/*
 * The copyright in this software is being made available under the 2-clauses 
 * BSD License, included below. This software may be subject to other third 
 * party and contributor rights, including patent rights, and no such rights
 * are granted under this license.
 *
 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
 * Copyright (c) 2002-2014, Professor Benoit Macq
 * Copyright (c) 2001-2003, David Janssens
 * Copyright (c) 2002-2003, Yannick Verschueren
 * Copyright (c) 2003-2007, Francois-Olivier Devaux 
 * Copyright (c) 2003-2014, Antonin Descampe
 * Copyright (c) 2005, Herve Drolon, FreeImage Team
 * Copyright (c) 2008, 2011-2012, Centre National d'Etudes Spatiales (CNES), FR 
 * Copyright (c) 2012, CS Systemes d'Information, France
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#ifdef __SSE__
#include <xmmintrin.h>
#endif
#ifdef __SSE2__
#include <emmintrin.h>
#endif
#ifdef __SSE4_1__
#include <smmintrin.h>
#endif

#include "opj_includes.h"

/* <summary> */
/* This table contains the norms of the basis function of the reversible MCT. */
/* </summary> */
static const OPJ_FLOAT64 opj_mct_norms[3] = { 1.732, .8292, .8292 };

/* <summary> */
/* This table contains the norms of the basis function of the irreversible MCT. */
/* </summary> */
static const OPJ_FLOAT64 opj_mct_norms_real[3] = { 1.732, 1.805, 1.573 };

const OPJ_FLOAT64 * opj_mct_get_mct_norms ()
{
	return opj_mct_norms;
}

const OPJ_FLOAT64 * opj_mct_get_mct_norms_real ()
{
	return opj_mct_norms_real;
}

/* <summary> */
/* Forward reversible MCT. */
/* </summary> */
#ifdef __SSE2__
void opj_mct_encode(
		OPJ_INT32* restrict c0,
		OPJ_INT32* restrict c1,
		OPJ_INT32* restrict c2,
		OPJ_UINT32 n)
{
	OPJ_SIZE_T i;
	const OPJ_SIZE_T len = n;
	
	for(i = 0; i < (len & ~3U); i += 4) {
		__m128i y, u, v;
		__m128i r = _mm_load_si128((const __m128i *)&(c0[i]));
		__m128i g = _mm_load_si128((const __m128i *)&(c1[i]));
		__m128i b = _mm_load_si128((const __m128i *)&(c2[i]));
		y = _mm_add_epi32(g, g);
		y = _mm_add_epi32(y, b);
		y = _mm_add_epi32(y, r);
		y = _mm_srai_epi32(y, 2);
		u = _mm_sub_epi32(b, g);
		v = _mm_sub_epi32(r, g);
		_mm_store_si128((__m128i *)&(c0[i]), y);
		_mm_store_si128((__m128i *)&(c1[i]), u);
		_mm_store_si128((__m128i *)&(c2[i]), v);
	}
	
	for(; i < len; ++i) {
		OPJ_INT32 r = c0[i];
		OPJ_INT32 g = c1[i];
		OPJ_INT32 b = c2[i];
		OPJ_INT32 y = (r + (g * 2) + b) >> 2;
		OPJ_INT32 u = b - g;
		OPJ_INT32 v = r - g;
		c0[i] = y;
		c1[i] = u;
		c2[i] = v;
	}
}
#else
void opj_mct_encode(
		OPJ_INT32* restrict c0,
		OPJ_INT32* restrict c1,
		OPJ_INT32* restrict c2,
		OPJ_UINT32 n)
{
	OPJ_SIZE_T i;
	const OPJ_SIZE_T len = n;
	
	for(i = 0; i < len; ++i) {
		OPJ_INT32 r = c0[i];
		OPJ_INT32 g = c1[i];
		OPJ_INT32 b = c2[i];
		OPJ_INT32 y = (r + (g * 2) + b) >> 2;
		OPJ_INT32 u = b - g;
		OPJ_INT32 v = r - g;
		c0[i] = y;
		c1[i] = u;
		c2[i] = v;
	}
}
#endif

