(dwt->wavelet+a, dwt->sn, opj_K);
	opj_v4dwt_decode_step1(dwt->wavelet+b, dwt->dn, opj_c13318);
	opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_delta);
	opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_gamma);
	opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_beta);
	opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_alpha);
#endif
}


/* <summary>                             */
/* Inverse 9-7 wavelet transform in 2-D. */
/* </summary>                            */
OPJ_BOOL opj_dwt_decode_real(opj_tcd_tilecomp_t* restrict tilec, OPJ_UINT32 numres)
{
	opj_v4dwt_t h;
	opj_v4dwt_t v;

	opj_tcd_resolution_t* res = tilec->resolutions;

	OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 - res->x0);	/* width of the resolution level computed */
	OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 - res->y0);	/* height of the resolution level computed */

	OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);

	h.wavelet = (opj_v4_t*) opj_aligned_malloc((opj_dwt_max_resolution(res, numres)+5) * sizeof(opj_v4_t));
	if (!h.wavelet) {
		/* FIXME event manager error callback */
		return OPJ_FALSE;
	}
	v.wavelet = h.wavelet;

	while( --numres) {
		OPJ_FLOAT32 * restrict aj = (OPJ_FLOAT32*) tilec->data;
		OPJ_UINT32 bufsize = (OPJ_UINT32)((tilec->x1 - tilec->x0) * (tilec->y1 - tilec->y0));
		OPJ_INT32 j;

		h.sn = (OPJ_INT32)rw;
		v.sn = (OPJ_INT32)rh;

		++res;

		rw = (OPJ_UINT32)(res->x1 - res->x0);	/* width of the resolution level computed */
		rh = (OPJ_UINT32)(res->y1 - res->y0);	/* height of the resolution level computed */

		h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
		h.cas = res->x0 % 2;

		for(j = (OPJ_INT32)rh; j > 3; j -= 4) {
			OPJ_INT32 k;
			opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize);
			opj_v4dwt_decode(&h);

			for(k = (OPJ_INT32)rw; --k >= 0;){
				aj[k               ] = h.wavelet[k].f[0];
				aj[k+(OPJ_INT32)w  ] = h.wavelet[k].f[1];
				aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2];
				aj[k+(OPJ_INT32)w*3] = h.wavelet[k].f[3];
			}

			aj += w*4;
			bufsize -= w*4;
		}

		if (rh & 0x03) {
			OPJ_INT32 k;
			j = rh & 0x03;
			opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize);
			opj_v4dwt_decode(&h);
			for(k = (OPJ_INT32)rw; --k >= 0;){
				switch(j) {
					case 3: aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2];
					case 2: aj[k+(OPJ_INT32)w  ] = h.wavelet[k].f[1];
					case 1: aj[k               ] = h.wavelet[k].f[0];
				}
			}
		}

		v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
		v.cas = res->y0 % 2;

		aj = (OPJ_FLOAT32*) tilec->data;
		for(j = (OPJ_INT32)rw; j > 3; j -= 4){
			OPJ_UINT32 k;

			opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, 4);
			opj_v4dwt_decode(&v);

			for(k = 0; k < rh; ++k){
				memcpy(&aj[k*w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32));
			}
			aj += 4;
		}

		if (rw & 0x03){
			OPJ_UINT32 k;

			j = rw & 0x03;

			opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, j);
			opj_v4dwt_decode(&v);

			for(k = 0; k < rh; ++k){
				memcpy(&aj[k*w], &v.wavelet[k], (size_t)j * sizeof(OPJ_FLOAT32));
			}
		}
	}

	opj_aligned_free(h.wavelet);
	return OPJ_TRUE;
}