/* <summary> */
/* Inverse reversible MCT. */
/* </summary> */
#ifdef __SSE2__
void opj_mct_decode(
		OPJ_INT32* restrict c0,
		OPJ_INT32* restrict c1,
		OPJ_INT32* restrict c2,
		OPJ_UINT32 n)
{
	OPJ_SIZE_T i;
	const OPJ_SIZE_T len = n;
	
	for(i = 0; i < (len & ~3U); i += 4) {
		__m128i r, g, b;
		__m128i y = _mm_load_si128((const __m128i *)&(c0[i]));
		__m128i u = _mm_load_si128((const __m128i *)&(c1[i]));
		__m128i v = _mm_load_si128((const __m128i *)&(c2[i]));
		g = y;
		g = _mm_sub_epi32(g, _mm_srai_epi32(_mm_add_epi32(u, v), 2));
		r = _mm_add_epi32(v, g);
		b = _mm_add_epi32(u, g);
		_mm_store_si128((__m128i *)&(c0[i]), r);
		_mm_store_si128((__m128i *)&(c1[i]), g);
		_mm_store_si128((__m128i *)&(c2[i]), b);
	}
	for (; i < len; ++i) {
		OPJ_INT32 y = c0[i];
		OPJ_INT32 u = c1[i];
		OPJ_INT32 v = c2[i];
		OPJ_INT32 g = y - ((u + v) >> 2);
		OPJ_INT32 r = v + g;
		OPJ_INT32 b = u + g;
		c0[i] = r;
		c1[i] = g;
		c2[i] = b;
	}
}
#else
void opj_mct_decode(
		OPJ_INT32* restrict c0,
		OPJ_INT32* restrict c1, 
		OPJ_INT32* restrict c2, 
		OPJ_UINT32 n)
{
	OPJ_UINT32 i;
	for (i = 0; i < n; ++i) {
		OPJ_INT32 y = c0[i];
		OPJ_INT32 u = c1[i];
		OPJ_INT32 v = c2[i];
		OPJ_INT32 g = y - ((u + v) >> 2);
		OPJ_INT32 r = v + g;
		OPJ_INT32 b = u + g;
		c0[i] = r;
		c1[i] = g;
		c2[i] = b;
	}
}
#endif

/* <summary> */
/* Get norm of basis function of reversible MCT. */
/* </summary> */
OPJ_FLOAT64 opj_mct_getnorm(OPJ_UINT32 compno) {
	return opj_mct_norms[compno];
}

/* <summary> */
/* Forward irreversible MCT. */
/* </summary> */
#ifdef __SSE4_1__
void opj_mct_encode_real(
												 OPJ_INT32* restrict c0,
												 OPJ_INT32* restrict c1,
												 OPJ_INT32* restrict c2,
												 OPJ_UINT32 n)
{
	OPJ_SIZE_T i;
	const OPJ_SIZE_T len = n;
	
	const __m128i ry = _mm_set1_epi32(2449);
	const __m128i gy = _mm_set1_epi32(4809);
	const __m128i by = _mm_set1_epi32(934);
	const __m128i ru = _mm_set1_epi32(1382);
	const __m128i gu = _mm_set1_epi32(2714);
	/* const __m128i bu = _mm_set1_epi32(4096); */
	/* const __m128i rv = _mm_set1_epi32(4096); */
	const __m128i gv = _mm_set1_epi32(3430);
	const __m128i bv = _mm_set1_epi32(666);
	const __m128i mulround = _mm_shuffle_epi32(_mm_cvtsi32_si128(4096), _MM_SHUFFLE(1, 0, 1, 0));
	
	for(i = 0; i < (len & ~3U); i += 4) {
		__m128i lo, hi;
		__m128i y, u, v;
		__m128i r = _mm_load_si128((const __m128i *)&(c0[i]));
		__m128i g = _mm_load_si128((const __m128i *)&(c1[i]));
		__m128i b = _mm_load_si128((const __m128i *)&(c2[i]));
		
		lo = r;
		hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1));
		lo = _mm_mul_epi32(lo, ry);
		hi = _mm_mul_epi32(hi, ry);
		lo = _mm_add_epi64(lo, mulround);
		hi = _mm_add_epi64(hi, mulround);
		lo = _mm_srli_epi64(lo, 13);
		hi = _mm_slli_epi64(hi, 32-13);
		y = _mm_blend_epi16(lo, hi, 0xCC);
		
		lo = g;
		hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1));
		lo = _mm_mul_epi32(lo, gy);
		hi = _mm_mul_epi32(hi, gy);
		lo = _mm_add_epi64(lo, mulround);
		hi = _mm_add_epi64(hi, mulround);
		lo = _mm_srli_epi64(lo, 13);
		hi = _mm_slli_epi64(hi, 32-13);
		y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC));
		
		lo = b;
		hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1));
		lo = _mm_mul_epi32(lo, by);
		hi = _mm_mul_epi32(hi, by);
		lo = _mm_add_epi64(lo, mulround);
		hi = _mm_add_epi64(hi, mulround);
		lo = _mm_srli_epi64(lo, 13);
		hi = _mm_slli_epi64(hi, 32-13);
		y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC));
		_mm_store_si128((__m128i *)&(c0[i]), y);
		
		/*lo = b;
		hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1));
		lo = _mm_mul_epi32(lo, mulround);
		hi = _mm_mul_epi32(hi, mulround);*/
		lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 2, 0)));
		hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 3, 1)));
		lo = _mm_slli_epi64(lo, 12);
		hi = _mm_slli_epi64(hi, 12);
		lo = _mm_add_epi64(lo, mulround);
		hi = _mm_add_epi64(hi, mulround);
		lo = _mm_srli_epi64(lo, 13);
		hi = _mm_slli_epi64(hi, 32-13);
		u = _mm_blend_epi16(lo, hi, 0xCC);
		
		lo = r;
		hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1));
		lo = _mm_mul_epi32(lo, ru);
		hi = _mm_mul_epi32(hi, ru);
		lo = _mm_add_epi64(lo, mulround);
		hi = _mm_add_epi64(hi, mulround);
		lo = _mm_srli_epi64(lo, 13);
		hi = _mm_slli_epi64(hi, 32-13);
		u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC));
		
		lo = g;
		hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1));
		lo = _mm_mul_epi32(lo, gu);
		hi = _mm_mul_epi32(hi, gu);
		lo = _mm_add_epi64(lo, mulround);
		hi = _mm_add_epi64(hi, mulround);
		lo = _mm_srli_epi64(lo, 13);
		hi = _mm_slli_epi64(hi, 32-13);
		u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC));
		_mm_store_si128((__m128i *)&(c1[i]), u);
		
		/*lo = r;
		hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1));
		lo = _mm_mul_epi32(lo, mulround);
		hi = _mm_mul_epi32(hi, mulround);*/
		lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 2, 0)));
		hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 3, 1)));
		lo = _mm_slli_epi64(lo, 12);
		hi = _mm_slli_epi64(hi, 12);
		lo = _mm_add_epi64(lo, mulround);
		hi = _mm_add_epi64(hi, mulround);
		lo = _mm_srli_epi64(lo, 13);
		hi = _mm_slli_epi64(hi, 32-13);
		v = _mm_blend_epi16(lo, hi, 0xCC);
		
		lo = g;
		hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1));
		lo = _mm_mul_epi32(lo, gv);
		hi = _mm_mul_epi32(hi, gv);
		lo = _mm_add_epi64(lo, mulround);
		hi = _mm_add_epi64(hi, mulround);
		lo = _mm_srli_epi64(lo, 13);
		hi = _mm_slli_epi64(hi, 32-13);
		v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC));
		
		lo = b;
		hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1));
		lo = _mm_mul_epi32(lo, bv);
		hi = _mm_mul_epi32(hi, bv);
		lo = _mm_add_epi64(lo, mulround);
		hi = _mm_add_epi64(hi, mulround);
		lo = _mm_srli_epi64(lo, 13);
		hi = _mm_slli_epi64(hi, 32-13);
		v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC));
		_mm_store_si128((__m128i *)&(c2[i]), v);
	}
	for(; i < len; ++i) {
		OPJ_INT32 r = c0[i];
		OPJ_INT32 g = c1[i];
		OPJ_INT32 b = c2[i];
		OPJ_INT32 y =  opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g, 4809) + opj_int_fix_mul(b, 934);
		OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g, 2714) + opj_int_fix_mul(b, 4096);
		OPJ_INT32 v =  opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g, 3430) - opj_int_fix_mul(b, 666);
		c0[i] = y;
		c1[i] = u;
		c2[i] = v;
	}
}
#else
void opj_mct_encode_real(
		OPJ_INT32* restrict c0,
		OPJ_INT32* restrict c1,
		OPJ_INT32* restrict c2,
		OPJ_UINT32 n)
{
	OPJ_UINT32 i;
	for(i = 0; i < n; ++i) {
		OPJ_INT32 r = c0[i];
		OPJ_INT32 g = c1[i];
		OPJ_INT32 b = c2[i];
		OPJ_INT32 y =  opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g, 4809) + opj_int_fix_mul(b, 934);
		OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g, 2714) + opj_int_fix_mul(b, 4096);
		OPJ_INT32 v =  opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g, 3430) - opj_int_fix_mul(b, 666);
		c0[i] = y;
		c1[i] = u;
		c2[i] = v;
	}
}
#endif

/* <summary> */
/* Inverse irreversible MCT. */
/* </summary> */
void opj_mct_decode_real(
		OPJ_FLOAT32* restrict c0,
		OPJ_FLOAT32* restrict c1,
		OPJ_FLOAT32* restrict c2,
		OPJ_UINT32 n)
{
	OPJ_UINT32 i;
#ifdef __SSE__
	__m128 vrv, vgu, vgv, vbu;
	vrv = _mm_set1_ps(1.402f);
	vgu = _mm_set1_ps(0.34413f);
	vgv = _mm_set1_ps(0.71414f);
	vbu = _mm_set1_ps(1.772f);
	for (i = 0; i < (n >> 3); ++i) {
		__m128 vy, vu, vv;
		__m128 vr, vg, vb;

		vy = _mm_load_ps(c0);
		vu = _mm_load_ps(c1);
		vv = _mm_load_ps(c2);
		vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
		vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
		vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
		_mm_store_ps(c0, vr);
		_mm_store_ps(c1, vg);
		_mm_store_ps(c2, vb);
		c0 += 4;
		c1 += 4;
		c2 += 4;

		vy = _mm_load_ps(c0);
		vu = _mm_load_ps(c1);
		vv = _mm_load_ps(c2);
		vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
		vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
		vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
		_mm_store_ps(c0, vr);
		_mm_store_ps(c1, vg);
		_mm_store_ps(c2, vb);
		c0 += 4;
		c1 += 4;
		c2 += 4;
	}
	n &= 7;
#endif
	for(i = 0; i < n; ++i) {
		OPJ_FLOAT32 y = c0[i];
		OPJ_FLOAT32 u = c1[i];
		OPJ_FLOAT32 v = c2[i];
		OPJ_FLOAT32 r = y + (v * 1.402f);
		OPJ_FLOAT32 g = y - (u * 0.34413f) - (v * (0.71414f));
		OPJ_FLOAT32 b = y + (u * 1.772f);
		c0[i] = r;
		c1[i] = g;
		c2[i] = b;
	}
}

/* <summary> */
/* Get norm of basis function of irreversible MCT. */
/* </summary> */
OPJ_FLOAT64 opj_mct_getnorm_real(OPJ_UINT32 compno) {
	return opj_mct_norms_real[compno];
}


OPJ_BOOL opj_mct_encode_custom(
					   OPJ_BYTE * pCodingdata,
					   OPJ_UINT32 n,
					   OPJ_BYTE ** pData,
					   OPJ_UINT32 pNbComp,
					   OPJ_UINT32 isSigned)
{
	OPJ_FLOAT32 * lMct = (OPJ_FLOAT32 *) pCodingdata;
	OPJ_UINT32 i;
	OPJ_UINT32 j;
	OPJ_UINT32 k;
	OPJ_UINT32 lNbMatCoeff = pNbComp * pNbComp;
	OPJ_INT32 * lCurrentData = 00;
	OPJ_INT32 * lCurrentMatrix = 00;
	OPJ_INT32 ** lData = (OPJ_INT32 **) pData;
	OPJ_UINT32 lMultiplicator = 1 << 13;
	OPJ_INT32 * lMctPtr;

    OPJ_ARG_NOT_USED(isSigned);

	lCurrentData = (OPJ_INT32 *) opj_malloc((pNbComp + lNbMatCoeff) * sizeof(OPJ_INT32));
	if (! lCurrentData) {
		return OPJ_FALSE;
	}

	lCurrentMatrix = lCurrentData + pNbComp;

	for (i =0;i<lNbMatCoeff;++i) {
		lCurrentMatrix[i] = (OPJ_INT32) (*(lMct++) * (OPJ_FLOAT32)lMultiplicator);
	}

	for (i = 0; i < n; ++i)  {
		lMctPtr = lCurrentMatrix;
		for (j=0;j<pNbComp;++j) {
			lCurrentData[j] = (*(lData[j]));
		}

		for (j=0;j<pNbComp;++j) {
			*(lData[j]) = 0;
			for (k=0;k<pNbComp;++k) {
				*(lData[j]) += opj_int_fix_mul(*lMctPtr, lCurrentData[k]);
				++lMctPtr;
			}

			++lData[j];
		}
	}

	opj_free(lCurrentData);

	return OPJ_TRUE;
}

OPJ_BOOL opj_mct_decode_custom(
					   OPJ_BYTE * pDecodingData,
					   OPJ_UINT32 n,
					   OPJ_BYTE ** pData,
					   OPJ_UINT32 pNbComp,
					   OPJ_UINT32 isSigned)
{
	OPJ_FLOAT32 * lMct;
	OPJ_UINT32 i;
	OPJ_UINT32 j;
	OPJ_UINT32 k;

	OPJ_FLOAT32 * lCurrentData = 00;
	OPJ_FLOAT32 * lCurrentResult = 00;
	OPJ_FLOAT32 ** lData = (OPJ_FLOAT32 **) pData;

    OPJ_ARG_NOT_USED(isSigned);

	lCurrentData = (OPJ_FLOAT32 *) opj_malloc (2 * pNbComp * sizeof(OPJ_FLOAT32));
	if (! lCurrentData) {
		return OPJ_FALSE;
	}
	lCurrentResult = lCurrentData + pNbComp;

	for (i = 0; i < n; ++i) {
		lMct = (OPJ_FLOAT32 *) pDecodingData;
		for (j=0;j<pNbComp;++j) {
			lCurrentData[j] = (OPJ_FLOAT32) (*(lData[j]));
		}
		for (j=0;j<pNbComp;++j) {
			lCurrentResult[j] = 0;
			for	(k=0;k<pNbComp;++k)	{
				lCurrentResult[j] += *(lMct++) * lCurrentData[k];
			}
			*(lData[j]++) = (OPJ_FLOAT32) (lCurrentResult[j]);
		}
	}
	opj_free(lCurrentData);
	return OPJ_TRUE;
}

void opj_calculate_norms(	OPJ_FLOAT64 * pNorms,
							OPJ_UINT32 pNbComps,
							OPJ_FLOAT32 * pMatrix)
{
	OPJ_UINT32 i,j,lIndex;
	OPJ_FLOAT32 lCurrentValue;
	OPJ_FLOAT64 * lNorms = (OPJ_FLOAT64 *) pNorms;
	OPJ_FLOAT32 * lMatrix = (OPJ_FLOAT32 *) pMatrix;

	for	(i=0;i<pNbComps;++i) {
		lNorms[i] = 0;
		lIndex = i;

		for	(j=0;j<pNbComps;++j) {
			lCurrentValue = lMatrix[lIndex];
			lIndex += pNbComps;
			lNorms[i] += lCurrentValue * lCurrentValue;
		}
		lNorms[i] = sqrt(lNorms[i]);
	}
}